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A Method for Identifying Physical Parameters
with Linear Fractional Transformation

Ryosuke Ito, Goro Obinata, Chikara Nagai, Y oungwoo Kim

Abstract—This paper proposes a new parameter identification
method based on Linear Fractional Transformation (LFT). It is
assumed that the target linear system includes unknown parameters.
The parameter deviations are separated from a nomina system via
LFT, and identified by organizing I/O signals around the separated
deviations of thereal system. The purpose of this paper isto apply LFT
to simultaneously identify the parameter deviations in systems with
fewer outputs than unknown parameters. As a fundamental example,
thismethod isimplemented to one degree of freedom vibratory system.
ViaLFT, all physical parameterswere simultaneously identified in this
system. Then, numerical simulationswere conducted for this system to
verify theresults. This study showsthat al the physical parameters of a
systemwith fewer outputs than unknown parameters can be effectively
identified simultaneously using LFT.

Keywords—Identification, Linear Fractional Transformation,
Right inverse system

|. INTRODUCTION

MONG model-based technologies such as control system

design and state estimation, it is extremely important to
acquire an accurate dynamics (model) of the target system. This
research field is called “System Identification” and has been
widely researched [1], [2]. Among them, there exist the cases
which cannot be obtained accurate model of the target system
because some or all parameters which specify the system
property have uncertainties or are unknown; nevertheless the
model structure of the target system is known beforehand. As
focusing on these parametric uncertainties and unknowns, the
method which identifies the unknown parameters directly is
known as “Parameter Identification” [3], [4]. This paper deals
with a parameter identification method which focuses on
physical parameters such as masses, damping coefficients, and
spring coefficientsin dynamics.

These “structure known but physical parameters unknown”
cases have been researched by Dasgupta and Anderson [5].
They reveal the parameterization of unknown physica
components on structured systems and the method for
identifying these unknown parameters. Demourant and Ferreres
performed additional research of the identification for such the
cases [6].
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They express the system to be identified as Linear Fractional
Transformation (LFT) form. They also develop the scheme to
identify the unknown parameters by pulling them out via LFT.
This identification method is effective to the system with
sufficient outputs, but not to the system with fewer outputs.
Therefore, athough the method performed in this paper is also
based on LFT, we focus on the case which has fewer outputs
than that of unknown parameters. The properties of thiskind of
system are more common.

Identification of unknown physica parameters takes
important roles in large number of fields such as preventive
healthcare, productive industries, fault diagnoses, and so on.
For instance, on the predictive healthcare, capturing a physical
condition (e.g., stiffness and viscosity) of affected area helps
doctors to evaluate its severity as well as existence of tumors.
Also in the productive industries, production costs can be
reduced by the system which eliminates defective products by
watching mass errors via the parameter identification method.

This paper addresses aforementioned physical parameter
identification in terms of extraction of parameter deviations by
means of LFT. Notethat LFT isuseful to the extraction for both
of these two types of system; “all” the parameters are unknown,
and “partia” parameters are unknown but the others are
accurately known. This paper mainly discusses the farmer case.
The main subject is the case that the number of outputs of the
target Multi Input Multi Output (MIMO) system islessthan the
number of unknown parameters. This paper proposes a new
method to identify all the physical parameters simultaneously in
such cases. We emphasize that the method is superior to such
things asfollows:

1) We deal with the fewer outputs than unknown parameters.

2) We acquire the identified valuesin real time or little time
delay with atime window.

3) The method effectively performs even if the target system
has large parameter deviations; therefore we can roughly choose
the nominal values.

In order to verify the effectiveness of this method, it is
implemented to one degree of freedom vibratory system. Then,
numerical simulations with MATLAB have been conducted for
the system. The results show that the physical parameters of the
system can be effectively identified simultaneously using LFT.

I1.LFT EXPRESSION FOR TARGET SYSTEM

A. System Description with Unknown Parametersvia LFT

In this paper, suppose that the target systemto beidentified is
limited to a class of Linear Time Invariant (LTI) system.
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Therefore the target system obeys linear state equation below;

{Xs(t) = AX(t) + Bu(t)

@
y(t) = Cx,(t) + Du(t)

where x(t)eR" is a state variable vector, u(t)eR™ is an input
vector, and y(t)eR' isan output vector of the target system. The
transfer function matrix therefore holds

.. [AB
G(s)=D+(sl - A) B{C D] )

Now we assume that the coefficient matrices (A, B, C, D)
include unknown parameters p; (i=1,...,k) which respectively
consist of the nominal value pg; and the parameter deviation Jp;.
k represents the number of unknown parameters. Thus, these are
assumed to be given by

P = Py +5pi . (3

Here, we define the nominal system Gy(s) asif al the parameter
deviations are 0 in the system G(s), i.e., dp; =0. The nominal
system is therefore given by

4

%@{“%]

CO DO

Note that the transfer function matrix of the target system is
assumed to be proper and asymptotically stable. Without loss of
generality, we can choose nominal values of parameters such
that the nominal system is proper and asymptotically stable.

