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Abstract—This paper proposes a new parameter identification
method based on Linear Fractional Transformation (LFT). It is
assumed that the target linear system includes unknown parameters.
The parameter deviations are separated from a nominal system via
LFT, and identified by organizing I/O signals around the separated
deviations of the real system. The purpose of this paper is to apply LFT
to simultaneously identify the parameter deviations in systems with
fewer outputs than unknown parameters. As a fundamental example,
this method is implemented to one degree of freedom vibratory system.
Via LFT, all physical parameters were simultaneously identified in this
system. Then, numerical simulations were conducted for this system to
verify the results. This study shows that all the physical parameters of a
system with fewer outputs than unknown parameters can be effectively
identified simultaneously using LFT.

Keywords—Identification, Linear Fractional Transformation,
Right inverse system

I. INTRODUCTION

MONG model-based technologies such as control system
design and state estimation, it is extremely important to

acquire an accurate dynamics (model) of the target system. This
research field is called “System Identification” and has been
widely researched [1], [2].  Among them, there exist the cases
which cannot be obtained accurate model of the target system
because some or all parameters which specify the system
property have uncertainties or are unknown; nevertheless the
model structure of the target system is known beforehand. As
focusing on these parametric uncertainties and unknowns, the
method which identifies the unknown parameters directly is
known as “Parameter Identification” [3], [4]. This paper deals
with a parameter identification method which focuses on
physical parameters such as masses, damping coefficients, and
spring coefficients in dynamics.

These “structure known but physical parameters unknown”
cases have been researched by Dasgupta and Anderson [5].
They reveal the parameterization of unknown physical
components on structured systems and the method for
identifying these unknown parameters. Demourant and Ferreres
performed additional research of the identification for such the
cases [6].
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They express the system to be identified as Linear Fractional
Transformation (LFT) form. They also develop the scheme to
identify the unknown parameters by pulling them out via LFT.
This identification method is effective to the system with
sufficient outputs, but not to the system with fewer outputs.
Therefore, although the method performed in this paper is also
based on LFT, we focus on the case which has fewer outputs
than that of unknown parameters. The properties of this kind of
system are more common.

Identification of unknown physical parameters takes
important roles in large number of fields such as preventive
healthcare, productive industries, fault diagnoses, and so on.
For instance, on the predictive healthcare, capturing a physical
condition (e.g., stiffness and viscosity) of affected area helps
doctors to evaluate its severity as well as existence of tumors.
Also in the productive industries, production costs can be
reduced by the system which eliminates defective products by
watching mass errors via the parameter identification method.

This paper addresses aforementioned physical parameter
identification in terms of extraction of parameter deviations by
means of LFT. Note that LFT is useful to the extraction for both
of these two types of system; “all” the parameters are unknown,
and “partial” parameters are unknown but the others are
accurately known. This paper mainly discusses the farmer case.
The main subject is the case that the number of outputs of the
target Multi Input Multi Output (MIMO) system is less than the
number of unknown parameters. This paper proposes a new
method to identify all the physical parameters simultaneously in
such cases. We emphasize that the method is superior to such
things as follows:

1) We deal with the fewer outputs than unknown parameters.
2) We acquire the identified values in real time or little time

delay with a time window.
3) The method effectively performs even if the target system

has large parameter deviations; therefore we can roughly choose
the nominal values.

In order to verify the effectiveness of this method, it is
implemented to one degree of freedom vibratory system. Then,
numerical simulations with MATLAB have been conducted for
the system. The results show that the physical parameters of the
system can be effectively identified simultaneously using LFT.

II.LFT EXPRESSION FOR TARGET SYSTEM

A. System Description with Unknown Parameters via LFT

In this paper, suppose that the target system to be identified is
limited to a class of Linear Time Invariant (LTI) system.
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Therefore the target system obeys linear state equation below;

)()()(
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ss (1)

where xs(t) Rn is a state variable vector, u(t) Rm is an input
vector, and y(t) Rr is an output vector of the target system. The
transfer function matrix therefore holds
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BA
BAsIDsG 1)()( . (2)

Now we assume that the coefficient matrices (A, B, C, D)
include unknown parameters pi (i=1,…,k) which respectively
consist of the nominal value p0i and the parameter deviation pi.
k represents the number of unknown parameters. Thus, these are
assumed to be given by

iii ppp 0 . (3)

Here, we define the nominal system G0(s) as if all the parameter
deviations are 0 in the system G(s), i.e., pi =0. The nominal
system is therefore given by

00

00
0 )(
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BA
sG . (4)

Note that the transfer function matrix of the target system is
assumed to be proper and asymptotically stable. Without loss of
generality, we can choose nominal values of parameters such
that the nominal system is proper and asymptotically stable.

