A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

Mohsen Ziaee

Abstract

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

Keywords-Scheduling, flexible job shop, makespan, mixed integer linear programming.

I. INTRODUCTION

THE job shop scheduling problem (JSP) is an important scheduling problem in the literature [1] and has attracted many scheduling researchers due to its applicability and difficulty [2], [3]. The $n \times m$ classical JSP is defined as follows: set of n jobs must be performed on m machines, and each job i consists of J_{i} operations processed on the machines. Each job has a specified processing order on the machines that is fixed and known in advance, i.e. each operation has to be performed on a given machine without interruption. The machines are continuously available throughout the planning horizon and cannot process more than one operation at a time. The processing times for all the operations are fixed and known [4], [5]. A common objective function for this problem is the minimization of the makespan that is the time needed to complete all the jobs.

In the FJSP that is an extension of the classical JSP, each operation can be executed by any machine among a set of candidate machines; therefore, this problem has two subproblems: the assignment of the operations to machines and the determination of the sequence of operations on each machine. The FJSP is strongly NP-hard even if there are only two machines, and each job has at most three operations [6].

In the literature, many methods have been developed to solve more complex problems in the field of scheduling such as FJSP and JSP [7]-[11], but most of them are metaheuristic algorithms. Development of mathematical models for these

Mohsen Ziaee is with the Department of Industrial Engineering, University of Bojnord, 94531-55111 Bojnord, Iran (phone: +98 584 2284611, fax: +98 584 2410700, e-mail: ziaee@iust.ac.ir, ziaee2@gmail.com).
problems has become increasingly important in recent years, since these models can be easily solved by using existing powerful solvers and used for benchmarking the proposed approximation approaches and understanding the structure of the problems [12]. A review of MILP formulations for the flow shop and the JSP presented in the literature is provided by Pan [13]. For the FJSP, a review of the mathematical models developed for this problem can be found in Özgüven et al. [14]. They also presented a MILP model for the FJSP and compared it with a model of Fattahi et al. [15] concluding that their model is superior to that of [15] in terms of model size, CPU time and objective function value. A more recent literature survey and comparative evaluation of the proposed mathematical models for the FJSP is presented by Demir and Isleyen [16]. They investigated all the mathematical models for the FJSP existing in the literature in terms of binary variables used for sequencing the operations on the machines, and computationally compared them with the assumption that the objective function of the problem is makespan. They conclude that the mathematical model proposed by Özgüven et al. [14] is the best model in the literature in terms of the computational time.

In this study, a MILP model is presented to solve the FJSP with the objective of minimizing makespan (Section II). The performance of the proposed MILP model is evaluated by using several benchmark problems, and the results of computational studies are presented (Section III). Concluding remarks are given in Section IV.

Other assumptions considered in the problem studied in this paper are as follows:
1: Jobs are independent of each other, all of them have equal priorities and are available at time zero.
2: Machines are independent of each other.
3: Setup times and transportation times are assumed to be negligible and zero.
4: An operation cannot be processed by more than one processor (machine) at the same time.

II. MILP FORMULATION

The problem notations are as follows: n : number of jobs, m : number of machines, i, i^{\prime} : index of jobs; $i, i^{\prime}=1, \ldots, n, J_{i}$: number of operations of job i, j, j^{\prime} : index of operations; $j=1, \ldots, J_{i}$, $j^{\prime}=1, \ldots, J_{i^{\prime}}, k, k^{\prime}$: index of machines; $k, k^{\prime}=1, \ldots, m, t_{i j k}$: the processing time required on machine k for operation j of job i, $c_{i j k}$: completion time of operation j of job i (denoted by (i, j)) on machine $k, A_{i j}$: set of machines that are capable to process operation j of job i, and the operation must be performed on only one of the alternative machines in this set, $y_{i j i j^{\prime}}$: binary

ISSN: 2517-9934
Vol:12, No:6, 2018
variable which defines the processing order of the operations (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ belonging to two different jobs $\left(i<i i^{\prime}\right)$ on the same machine; it takes the value 1 if operation $\left(i^{\prime}, j^{\prime}\right)$ precedes operation (i, j), and 0 otherwise, $x_{i j k}$: binary variable that takes the value 1 if operation (i, j) is executed on machine k, and 0 otherwise, Cmax: makespan, M : a large number.