To acquire further description of the system G(s), Linear
Fractional Transformation (LFT) isconvenient [7]. Inthis paper,
we utilize the lower LFT in order to pull out an influence of
parameter deviations dp; from the prior known information of
the nominal system Go(s). Figure 1 exhibits a system
representation via LFT. In Fig. 1, M(s) denotes a generalized
controlled object corresponding to G(s) and Gy(s). M(9) is the
known transfer function matrix which does not include any dp;.
A is a parameter deviation matrix which consists of ;. It is
often assumed that A is diagonal. Therefore,

A=diag o], p=[H, ... ] (5
”””””” G(s)
M (s) i

Fig. 1 LFT based system representation

In this paper, we assume that all the parameter deviations do
not vary with time, hence have constant values. We aso define
the input and output (1/0) relationship around A as x(s) and z(s)
in frequency domain, and x(t) and z(t) in the time domain.
Because A is a diagonal matrix, x and z have k-dimensional
elements. By these definitions, the generalized system is
formulated as the following form:

y(s)| | My My, jlu(s)
X(8) | [My My, | 2(9) ©6)
Z(s) = AX(s)

Eliminating x(s) and z(s) from first eguation of (6) by
substituting second equation of (6) gives the relationship
between y(s) and u(s); that is to say G(s). Therefore G(s)
satisfies

G(S) =My + MLA(l =M ,A) "M, @)

Equation (7) gives the definition of LFT with respect to the
system G(s). In (7), let al the parameter deviations be neglected,
i.e., A=0, the nominal system G(s) is given as the other form:

Gy(s) =My, 8

Second term of (7) therefore represents a mismatch between
the nominal system Ggy(s) and the real system G(s). We next
introduce the state space expression for the target system with
pulling out parameter deviationsviaLFT, asshowninFig. 1. By
regarding the inputs for the target system as [u(t)" z(t)"]", and
the outputs as [y(t)" x(t)"]" in (1), the state equation is given by
considering (6), (8), and (4) asfollows:

X(t) = Apx(t) + Byu(t) + Byz(t)

Y(t) = CoX,(t) + Dou(t) + Dy2(t) ©
X(t) = Cx(t) + Du(t) + Dyz(t)

Z(t) = AX(t)

Equation (9) also provides the state space expressions of each
element of M(s) in (6) such as;

Mn(s) =|:Ab BO} Mlz(s) Z{Ab Bl}

C,|D, G, D,
. (10)
B
M, (s) = {é\)Do:|, M, (s) = |:é)|§1}

B. Example of LFT Expression

This subsection discusses an example of the LFT expression
of thetarget system. The example discussed hereisaone degree
of freedom (1-DOF) vibratory system as shown in Fig. 2. In the
system of Fig. 2, theleft side actuator which controlsits position
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X, anditsvelocity %, excitestheright sidevibrator. Becausethe
integral of %, generates x;, the input of the system is given as
U = X, . We define the displacement of the vibrator as x,, and its

mass, damping coefficient, and spring coefficient asm, d, and k,
respectively. For the outputs of the system, we select a force
measured a the right edge of the actuator
F =d(x,—%)+k(x,—x) and the acceleration of the vibrator

%, . Therefore, the output vector isgivenas y = [F T sz]T .The

physical parameters m, d, and k respectively have the nominal
values and the parameter deviations. Therefore, they satisfy the
following condition and their deviations gives the parameter
deviation vector corresponding to A:

m=m,+om,d =d,+ &, k=k,+ Xk

(11)
=dp=[k & sm[

X |

X
SN

S
F

Actuator

LKk

LW

Byt
d

Vibrator

Fig. 2 One degree of freedorn_vibratory system

And now, we derive the transfer function matrix of
generalized controlled object M(s) for this system by extracting
the parameter deviations A=diag[ k od dm| viaLFT. First of all,
an equation of motion of the vibrator is calculated as

i, +d(%, — %) +K(x, —%) =0. (12
Taking the state variable vector as x_ =[x, %, x| provides

the transfer function matrix of the target system G(s) with the
state space expression as

o 1 oll[o
_k_d kj||d
m m m m
G(s):H»B} 0 0 of|[|1]] (13)
CIb k d —K||-d
_k_d kjid
m m mJ]jLm]]

Next procedure is to pull out the parameter deviations from
G(s). So as to complete it intuitively, we employ a block
diagram for clarifying the deviations. Figure 3 shows the block
diagram of the target system (13) with taking (11) into account.

