
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2856

Abstract—The impact of OO design on software quality

characteristics such as defect density and rework by mean of
experimental validation. Encapsulation, inheritance, polymorphism,
reusability, Data hiding and message-passing are the major attribute
of an Object Oriented system. In order to evaluate the quality of an
Object oriented system the above said attributes can act as indicators.
The metrics are the well known quantifiable approach to express any
attribute. Hence, in this paper we tried to formulate a framework of
metrics representing the attributes of object oriented system.
Empirical Data is collected from three different projects based on
object oriented paradigms to calculate the metrics.

Keywords—Object Oriented, Software metrics, Methods,

Attributes, cohesion, coupling, Inheritance.

I. INTRODUCTION
ECENT years have seen the increasing use of the object
oriented paradigm in software development. The use of

object oriented software development techniques introduces
new elements to software complexity both in software
development process and in the final product. The backbone
of any software system is its design. It is the skeleton where
the flesh (code) will be supported. The Object-Oriented (OO)
paradigm includes a set of mechanisms such as inheritance,
encapsulation, and polymorphism and message-passing that is
believed to allow the construction of designs where those
features are enforced. However, a designer must be able to use
those mechanisms in a "convenient" way.

Object-oriented analysis and design are popular concepts
in today’s software development environment. They are often
heralded as the silver bullet for solving software problems

The concepts of software metrics are well established, and
many metrics relating to product quality have been developed
and used. A standardized metric set for OO does not yet exist
for a metrics definition standard. Therefore, it is necessary to
define metrics and to analyze them. Once a set of metrics for
any type of measurement is proposed, it is necessary to
systematically validate them [1]. Validating a metric means
providing convincing proof that:

Amandeep Kaur is with Computer Science & Engineering Department,

Govt Polytechnic College, Mohali, Distt. Mohali, Punjab, India.
Satwinder Singh is associated with Baba Banda Singh Bahadur

Engineering College, Fatehgarh Sahib (Punjab)-India.
Dr. K.S.Kahlon is Professor, Deptt of Computer Science & Engineering,

Guru Nanak Dev University, Amritsar, Punjab, India
.

• A metric measure what its purpose is to measure, i.e. the
metric is well defined and consistent with the properties of the
attribute that the metric claims to measure.

• The metric is associated with some important external
attribute of the process or product, such as cost or
maintainability.

• The metric is an improvement over existing metrics [1].

There are two types of relevant validation for purposes of

this thesis, theoretical or internal validation and empirical or
external validation [1].

• Theoretical validation
• Empirical validation
 Theoretical validation maps to point first point in the list

above, and involves clarifying the properties of the attribute to
be measured, and analytically proving that the metric satisfies
those properties. Such attributes are termed as internal
attributes. Theoretical

Validation requires consensus among the research
community regarding the properties of attributes [1] and
reaching such a consensus could potentially take many years.

Empirical validation entails demonstrating points second
and third above. Empirical validation requires correlating the
metric to the external attribute by comparing the values of the
metric with the values of the external attribute. For example, a
metric that measures the number of downloads for a KB may
be related to external attributes of the metrics such as
awareness within the organization.

As OO technologies has some new characteristics, such as
data abstraction, encapsulation, inheritance, polymorphism,
information hiding and reuse, traditional software metrics do
not readily lend themselves to the OO notions.

II. MOTIVATION & PROBLEM FORMULATION
The research was done by surveying the literature on object

oriented metrics and then applying some object oriented
metrics to meet the goal of measuring design and code quality.
Many object-oriented metrics have been proposed specifically
for the purpose of assessing the design of a software system.
However, most of the existing approaches to measuring these
design metrics involve only some of the aspects of object
oriented paradigms. As a result, it is not always clear the
design quality of code. We choose the metrics so that every
aspect can be covered. Instead, we attempt to derive a set of
indirect measures that lead to metrics that provide an
indication of the quality of some representation of software.

A Metric Framework for Analysis of Quality of
Object Oriented Design
Amandeep Kaur, Satwinder Singh, Dr. K. S. Kahlon

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2857

Realizing the importance of software metrics, numbers of
metrics have been defined for software [2]. These metrics try
to capture different aspects of software product [1] and its
process. Some of the metrics also try to capture the same
aspects of software e.g., there are number of metrics to
measure the coupling between different classes. Software
developers need to explicitly state the relation between the
different metrics measuring the same aspect of software. As
an example, we might be interested to know the size of a
table. There can be number of metrics related to size of a table
e.g., length of the table, breadth of the table, area of the table,
diagonal of the table etc. But length and breadth measures are
sufficient and others measures can be derived from them if
required. Similarly in software, we need to identify the
necessary metrics that provide useful information, otherwise
the managers will be lost into so many numbers and the
purpose of metrics would be lost.

Hence, the objective of the study is to design a metric
framework using structural mechanisms of the object-oriented
paradigm as encapsulation, inheritance, polymorphism,
reusability, Data hiding and message-passing that would be
able to reflect the quality of a software system.