To acquire further description of the system G(s), Linear
Fractional Transformation (LFT) is convenient [7]. In this paper,
we utilize the lower LFT in order to pull out an influence of
parameter deviations pi from the prior known information of
the nominal system G0(s). Figure 1 exhibits a system
representation via LFT. In Fig. 1, M(s) denotes a generalized
controlled object corresponding to G(s) and G0(s). M(s) is the
known transfer function matrix which does not include any pi.

is a parameter deviation matrix which consists of pi. It is
often assumed that is diagonal. Therefore,

T
1 ]...[],[diag kpppp . (5)

u

z x

( )M s
y

G (s )

Fig. 1 LFT based system representation

In this paper, we assume that all the parameter deviations do
not vary with time, hence have constant values. We also define
the input and output (I/O) relationship around as x(s) and z(s)
in frequency domain, and x(t) and z(t) in the time domain.
Because is a diagonal matrix, x and z have k-dimensional
elements. By these definitions, the generalized system is
formulated as the following form:
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Eliminating x(s) and z(s) from first equation of (6) by
substituting second equation of (6) gives the relationship
between y(s) and u(s); that is to say G(s). Therefore G(s)
satisfies

21
1

221211 )()( MMIMMsG . (7)

Equation (7) gives the definition of LFT with respect to the
system G(s). In (7), let all the parameter deviations be neglected,
i.e., =0, the nominal system G0(s) is given as the other form:

110 )( MsG (8)

Second term of (7) therefore represents a mismatch between
the nominal system G0(s) and the real system G(s). We next
introduce the state space expression for the target system with
pulling out parameter deviations via LFT, as shown in Fig. 1. By
regarding the inputs for the target system as [u(t)T z(t)T ]T, and
the outputs as [y(t)T x(t)T ]T in (1), the state equation is given by
considering (6), (8), and (4) as follows:
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Equation (9) also provides the state space expressions of each
element of M(s) in (6) such as;
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B. Example of LFT Expression

This subsection discusses an example of the LFT expression
of the target system. The example discussed here is a one degree
of freedom (1-DOF) vibratory system as shown in Fig. 2. In the
system of Fig. 2, the left side actuator which controls its position
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x1 and its velocity
1x excites the right side vibrator.  Because the

integral of 1x generates x1, the input of the system is given as

1xu . We define the displacement of the vibrator as x2, and its

mass, damping coefficient, and spring coefficient as m, d, and k,
respectively. For the outputs of the system, we select a force
measured at the right edge of the actuator

)()( 1212 xxkxxdF and the acceleration of the vibrator

2x . Therefore, the output vector is given as
TT

2
T xFy . The

physical parameters m, d, and k respectively have the nominal
values and the parameter deviations. Therefore, they satisfy the
following condition and their deviations gives the parameter
deviation vector corresponding to :

T

000 ,,

mdkp

kkkdddmmm
(11)

m
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F

2x

Actuator Vibrator

Fig. 2 One degree of freedom vibratory system

And now, we derive the transfer function matrix of
generalized controlled object M(s) for this system by extracting
the parameter deviations =diag[ k d m] via LFT. First of all,
an equation of motion of the vibrator is calculated as

0)()( 12122 xxkxxdxm . (12)

Taking the state variable vector as T
122 xxxxs

provides

the transfer function matrix of the target system G(s) with the
state space expression as
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Next procedure is to pull out the parameter deviations from
G(s). So as to complete it intuitively, we employ a block
diagram for clarifying the deviations. Figure 3 shows the block
diagram of the target system (13) with taking (11) into account.

1x

2x

2x

s

12x
s

1

1

F

mmx
mz

mM

d dzdx
0d

k

0k

kzkx

2x

F
y

1xu

G(s)

s

1

Fig. 3 Block diagram of 1-DOF vibratory system

In this regard, Mm in Fig. 3 is the generalized expression of
1/m along the LFT form. That is, equation (7) provides further
description of 1/m as follows:

1
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(14)

Therefore, Mm satisfies below LFT form, and the I/O
relationship around Mm is also organized as follows:
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In contrast, we can achieve the extractions of deviations k
and d in Fig. 3 more simply. That is, summarizing the signals
around k and d provides
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This therefore gives the I/O signals relationship around
deviations k and d as LFT form:
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In this way, it is verified that each of the deviations of unknown
physical parameters and the organized deviations can be
pulled out from the target system G(s) in (13) via LFT.