Here, a MILP formulation is presented for the problem.
Minimize Cmax
subject to:

$$
\left(\sum_{k^{\prime} \in A_{i j}} c_{i j k^{\prime}}\right)-\left(c_{i(j+1) k}-t_{i(j+1) k}\right) \leq M .\left(1-x_{i(j+1) k}\right) \quad \forall i, \forall j<J_{i}, k \in A_{i(j+1)}
$$

The objective in (1) is the minimization of the makespan. Constraint set (2) ensures precedence restrictions between consecutive operations of each job, it means that the completion time of operation j of job i should be less than or equal to the start time of its $(j+1)$ th operation. Constraint sets (3) and (4) define the order of any two operations executed on the same machine and ensure that they will not clash. For each two operations (i, j) and $\left(i^{\prime}, j^{\prime}\right),\left(i \neq i^{\prime}\right)$, constraint (3) is active only if the two operations can be executed on the same machine (k) (i.e. $x_{i j k}=x_{i j k^{\prime} k}=1$) and operation (i, j) is performed after operation (i^{\prime}, j^{\prime}) (i.e. $y_{i j i^{\prime} j}=1$); otherwise, i.e. if $x_{i j k}=0$ or $x_{i j^{\prime} k}=0$ or $y_{i j i j}=0$, this constraint is inactive. Note that, operation (i, j) is not necessarily positioned immediately after operation $\left(i^{\prime}, j^{\prime}\right)$ when $y_{i j i j}=1$. Clearly, for any two operations processed on the same machine, either constraint (3) or constraint (4) is active. Constraint set (5) means that each operation is assigned to exactly one machine. If operation (i, j) is not assigned to machine k, constraint (7) sets the completion time of it on machine k equal to zero. Constraint set (6) ensures that the start time of each job (i.e. its first operation) should be greater than or equal to the time zero. Constraint set

$$
\begin{equation*}
\forall i, \forall j \leq J_{i}, k \in\left(A_{i j} \cap A_{i^{\prime} j^{\prime}}\right), \forall i^{\prime}>i, \quad \forall j^{\prime} \leq J_{i^{\prime}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\forall i, \forall j \leq J_{i}, \quad k \in\left(A_{i j} \cap A_{i j^{\prime}}\right), \forall i^{\prime}>i, \tag{4}
\end{equation*}
$$

(8) determines the makespan, i.e. the completion time of last operation of each job should not be greater than the makespan. Constraint set (9) is a non-negativity constraint for variables $c_{i j k}$. Constraint sets (10) and (11) define the binary variables $x_{i j k}$ and $y_{i j i j}$, , respectively.

III. Computational Experiments

In this section, the results of computational studies are presented. As mentioned in Section I, the MILP model presented by Özgüven et al. [14] is the best model for the FJSP in the literature [16]. Therefore, we compared the computational results of proposed MILP model (henceforth MILP-Zia) with those of [14] (henceforth MILP-Literature). The benchmark instances used were the set of 20 problems taken from Fattahi et al. [15]. They are divided into two categories: small size FJSPs (denoted by SFJS1-SFJS10) and medium-large size FJSPs (denoted by MFJS1-MFJS10). Both MILP-Zia and MILP-Literature were solved for each of the benchmark instances using the software LINGO Release 8.0 [17] which uses the Branch and Bound algorithm to optimally solve the problem. We adjusted the default settings of the solver. The problems were run on a Pentium IV, 2.2 GHz and 2.0 GB RAM PC. The running time for each benchmark problem was limited to 3600 CPU seconds. The computational results are presented in Table I. The first column (name) indicates the name of each test problem. The second column (size) refers to the size of each test problem denoted by i, j, k indices, that means number of jobs, operations and machines, respectively. It must be noted that, in any of these benchmark instances, all the jobs have the same number of operations. The first set of columns includes the results of MILPLiterature, and the second set contains those from MILP-Zia. Integers, Non-integers, Constraints, CPU time (s), and Cmax represent the number of integer variables, the number of noninteger variables, the number of constraints, the running time in seconds, and the makespan value, for each instance, respectively. RPD is the relative percentage deviation and is computed by the following relation:

$$
\begin{align*}
& c_{i j k}-t_{i j k}-c_{i j^{\prime} k} \geq-M .\left(1-y_{i j i^{\prime} j^{\prime}}\right)-M .\left(2-x_{i j k}-x_{i j^{\prime} j^{\prime} k}\right) \\
& c_{i j^{\prime} k}-t_{i j^{\prime} k}-c_{i j k} \geq-M \cdot y_{i j i^{\prime} j^{\prime}}-M .\left(2-x_{i j k}-x_{i j^{\prime} j^{\prime} k}\right) \\
& \left(\sum_{k \in A_{i j}} x_{i j k}\right)=1 \quad \forall i, \forall j \leq J_{i}, \tag{5}\\
& M .\left(1-x_{i 1 k}\right)+c_{i 1 k}-t_{i 1 k} \geq 0 \quad \forall i, k \in A_{i 1}, \tag{6}\\
& c_{i j k}-M \cdot x_{i j k} \leq 0 \quad \forall i, \forall j \leq J_{i}, \quad k \in A_{i j}, \tag{7}\\
& \mathrm{Cmax} \geq \sum_{k \in A_{J_{j}}} c_{i J_{i} k} \quad \forall i, \tag{8}\\
& c_{i j k} \geq 0 \quad \forall i, \forall j \leq J_{i}, k \in A_{i j}, \tag{9}\\
& x_{i j k} \in\{0,1\} \quad \forall i, \forall j \leq J_{i}, k \in A_{i j}, \tag{10}\\
& y_{i j i^{\prime} j^{\prime}} \in\{0,1\} \quad \forall i, \forall j \leq J_{i}, \forall i^{\prime}>i, \forall j^{\prime} \leq J_{i^{\prime}}, \tag{11}
\end{align*}
$$

$$
R P D=\frac{C \max _{1}-C \max ^{*}}{C \max ^{*}} \times 100,
$$

where Cmax $_{1}$ is the makespan value obtained by the corresponding MILP model and Cmax* is the best value of makespan achieved by the two MILP models (i.e. MILPLiterature and MILP-Zia). As shown in the table, average RPD value for MILP-Zia is the best possible value, i.e. 0 , compared to 6.73 for MILP-Literature. The results also show that the difference between the solutions obtained increases as the instances size increases; the instance MFJS10 has RPD value of 45.8 , for example. Figs. 1-3 graphically represent the difference between RPD values, Cmax values, and total
number of variables of the two MILP models, respectively. Differences between the number of constraints of the two models are shown in Fig. 4. Herein, MILP-Zia is statistically compared with MILP-Literature. A one-way analysis of variance (ANOVA) [18] is done to test the null hypothesis that the means of RPD values of the two MILP models are equal. The results for this ANOVA are given in Table II. As it can be seen in the table, the difference between the means of two models is meaningful at a significance level of 5%. We also compare the models via Tukey's pair-wise comparisons test [18]. The results reported in Fig. 5 show that there is a significant difference between the two models.

TABLE I
The Computational Results of MILP-Literature and Milp-Zia

| Name | Size
 (i.j.k) | MILP-Literature | | Integers | Non-integers | Constraints | CPU time (s) | Cmax | RPD | Integers | Non-integers | Constraints | CPU time (s) | Cmax | RPD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2.2 .2 | 16 | 19 | 42 | 0 | 66 | 0 | 12 | 9 | 38 | 0 | 66 | 0 | | |
| SFJS2 | 2.2 .2 | 10 | 15 | 30 | 0 | 107 | 0 | 9 | 7 | 26 | 0 | 107 | 0 | | |
| SFJS3 | 3.2 .2 | 26 | 24 | 67 | 0 | 221 | 0 | 21 | 11 | 61 | 0 | 221 | 0 | | |
| SFJS4 | 3.2 .2 | 26 | 24 | 67 | 0 | 355 | 0 | 22 | 11 | 61 | 0 | 355 | 0 | | |
| SFJS5 | 3.2 .2 | 36 | 28 | 87 | 1 | 119 | 0 | 24 | 13 | 81 | 1 | 119 | 0 | | |
| SFJS6 | 3.3 .2 | 39 | 34 | 99 | 0 | 320 | 0 | 34 | 16 | 90 | 0 | 320 | 0 | | |
| SFJS7 | 3.3 .5 | 36 | 40 | 93 | 0 | 397 | 0 | 34 | 19 | 84 | 0 | 397 | 0 | | |
| SFJS8 | 3.3 .4 | 45 | 40 | 111 | 7 | 253 | 0 | 40 | 19 | 102 | 1 | 253 | 0 | | |
| SFJS9 | 3.3 .3 | 55 | 40 | 131 | 1 | 210 | 0 | 45 | 19 | 122 | 1 | 210 | 0 | | |
| SFJS10 | 4.3 .5 | 48 | 45 | 124 | 0 | 516 | 0 | 46 | 21 | 112 | 1 | 516 | 0 | | |
| MFJS1 | 5.3 .6 | 103 | 72 | 241 | 3600 | 468 | 0 | 84 | 34 | 226 | 60 | 468 | 0 | | |
| MFJS2 | 5.3 .7 | 128 | 84 | 291 | 3600 | 461 | 2.90 | 100 | 40 | 276 | 3600 | 448 | 0 | | |
| MFJS3 | 6.3 .7 | 190 | 103 | 422 | 3600 | 505 | 7.91 | 143 | 49 | 404 | 3600 | 468 | 0 | | |
| MFJS4 | 7.3 .7 | 250 | 120 | 549 | 3600 | 611 | 2.00 | 184 | 57 | 528 | 3600 | 599 | 0 | | |
| MFJS5 | 7.3 .7 | 243 | 118 | 535 | 3600 | 680 | 21.86 | 188 | 56 | 514 | 3600 | 558 | 0 | | |
| MFJS6 | 8.3 .7 | 307 | 133 | 670 | 3600 | 715 | 3.32 | 234 | 63 | 646 | 3600 | 692 | 0 | | |
| MFJS7 | 8.4 .7 | 475 | 165 | 1022 | 3600 | 1406 | 16.78 | 364 | 79 | 990 | 3600 | 1204 | 0 | | |
| MFJS8 | 9.4 .8 | 519 | 182 | 1119 | 3600 | 1303 | 16.97 | 415 | 87 | 1083 | 3600 | 1114 | 0 | | |
| MFJS9 | 11.4 .8 | 751 | 218 | 1601 | 3600 | 1891 | 17.02 | 574 | 104 | 1557 | 3600 | 1616 | 0 | | |
| MFJS10 | 12.4 .8 | 899 | 237 | 1906 | 3600 | 2580 | 45.85 | 651 | 113 | 1858 | 3600 | 1769 | 0 | | |
| Average | | | | | | | 6.73 | | | | 0 | | | | |