III. CK METRIC SUIT: DEFICIENCIES & SOLUTIONS
One of the first suites of OO design measures was proposed

by Chidamber and Kemerer [1] [3]. The authors of this suite
of metrics claim that these measures can aid users in
understanding object oriented design complexity and in
predicting external software qualities such as software defects,
testing, and maintenance effort. Use of the CK set of metrics
and other complementary measures are gradually growing in
industry acceptance. This is reflected in the increasing number
of industrial software tools, such as Rational Rose®, that
enable automated computation of these metrics. Even though
this metric suite is widely, empirical validations of these
metrics in real world software development settings are
limited. Various flaws and inconsistencies have been observed
in the LCOM metric as shown under.

The high value of LCOM indicates that the methods in the
class are not really related to each other and vice versa.
According to above definition of LCOM the high value of
LCOM implies low similarity and low cohesion, but a value of
LCOM = 0 doesn’t implies the reverse [4].

Consider the example in figure 1 (a) the value of LCOM is
8 (as | P | =9 and | Q | = 1). Whereas in figure 1 (b) the value
of LCOM is also 8 (as | P | =18 and | Q | = 10), but figure 1 (a)
example is more cohesive than figure 1 (b) example. So the
above said definition of CK metric for LCOM is not able to
distinguish the more cohesive class from the less ones. This is
simple violation of the basic axiom of measurement theory,
which tells that a measure should be able to distinguish two
dissimilar entities. So, this deficiency offends the purpose of
metric.
.

Fig. 1. Two examples of (a) Less Cohesive Class and

(b) Densely Cohesive Class

In another test of validity of the LCOM metric consider

the example of figure 2 as shown below:

Fig. 2. Example of the calculation of LCOM

Consider a class supporting the first three sets then |P| = 2,

|Q| = 1 => LCOM = 1 implies less cohesion but when
considering a class that supports all four sets then |P| = 3, |Q| =
3 => LCOM = 0 implies high cohesion. But this is just the
reverse that we are expecting when we analyze the above sets
as I1 and I2 are a pair of cohesive methods as are I3 and I4
and the good design recommends the formation of two
classes, not one [5].

For solving the above problems it is recommended the
alternative version which considers the number of data
members of the classes, number of classes and the number of
data members, denoted by LCOMnew.

It the modified form of existing CK metric for LCOM, as
LCOM metric is not considering the relative importance of the
elements of set P and set Q used in calculating the LCOM of a
class. First component of this version is representing the
normalized weightage of the “{ (Ii ,Ij) | Ii ∩ Ij }” constituents
of the methods considered. The second component represents
the normalized weightage of the “{ (Ii ,Ij) | Ii ∩ Ij ≠ Ø }”
constituents of the methods in the class. As the | Ii ∩ Ij | is the
number of data variables shared by the two methods ,on the
other hand, | Ii U Ij | is the union of variables of both the
methods. The basis of LCOMnew is same as that of the LCOM
metric.

⎪⎭

⎪
⎬
⎫

∪

∩
−

⎪⎩

⎪
⎨
⎧ ∪

= ∑∑
QsetofIjIieleementeachfor

ji

ji

PsetofIjIielementeachfor

ji

new
II
IIII

LCOM ama),(),(

1

 (1)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2858

IV. PROPOSED METRIC FRAMEWORK
The increasing importance of software measurement has led

to development of new software measures. Many metrics have
been proposed related to various constructs like class,
coupling, cohesion, inheritance, information hiding and
polymorphism [6] [7]. It is often difficult to determine which
metric is more useful in which area. As a consequence, it is
very difficult for project managers and practitioners to select
measures for object-oriented systems. In the study following
22 metrics proposed by various researchers are investigated
(for detail see [8]):

• Number of Attributes per Class (NOA)
• Number of Methods per Class (NOM)
• Weighted Methods per Class (WMC) [9] [10]
• Response For a Class (RFC) [10]
• Coupling Between Objects (CBO) [1] [10]
• Data Abstraction Coupling (DAC)
• Message passing Coupling (MPC)
• Coupling Factor (CF) [10]
• Lack of Cohesion in Methods (LCOM) [1] [10]
• Tight Class Cohesion (TCC)
• Loose Class Cohesion (LCC)
• Information flow based Cohesion (ICH)
• Depth of Inheritance Tree (DIT) [1] [10]
• Number of Children (NOC) [1] [10]
• Method Inheritance Factor (MIF) [10]
• Attribute Inheritance Factor (AIF) [10]
• Attribute Hiding Factor (AHF) [10]
• Method Hiding Factor (MHF)
• Polymorphism Factor (PF) [10]
• Number of Methods Overridden by a subclass (NMO)
• Reuse ratio (U)
• Specialization Ratio (S)

V. RESULTS & DISCUSSION
The selected metrics are implemented in Java environment

and the value of the metrics are extracted from the three
projects named as Proj1, Proj2 and Proj3. The metric values
of the class level metrics is shown in Table 1 and the graphical
representation of the metric values is shown in Figure 3.