In this regard, M, in Fig. 3 is the generalized expression of
U/malong the LFT form. That is, equation (7) provides further
description of 1/masfollows:

-1
lzl*[—lzﬁl—[‘ljﬁ“] (14
m m m m
Therefore, M,, satisfies below LFT form, and the 1/O
relationship around M, is also organized as follows:

1.1
| ™ nl,g (15)
1 ——
m,
x2=1(—|:)©{x2}=|v|m{_1 (16)
m X Z,

In contrast, we can achieve the extractions of deviations ok
and &d in Fig. 3 more simply. That is, summarizing the signals
around Sk and &d provides

k(X, = %) = (Ko + K) (X, — %)

=Ko (X, = %) + K(X, — %) . (17)
d(%, —%) = (do + &) (X, — %)

=dy (X, — %)+ (X, — %)

This therefore gives the /O signals relationship around
deviations sk and &d as LFT form:

X =Xo =X, Xg = X =X

k(XZ_Xl) _ ko 1 X=X
X | |10] z (18)

f=—4
d(Xz_X1) _ do 1 Xz_Xl
R
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Inthisway, itis verified that each of the deviations of unknown
physical parameters and the organized deviations A can be
pulled out from the target system G(s) in (13) viaLFT.

Now, let X=[Xq, X4 Xl and z=[z, z4, Zx]' be 1/O signals
around A. Substituting the condition of (11) ~ (18) into (10)
leads the concrete description of M(s) in (6) as follows:

0 1 0 0
L LN
moom, m ||| m
{9)3}: 0O 0 O 1
or-o ke do —K [|[-d,
ko Ao K ||| dg
m M, My J|L Mo]]
0 0 O 1 0 -1
a:—;£—éJn%,qz 0 1 0
O 0 o L=k = 0o ks
1 1 0 0
D=1 1 1|p=|-1
m m d,
00 O
D,=[0 0 % 19
-1-1-—
m,

Additionally in this example, we choose the dimension of the
outputs as r=2 which is less than that of unknown physical
parameters; k=3. This means that this paper aims to identify all
the physical parameter simultaneously with lower number of
SENsors.

I11.  COORDINATION OF I/O SIGNALSIN LFT

A. Coordination of I/0 Sgnalsin LFT

The 1/O signals x and z around A play important roles in
identifying the parameter deviations A corresponding to ;.
This is because the basic principle of the identification is that
the second equation of (6) directly gives the simple identified
values as:

M =2z/x (20)

However, this may provide inaccurate values because of the
noisy signals and the calculation errors of x and z. We therefore
developed the method for the accurate identification with some
compensation, and clarify the conditions to accomplish the
proposed identification.

To begin with, we demonstrate the way to rewrite x and z as
functions of y and u with use of (6). Then, simple deformation of

(6) provides:

{9(5) =M, z(s) (21)
X(s) = M,U(s) + M, 2(s)

where y(s) = y(s) - M,u(s) isequivalent to an error between
the real system output y(s) and a calculated output from the
nominal system Gy(s)u(s). Inthefirst equation of (21), itisclear
that we can obtain z directly fromy and u, if atransfer function
matrix from § to z appropriately exist; that is to say an inverse
system of My,. The following subsections mainly discuss the
inverse systemin two cases, i.e., the case of r > k and the case of
r <Kk, and respectively design the parameter identifier each case.

B. Parameter Identifier Design (in the Case of r>k)

Here, we consider the case in which r > k in order to design
the parameter identifier. In this case, the number of outputs is
more than or equal to the number of unknown parameters. First
of all, we discuss the inverse system of Mi,. Now D, e R™ in
(9) isassumed to be full rank, i.e., rank(D;)=k becauser > k. D,
therefore is row full rank. It can be said that this case has rich
information to identify the unknown parameters. Following
these conditions, first equation of (21) can be solved for z(s),
and has the unique solution which satisfies

2(s) =My ¥(s)

v _| A~BD/C,[BD; (22)
“°| -pc, |Df

where M, denotesthe left inverse system of My,, which obeys

MM, =1 . Similarly, D, denotes a Moore-Penrose pseudo

inverse matrix of D1, which also obeys D, D, = | . Substituting

(22) into (21) therefore leads

{z(s)= ML 9(s) 5
X(S) = Mu(s) + M ML ¥()

Thisequation indicates that we can obtain x and z by calculation
withy and u directly.