TABLE II
Results of One-Way AnOVA for the Two Models (MILP-Literature

AND MILP-ZIA)					
Source	DF	SS	MS	F	P
Factor	1	453	453	6.5	0.014
Error	38	2618.8	68.9		
Total	39	3071.7			

Fig. 1 Comparison of the RPD values of the benchmark instances
The approach presented in this paper is based on the method of Manne [19] to handle binary variables for formulating FJSP, that uses precedence variables, instead of sequenceposition variables (introduced by [20]) or time indexed
variables (proposed by [21]) (see [16]). In comparison with MILP-Literature, new precedence variable, $y_{i j i^{\prime} j^{\prime}}$, replaces $y_{i j i i^{\prime} j^{\prime}}$ in MILP-Literature, where $y_{i j i^{\prime} j^{\prime}}$ is equal to 1 if operation (i, j) precedes operation $\left(i^{\prime}, j^{\prime}\right)$, and 0 otherwise. The definition of $y_{i j i^{\prime} j^{\prime}}$, is without reference to the operation's machine. This substituting leads to constraint sets (3) and (4) and significantly reduces the number of binary variables and the number of lines of code, and thus, it greatly enhances the efficiency of the model because the running time increases and computational feasibility decreases as the number of variables or the number of constraints increases [22]-[24]. The number of variables is however more important, since a formulation with a fewer number of constraints more often requires a longer computational time for finding proven optimal solution [25]. The difference between the number of variables of the two models is much more than that of constraints of them as seen in the computational results, implying that the new model is more efficient than the previous one. Moreover, the new model does not use the variables $S_{i j k}$ and C_{i} in MILP-

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:12, No:6, 2018

Literature. More improvement in the model performance can be obtained by using dominance relationships [26] to force certain of the $y_{i i^{\prime} j^{\prime}}$ values to 0 or 1 . For instance, if J_{i} is sufficiently large for all the jobs, then it can be shown that
$y_{i j i^{\prime} j^{\prime}}$ must be set to 0 if $j \leq \alpha$ and $j \geq \beta$ for some values of α and β (for example, $\alpha=0.1 J_{i}$ and $\beta=0.9 J_{i}$), that leads to decreasing the number of binary variables.

Fig. 2 Comparison of the $\mathrm{C}_{\text {max }}$ values of the benchmark instances

Fig. 3 Comparison of the total number of variables of the benchmark instances

Fig. 4 Differences between the number of constraints of the two models

Tukey 95\% Simultaneous Confidence Intervals
All Pairwise Comparisons

Individual confidence level = 95.00\%

C1 subtracted from:

Fig. 5 Results of Tukey's pair-wise comparisons test for the two models

IV. CONCLUSION

This paper studies the FJSP which is one of the hardest combinatorial problems. The objective is the minimization of the makespan. A MILP model was presented for solving the problem. The computational results of the proposed MILP model were compared with those of the MILP model of [14] (called here MILP-Literature) that is the best model in the literature in terms of the computational time [16]. The results
showed that our model is superior to MILP-Literature with respect to all the considered performance measures including RPD value, number of constraints, and total number of variables. This improvement in the quality of the results of MILP-Literature, can be useful for optimally solving larger FJS problems in reasonable time, and thus, the proposed MILP model is more beneficial for the performance evaluation of the heuristics developed for the problem. In future work, we will

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:12, No:6, 2018
try to adjust the formulation to solve some more complex scheduling problems.