Now, let x=[xk, xd, xm]T and z=[zk, zd, zm]T be I/O signals
around . Substituting the condition of (11) ~ (18) into (10)
leads the concrete description of M(s) in (6) as follows:
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Additionally in this example, we choose the dimension of the
outputs as r=2 which is less than that of unknown physical
parameters; k=3. This means that this paper aims to identify all
the physical parameter simultaneously with lower number of
sensors.

III. COORDINATION OF I/O SIGNALS IN LFT

A. Coordination of I/O Signals in LFT

The I/O signals x and z around play important roles in
identifying the parameter deviations corresponding to pi.
This is because the basic principle of the identification is that
the second equation of (6) directly gives the simple identified
values as:

iii xzp (20)

However, this may provide inaccurate values because of the
noisy signals and the calculation errors of x and z. We therefore
developed the method for the accurate identification with some
compensation, and clarify the conditions to accomplish the
proposed identification.

To begin with, we demonstrate the way to rewrite x and z as
functions of y and u with use of (6). Then, simple deformation of

(6) provides:

)()()(

)()(ˆ

2221
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szMsuMsx
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(21)

where )()()(ˆ 11 suMsysy is equivalent to an error between

the real system output y(s) and a calculated output from the
nominal system G0(s)u(s). In the first equation of (21), it is clear
that we can obtain z directly from y and u, if a transfer function
matrix from ŷ to z appropriately exist; that is to say an inverse

system of M12. The following subsections mainly discuss the
inverse system in two cases, i.e., the case of r ≥ k and the case of
r < k, and respectively design the parameter identifier each case.

B. Parameter Identifier Design (in the Case of r≥k)

Here, we consider the case in which r ≥ k in order to design
the parameter identifier. In this case, the number of outputs is
more than or equal to the number of unknown parameters. First
of all, we discuss the inverse system of M12. Now krRD1

in

(9) is assumed to be full rank, i.e., rank(D1)=k because r ≥ k. D1

therefore is row full rank. It can be said that this case has rich
information to identify the unknown parameters. Following
these conditions, first equation of (21) can be solved for z(s),
and has the unique solution which satisfies

101

110110
12

12 )(ˆ)(

DCD

DBCDBA
M
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(22)

where
12M denotes the left inverse system of M12, which obeys

IMM 1212 . Similarly, 1D denotes a Moore-Penrose pseudo

inverse matrix of D1, which also obeys IDD 11 . Substituting

(22) into (21) therefore leads

)(ˆ)()(

)(ˆ)(
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This equation indicates that we can obtain x and z by calculation
with y and u directly.

And that we can demonstrate the parameter identifier design
with (23). For the accurate identification, we consider the other
way to design the parameter identifier instead of (20). Let a
criterion function be defined in the time domain as follows:

t
dxzJ

0

2

2
)()( (24)

The criterion function concerns about the least square of the
estimated error of deviations based on second equation of (6). In
comparison to (20), it is expected that the identifier based on
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(24) smooths the signal noises practically. The target parameter
deviations to be identified are regarded as =diag[ p] which
minimize the criterion function J. So as to obtain the minimizing
solution, the equation (5) deforms (24) as follows:

t k

i
iii dxpzJ

0
1

2))()(( (25)

Differentiating (25) partially with pi, we obtain the
necessary condition for the minimization of J by dJ/d( pi)=0.
The following formula therefore represents the desired
parameter identifier such that meets with aforementioned
conditions:

t
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C.Parameter Identifier Design (in the Case of r<k)

In contrast with the previous subsection, we consider the case
in which r < k in order to design the parameter identifier. In this
case, the outputs are fewer than the unknown parameters. This
condition is unfavorable to accomplish the identification.
However, this case seems to be more general in comparison to
the previous case. Thus, the identification method proposed in
this subsection is the main objective of this paper.