And that we can demonstrate the parameter identifier design
with (23). For the accurate identification, we consider the other
way to design the parameter identifier instead of (20). Let a
criterion function be defined in the time domain as follows:

J= J:||z(r)—Ax(r)||;dr (24)

The criterion function concerns about the least square of the
estimated error of deviations based on second equation of (6). In
comparison to (20), it is expected that the identifier based on
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(24) smoothsthe signal noises practically. The target parameter
deviations to be identified are regarded as A=diag[dp] which
minimizethe criterion function J. So asto obtain the minimizing
solution, the equation (5) deforms (24) asfollows:

3= [ (a(0) - b () dr @)

Differentiating (25) partidly with oJp;, we obtain the
necessary condition for the minimization of J by dJ/d(5p;)=0.
The following formula therefore represents the desired
parameter identifier such that meets with aforementioned
conditions:

[z2(@)x(@)dr
L)gz(r)dr

C.Parameter Identifier Design (in the Case of r<k)

In contrast with the previous subsection, we consider the case
inwhich r <kin order to design the parameter identifier. In this
case, the outputs are fewer than the unknown parameters. This
condition is unfavorable to accomplish the identification.
However, this case seems to be more general in comparison to
the previous case. Thus, the identification method proposed in
this subsection is the main objective of this paper.

Asinthe previous subsection, let us begin with the discussion
of the inverse system of M. Now D, e R™ in (10) is aso

assumed to be full rank. In contrast to the previous case, as
rank(D1)=r because r < k, D; is the column full rank matrix.
Following this condition, there exists a non-zero z, which
satisfies M, z, = 0. That is, first equation of (21) cannot give
the unique solution with respect to z(s), but it can be solved with
k-dimensional arbitrary vector £ by

M ()= (26)

Z(s) = 2(s) + ()

N . (27)
=My ¥(s)+ (I -M;My,
where
M1+2:|:A)_Bl+D1CoBlE31:| (28)
- D1 Co ‘ D1

denotes the right inverse system of Mj,, which obeys
M, M, =1 . D/ aso denotes a Moore-Penrose pseudo

inverse matrix of D, which obeys DD =1 . Now,
substituting (27) into the second equation of (21) holds

X(8) = X(8) + %, (9

e . (29)
= [M 21U(S) +M 22M12Y(3)]+ M zz(l - M12M12

Although X in(29) can be obtained by calculation withy and
u, there is no way to obtain x, directly. This indicates that the
parameter deviations cannot be identified directly if x, remains
as going on (29). Hence, the following lemma enables to
manage this problem:

Lemma: Let B;, D;, and D3 in (10) satisfy the following
condition:

Ker(B,) > Ker(D;D,) (30)
Ker(B) =Ker(D,)

Then, it holds that
XO(S):M22(|—Mf2M12)§=0. (31)

Proof: In (29), the condition of (10) gives

Ab - BlDfCO BlDfCo BlDf D1
MS5M,, = 0 A B, . (32)
- D1+ Co D1+ Co ‘ D1+ D1

Consider a transformation of the state variables in (32) by
means of below equivalence transformation:

T{' "} (332)
0 1

Then,

A)_BinCo 0 _Bl(l _D1+D1)

M1+2M12: 0 A B,
_D1+C0 0 ‘ D1+D1

=D,/ D, +D;C,(sl - A,+B,D,;C,)'B,(1-D;D,) (330)
In thisregard, the matrix D,'D, appearing on (33) satisfies

+ 2 + + +
(o/D,f =D; DOy D, {D;D,) (34)

This therefore belongs to projection matrices [8]. As a property
of projection matrices, it obeys

Ker(D;D,)=Im1-D;D; . (35)

That is, there exists a k-dimensional vector & corresponding to
the k-dimensional arbitrary vector ¢, and they give

£=(1-D/D,)¢ < & eKer(D/ D). (36)
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Now, postmultiplying ¢ for the second term of (33) gives