References

[1] A. S. Jain, S. Meeran, Deterministic job-shop scheduling: Past, present and future, European Journal of Operational Research 113 (2) (1999) 390-434.
[2] A.S. Jain, S. Meeran, A state-of-the-art review of job-shop scheduling techniques, Technical report, Department of Applied Physics, Electronic and Mechanical Engineering, University of Dundee: Dundee, UK (1998) 1-48.
[3] J. Blazewicz, W. Domschke, E. Pesch, The job shop scheduling problem: Conventional and new solution techniques, European Journal of Operational Research 93 (1996) 1-33.
[4] K. Baker, Introduction to sequencing and scheduling, NewYork: Wiley (1974).
[5] M. Pinedo, Scheduling: theory, algorithms and systems, Englewood cliffs, NJ: Prentice-Hall (2002).
[6] M. R. Garey, D. S. Johnson, R. Sethi, The complexity of flow shop and job-shop scheduling, Mathematics of Operations Research 1 (2) (1976) 117-129.
[7] T.-C. Chiang, H.-J. Lin, A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling, International Journal of Production Economics 141 (2013) 87-98.
[8] Y. Yuan, H. Xu, Flexible job shop scheduling using hybrid differential evolution algorithms, Computers \& Industrial Engineering 65 (2013) 246-260.
[9] J.-Q. Li, Q.-K. Pan, M. F. Tasgetiren, A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities, Applied Mathematical Modelling 38 (2013) 1111-1132.
[10] J.-q. Li, Q.-k. Pan, Chemical-reaction optimization for flexible job-shop scheduling problems with maintenance activity, Applied Soft Computing 12 (2012) 2896-2912.
[11] Y. Yuan, H. Xu, J. Yang, A hybrid harmony search algorithm for the flexible job shop scheduling problem, Applied Soft Computing 13 (2013) 3259-3272.
[12] Y. Unlu, S. J. Mason, Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems, Computers and Industrical Engineering 58 (2010) 785-800.
[13] C. H. Pan, A study of integer programming formulations for scheduling problems, International Journal of Systems Science 28 (1) (1997) 33-41.
[14] C. Ozgüven, L. Ozbakır, Y. Yavuz, Mathematical models for job-shop scheduling problems with routing and process plan flexibility, Applied Mathematical Modelling 34 (2010) 1539-1548.
[15] P. Fattahi, M. S. Mehrabad, F. Jolai, Mathematical modeling and heuristic approaches to flexible job shop scheduling problems, Journal of Intelligent Manufacturing 18 (2007) 331-342.
[16] Y. Demir, K. Isleyen, Evaluation of mathematical models for flexible job-shop scheduling problems, Applied mathematical modeling 37 (2013) 977-988.
[17] LINDO Systems Inc., LINGO User's Guide, LINDO Systems Inc. Chicago (1999).
[18] D. C. Montgomery, Design and analysis of experiments, Fifth ed., NewYork: John Wiley \& Sons (2000).
[19] A. S. Manne, On the job-shop scheduling problem, Operations Research 8 (1960) 219-223.
[20] H. M. Wagner, An integer linear programming model for machine scheduling, Naval Research Logistics Quarterly 6 (1959) 131-140.
[21] E. H. Bowman, The scheduling sequence problem, Operations Research 7 (1959) 621-624.
[22] S. French, Sequencing and scheduling: an introduction to the mathematics of the job-shop, Chichester, UK: Ellis Horwood (1982).
[23] J. M. Wilson, Alternative formulations of a flow-shop scheduling problem, OR Journal (Journal of the Operational Research Society) 40(4) (1989) 395-9.
[24] C.-J. Liao, C.-T. You, Improved formulation for the job-shop scheduling problem, Journal of the Operational Research Society 43(11) (1992) 1047-54.
[25] G. L. Nemhauser, L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley, New York (1988).
[26] Z. Zhu, R. B. Heady, Minimizing the sum of earliness/tardiness in multimachine scheduling: a mixed integer programming approach, Computers