As evidenced from the figure 3 the attribute represented by
NOA, NOM, WMC, DAC, NOC and NMO are shown the
same pattern that is able to identify the quality level of the
software.

The metric values of the system level metrics is shown in
Table 2 and the graphical representation of the metric values
is shown in Figure 4. As evidenced from the figure 4 the
attribute represented by CF has shown the high value fro the
Proj1, medium value for the Proj2 and Low value for the
Proj3. The opposite is there for the MIF, AIF and S metrics.
The U metrics shows the nil value for all the projects. Hence,
CF, MIF, AIF and S system metrics can be used to identify the
quality level of the software.

VI. CONCLUSION
In this paper, work has been done to explore the quality of

Object oriented design of software components using metric
based approach. In this paper 22 metrics have been used to
analyze various features of software component e.g
inheritance ,coupling, cohesion, polymorphism, reusability
etc. As evidenced from the data collected from the three
projects the quality of the software can be identified using
NOA, NOM, WMC, DAC, NOC and NMO class level metrics
and CF, MIF, AIF and S system metrics. So, the framework of
the metric has to target the Number of Attributes per Class,
Number of Methods per Class, Complexity, Data Abstraction
Coupling, Number of Children, Number of Methods
Overridden by a subclass, Coupling Factor, Method
Inheritance Factor, Attribute Inheritance Factor and
Specialization Ratio as qulity indicators of a object oriented
software.

In this study we have only used three projects so in the
future extension one can use more projects for the empirical
validation of the results.

TABLE I. CLASS LEVEL METRICS

Project Name
S.No.

Metric

Object-

Oriented Proj1 Proj2 Proj3

1 NOA 5 10 14
2 NOM 20 31 35
3 WMC 20 31 35
4 RFC 79 12 16
5 CBO 2 5 1
6 DAC 1 4 5
7 MPC 4 2 4
8 LCOM 2 1 1
9 TCC 7.142 5 5

10 LCC 7.142 5 5
11 ICH 0 1 2
12 lDIT 2 2 4
13 NOC 2 3 7
14 NMO 2 5 9

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2859

Class Level Metrics

0
10
20
30
40
50
60
70
80
90

NOA
NOM

WMC
RFC

CBO
DAC

MPC
LC

OM
TCC

LC
C

IC
H DIT

NOC
NMO

Metric Name

M
et

ri
c

V
al

u
e

Proj1
Proj2
Proj3

Fig. 3. Bar Chart of Class Level Metrics

TABLE II. SYSTEM LEVEL METRICS

System Level Metrics

0

10

20

30

40

50

60

CF MIF AIF MHF AHF PF U S

Metric Name

M
et

ri
c

V
al

u
e

Proj1
Proj2
Proj3

Fig. 4. Bar Chart of System Level Metrics

REFERENCES
[1] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object-

Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp.
476493, June 1994.

[2] L. Briand , W. Daly and J. Wust, Unified Framework for Cohesion
Measurement in Object-Oriented Systems. Empirical Software
Engineering, 3 65-117, 1998.

[3] Chidamber, S.R., and Kemerer, C. F. “Towards a Metrics Suite for
Object Oriented Design,” Proc. Conf. Object Oriented Programming
Systems, Languages, and Applications (OOPSLA’91), vol. 26, no. 11,
1991, pp. 197-211.

[4] Mayer, T., and Hall, T. “Critical Analysis of Current OO Design
Metrics”, Software Quality Journal, 8, 1999, pp. 97-110,

[5] Henderson-Seller, B., and Constantine, L. L. “Coupling and Cohesion
towards a valid metrics suite for object oriented analysis and Design”,
Object Oriented Systems, 3, 1996, pp. 143-158.

[6] L. Briand, S. Morasca, and V. Basili, Designing and Validating High-
Level Design Metrics, Technical Report CS-TR-3301, Univ. of
Maryland, Dept. of Computer Science, College Park, Md., 1994.

[7] L. Briand, S. Morasca, and V. Basili, ”Property Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol. 22, no. 1,
p. 68-86, Jan. 1996.

[8] Kaur Amandeep, Singh Satwinder and Kahlon K. S, "Evaluation and
Metrication of Object Oriented System", Proceedings of the
International MultiConference of Engineers and Computer Scientists
2009 Vol I, IMECS 2009, March 18 - 20, 2009, Hong Kong.

[9] McCabe, T. J., “A Complexity Measure”, IEEE Transactions on
Software Engineering, SE-2(4), pages 308-320, December 1976.

[10] Pressman, R. “ A Practitioner’s Approach to Software Engineering,”
Mc-grawhill Publications, 2001, pp. 658-662.

Project names
S.No Metrics

Proj1 Proj2 Proj3
1 CF 50 45 20
2 MIF 0.491 1.50 2.50
3 AIF 0.676 1 1.5

4 MHF 0.305 0.897 0.834
5 AHF 0.375 0.667 0.444
6 PF 0 0 0

7 U 0.220 0.321 0.563

8 S 3.53 4.67 5.87