B,(I -D;D,)¢ = B& & eKer(DyD,). 37

Where, the first equation of (30) indicates that
£eKer(D;D,)< B&=0,B(1 -D;D, ) =0. (38)
Therefore, the second term of (33) isequal to O, that is,
M,M,, =D;/D, (39)

As with the same scheme of acquiring (38), the following
condition is indicated by the second equation of (30) and (38)
that

£ eKer(D;D,)< D& =0,D,(1 -D; D, )¢ =0 (40)

Therefore by summarizing aforementioned results especialy
(31), (10), and (38) ~ (40), it follows that

Xo(s) = Mzz(l - M1+2M12
= (D3+C1(S| _Ab)_llel -D/DK

= Ds(l - D1+D1)§+C1(Sl - Ab)ilBl(l - D1+ Dl){
=0.

Now the condition (30) is further considered with taking the
1-DOF vibratory system described in Subsec.2.B for example.
At first, take a proper element z;eKer(B,) in first condition of
(30), and equation (19) gives a concrete description of Ker(B,)
asfollows:

0 0 7,
Blzl:o:{—l/m) _m, —1mg | 22|70
3
-1 -1/m,
=2=2, 1|+z;, 0
0 1
-1|{-1/m,
~Ker(B)=spani| 1 || © (42)
ol 1

As with (41), take a proper element zeKer(D, D, ), and a
concrete description of Ker( D, D, ) isalso given by

N I 1 1 o 1%
DDz =D\ Cym —vm | 2

23

05 0

05 0 |: IntZy }
-m, _mg 7(221+222+223/mo)/mo

0.5(z,, + 2,,)
=105(z, +2,)|=0

Zy

-1 -1
=2 =2, 1 |..Ker(D,D,) =spans| 1
0 0

(42)

Therefore, the system in Subsec.2.B satisfies first condition
of (30) via (41) and (42). The second condition of (30) can be
verified with the same scheme to (41) and (42).

Nevertheless the sizes and the elements of B;, D4, and D3
arbitrarily vary as how the unknown physical parameters exist,
the relationship among these matrices’ rows do not vary from
those of (19) in such cases as identification of coefficients of
linear ordinary differential equations. Therefore, it can be said
that the condition (30) is widely satisfied among the cases of
physical parameter identification.

From the above introduced lemma, z(s) and x(s) are
summarized with (27), (29), and (31) asfollows:

{z(s) =M ¥(s) +2(9) 43)

X(8) = X(s) = M,u(s) + M, M5 ¥(s)

The next part is definition of the criterion function. Similarly to
X0, Zo iN (43) cannot be calculated directly. Hence instead of Jin
(24), let a virtual criterion function J be defined as the least
square of estimated error in the time domain:

3= [> @@ -dx ) dr (44)

This concerns about virtual estimated values of deviations
with £ = x and 2. Thevirtual parameter deviation, described as

A= diag[sp] , can be obtained by minimization of the criterion

function J . Although 5P does not represent the actual

parameter deviations directly, we can obtain the parameter
identifier in this case by the following theorem:

Theorem: Let theinput vector of the target system u(t) allow x(t)
and z(t) to be orthogonal, that is

[z@x(@)dr=0,G= ) (45)

The parameter identifier for the caser < k holds

1 [a@x@ade -
Dl)li ‘Exiz(r)dr

a)i (t) = (D+
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Proof: Differentiating (44) partially with &, , we can obtain the
necessary condition for the minimization by dJj/d(s,)=0.

The virtual parameter identifier can therefore be formulated
such that meets with the necessary condition as follows:

N CIQLICE: -

%@

Now that, substituting the first equation of (21) into
2(s) =M, y(s) with (39) gives following relationship;

2(s) = M1+2M122(5) = D1+ DIZ(S)

= 2(t) =D, D,z(t). (48)

This enables the integrand of the numerator in (47) to deform
into asimple form below:

2% 0= (0;D,), 2, ) (49)

Therefore, the following condition is given by taking the
condition of (45) into account and organizing (47), (49), and
(26):

z ()% (r)dr
(D1+D1)ii J; 5 :(
[x¢(0)de

1
&P = M. 50
I (Df D, )ii | 0

Thisformulais equivalent to (46).