As in the previous subsection, let us begin with the discussion
of the inverse system of M12. Now krRD1

in (10) is also

assumed to be full rank. In contrast to the previous case, as
rank(D1)=r because r < k, D1 is the column full rank matrix.
Following this condition, there exists a non-zero z0 which
satisfies 0012 zM . That is, first equation of (21) cannot give

the unique solution with respect to z(s), but it can be solved with
k-dimensional arbitrary vector by

121212

0

)(ˆ
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where
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110110
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DCD

DBCDBA
M (28)

denotes the right inverse system of M12, which obeys

IMM 1212 . 1D also denotes a Moore-Penrose pseudo

inverse matrix of D1, which obeys IDD 11 . Now,

substituting (27) into the second equation of (21) holds
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Although x̂ in (29) can be obtained by calculation with y and
u, there is no way to obtain x0 directly. This indicates that the
parameter deviations cannot be identified directly if x0 remains
as going on (29). Hence, the following lemma enables to
manage this problem:

Lemma: Let B1, D1, and D3 in (10) satisfy the following
condition:

)(Ker)(Ker

)(Ker)(Ker
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Then, it holds that

0)( 1212220 MMIMsx . (31)

Proof: In (29), the condition of (10) gives
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Consider a transformation of the state variables in (32) by
means of below equivalence transformation:
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T

0

Then,
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)( 111

1
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In this regard, the matrix 11 DD appearing on (33) satisfies

111111

2

11 DDDDDDDD . (34)

This therefore belongs to projection matrices [8]. As a property
of projection matrices, it obeys

1111 ImKer DDIDD . (35)

That is, there exists a k-dimensional vector corresponding to
the k-dimensional arbitrary vector , and they give

1111 Ker)( DDDDI . (36)

(33a)

(33b)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:2, 2012

159

Now, postmultiplying for the second term of (33) gives

111111 Ker;)( DDBDDIB . (37)

Where, the first equation of (30) indicates that

0,0Ker 111111 DDIBBDD . (38)

Therefore, the second term of (33) is equal to 0, that is,

111212 DDMM (39)

As with the same scheme of acquiring (38), the following
condition is indicated by the second equation of (30) and (38)
that

0,0Ker 113311 DDIDDDD (40)

Therefore by summarizing aforementioned results especially
(31), (10), and (38) ~ (40), it follows that

.0
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Now the condition (30) is further considered with taking the
1-DOF vibratory system described in Subsec.2.B for example.
At first, take a proper element z1 Ker(B1) in first condition of
(30), and equation (19) gives a concrete description of Ker(B1)
as follows:
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As with (41), take a proper element z2 Ker( 11 DD ), and a

concrete description of Ker( 11 DD ) is also given by
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Therefore, the system in Subsec.2.B satisfies first condition
of (30) via (41) and (42). The second condition of (30) can be
verified with the same scheme to (41) and (42).

Nevertheless the sizes and the elements of B1, D1, and D3

arbitrarily vary as how the unknown physical parameters exist,
the relationship among these matrices’ rows do not vary from
those of (19) in such cases as identification of coefficients of
linear ordinary differential equations. Therefore, it can be said
that the condition (30) is widely satisfied among the cases of
physical parameter identification.

From the above introduced lemma, z(s) and x(s) are
summarized with (27), (29), and (31) as follows:
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122221
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syMMsuMsxsx

szsyMsz
(43)

The next part is definition of the criterion function. Similarly to
x0, z0 in (43) cannot be calculated directly. Hence instead of J in
(24), let a virtual criterion function Ĵ be defined as the least
square of estimated error in the time domain:

t k

i
iii dxpzJ

0
1

2))(ˆ)(ˆ(ˆ (44)

This concerns about virtual estimated values of deviations
with xx̂ and ẑ . The virtual parameter deviation, described as

]ˆ[diagˆ p , can be obtained by minimization of the criterion

function Ĵ . Although p̂ does not represent the actual

parameter deviations directly, we can obtain the parameter
identifier in this case by the following theorem:

Theorem: Let the input vector of the target system u(t) allow x(t)
and z(t) to be orthogonal, that is

)(,0)()(
0

jidxz
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The parameter identifier for the case r < k holds
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Proof: Differentiating (44) partially with
ip̂ , we can obtain the

necessary condition for the minimization by 0)ˆ(/ˆ
ipdJd .

The virtual parameter identifier can therefore be formulated
such that meets with the necessary condition as follows:
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Now that, substituting the first equation of (21) into

)(ˆ)(ˆ 12 syMsz with (39) gives following relationship;

)()()(ˆ 111212 szDDszMMsz

)()(ˆ 11 tzDDtz . (48)

This enables the integrand of the numerator in (47) to deform
into a simple form below:

k

j
ijijii txzDDtxtz

1
11 )()()(ˆ (49)

Therefore, the following condition is given by taking the
condition of (45) into account and organizing (47), (49), and
(26):
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DD
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This formula is equivalent to (46).