B, D,/ D, )ii M,

IV. NUMERICAL CONSIDERATION

A. Smulation Conditions

To evaluate the method proposed in previous section, we
carry out a simulation with taking the 1-DOF vibratory system
in Subsec.2.B for the example. The simulation aims to identify
three physica parameter deviations ok, o&d, and Jm
simultaneously. Particularly, we calcul ate time responses of the
deviations based on (46) in order to accomplish a real-time
identification. The input vector in this simulation is selected to
sum of five different sine curves as shown in (51):

U0 =% = @ A leostot + ) (5

Thisisbecausethe LFT signals satisfy the orthogonal condition
of (45) in [0 t] and u(t) have enough independent signal

TABLEI
SPECIFICATION OF PARAMETERS FOR SIMULATION
Symbol Parameter Value Unit

my Nomina mass 2.0 kg
om Deviation of mass 0.60 kg
do Nominal damping coefficient 0.20 N-s/m
& Deviation of damping coeff. 4.0x102 N-¢/m
ko Nominal spring coefficient 1.0 N/m
K Deviation of spring coeff. 0.10 N/m
A Amplitude of input signals 1 m
w1, Frequency of input signals 1, 2 0.1,1.0 rad/s
ws, 4  Frequency of input signals 3, 4 10, 1.0x10?  rad/s
ws Frequency of input signal 5 2.0x10? rad/s
& Phase of input signals 0 rad

Sampling interval 1 ms

components for the identification. In addition, the initial values
of the state variable vector x =[x, %, x]|" in (13) are

assumed to be 0, and the other simulation conditions such as
parameter values are summarized in Table 1.

B. Smulation results

Table 2 shows the results of mean values and rates of
identification errorsfrom actual deviation values with respect to
the identification of parameter deviations Jk, &d, and sm during
10 [g]. Figure 4, 5, and 6 aso shows the time responses of the
identified value of &k, &d, and dm, respectively.

These results indicate that the identifications for 6d and dm
are achieved with accuracy. In addition, these results hardly
depend on time. Therefore, &d and om can be effectively
identified in real-time. However, Table 2 shows that there is
20 % of the error rate in average on the identification of k. The
timeresponse Fig. 4 also indicatesthat theidentified value of 5k
has large error on itsinitial phase. One of the primal reasons of
this unfavorable result is that the orthogonal condition of (47)
cannot be sufficiently accomplished in the transient phase after
theinitial input stimulation. The integral 1,; with respect to the
orthogonality between z, and x;, which must be considered in
the calculation of Sk, holds

= [2@)x(0)dr. (52)

This |, takes a certain amount of the value in early phase with
the input (51). In contrast, because |, converges to O in latter
phase, the steady state value of ok achieves a better result as
shown in Fig. 4. Thisis due to the property of the input signal
component (51) as non-biased periodic function.

Now, in order to manage the influence of the undesirable
condition on (52), we employ a time window method. That is,
[t*-T t*] ischosen astheintegral interval instead of [0t] in (46),
where T isthetime window and t* isatime seriesto conduct the
identification. Therefore, the time response with the time
window holds
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TABLEII TABLEII
MEAN VALUES OF IDENTIFICATION RESULTS MEAN VALUES OF IDENTIFICATION RESULTSWITH TIME WINDOW
Parameter Mean Value Accurate value Error Rate [%] Parameter Mean Value Accurate value Error Rate [%]
1.204x10™ 0.10 20 & 1.052x10*" 0.10 5.2
& 4.007%x10% 4.0x10 0.17 & 4.000x10 4.0x102 0.0
om 6.000x10™" 0.60 0.0 om 6.000x10 0.60 0.0
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V.CONCLUSION
— Identificati fd i fficient . . . . . .
£ 00 B For physical parameter identification in alinear system, such
%W as the one degree of freedom vibratory system defined in
€ Subsec.2.B, this paper proposes a method for extracting the
§00‘°3 parameter deviations by means of Linear Fractiona
§ 0.2 Transformation and for identifying these deviations
2 o0l simultaneously and in real time. This study focuses on casesin
; . which the number of outputsislessthan the number of unknown
| 2 tmerg parameters. The results of numerical simulations shown in Sec.
Fig. 5 Identification result of &d 4 indicate that in a linear system that has three unknown
parameters and only two outputs, the parameters can be
o Identification of mass identified simultaneously and in real-time.
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In this case, the time responses of 6d and dm show precision
constant values. The time response of &k as shownin Fig. 7 aso
shows more accurate value and better convergence in
comparison to the latter phase of Fig. 4. Table 3 exhibits the
time average of identified values and rates of identification
errors. Table 3 also indicates that the identifications for 5d and
dm remain those accuracies. In addition, the time window
method improves the identified value of &k.
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