IV. NUMERICAL CONSIDERATION

A. Simulation Conditions

To evaluate the method proposed in previous section, we
carry out a simulation with taking the 1-DOF vibratory system
in Subsec.2.B for the example. The simulation aims to identify
three physical parameter deviations k, d, and m
simultaneously. Particularly, we calculate time responses of the
deviations based on (46) in order to accomplish a real-time
identification. The input vector in this simulation is selected to
sum of five different sine curves as shown in (51):

5

1
1 )cos()(

i
iiii tAxtu (51)

This is because the LFT signals satisfy the orthogonal condition
of (45) in [0 t] and u(t) have enough independent signal

components for the identification. In addition, the initial values

of the state variable vector T
122 xxxxs

in (13) are

assumed to be 0, and the other simulation conditions such as
parameter values are summarized in Table 1.

B. Simulation results

Table 2 shows the results of mean values and rates of
identification errors from actual deviation values with respect to
the identification of parameter deviations k, d, and m during
10 [s]. Figure 4, 5, and 6 also shows the time responses of the
identified value of k, d, and m, respectively.

These results indicate that the identifications for d and m
are achieved with accuracy. In addition, these results hardly
depend on time. Therefore, d and m can be effectively
identified in real-time. However, Table 2 shows that there is
20 % of the error rate in average on the identification of k. The
time response Fig. 4 also indicates that the identified value of k
has large error on its initial phase. One of the primal reasons of
this unfavorable result is that the orthogonal condition of (47)
cannot be sufficiently accomplished in the transient phase after
the initial input stimulation. The integral I21 with respect to the
orthogonality between z2 and x1, which must be considered in
the calculation of k, holds

t
dxzI

0 1221 )()( . (52)

This I21 takes a certain amount of the value in early phase with
the input (51). In contrast, because I21 converges to 0 in latter
phase, the steady state value of k achieves a better result as
shown in Fig. 4. This is due to the property of the input signal
component (51) as non-biased periodic function.
Now, in order to manage the influence of the undesirable
condition on (52), we employ a time window method. That is,
[t*-T t*] is chosen as the integral interval instead of [0 t] in (46),
where T is the time window and t* is a time series to conduct the
identification. Therefore, the time response with the time
window holds

TABLE I
SPECIFICATION OF PARAMETERS FOR SIMULATION

Symbol Parameter Value Unit

m0 Nominal mass 2.0 kg

m Deviation of mass 0.60 kg

d0 Nominal damping coefficient 0.20 N s/m

d Deviation of damping coeff. 4.0×10-2 N s/m

k0 Nominal spring coefficient 1.0 N/m

k Deviation of spring coeff. 0.10 N/m

Ai Amplitude of input signals 1 m

1, 2 Frequency of input signals 1, 2 0.1, 1.0 rad/s

3, 4 Frequency of input signals 3, 4 10, 1.0×102 rad/s

5 Frequency of input signal 5 2.0×102 rad/s

i Phase of input signals 0 rad

Sampling interval 1 ms
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Fig. 4 Identification result of k

Fig. 5 Identification result of d

Fig. 6 Identification result of m
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The calculation is conducted with taking the time window as T =
1.0 [s], and the identification interval is t*=[1.0 10].

In this case, the time responses of d and m show precision
constant values. The time response of k as shown in Fig. 7 also
shows more accurate value and better convergence in
comparison to the latter phase of Fig. 4. Table 3 exhibits the
time average of identified values and rates of identification
errors. Table 3 also indicates that the identifications for d and
m remain those accuracies. In addition, the time window

method improves the identified value of k.

Fig. 7 Identification result of k with time window

V.CONCLUSION

For physical parameter identification in a linear system, such
as the one degree of freedom vibratory system defined in
Subsec.2.B, this paper proposes a method for extracting the
parameter deviations by means of Linear Fractional
Transformation and for identifying these deviations
simultaneously and in real time. This study focuses on cases in
which the number of outputs is less than the number of unknown
parameters. The results of numerical simulations shown in Sec.
4 indicate that in a linear system that has three unknown
parameters and only two outputs, the parameters can be
identified simultaneously and in real-time.
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TABLE II
MEAN VALUES OF IDENTIFICATION RESULTS

Parameter Mean Value Accurate value Error Rate [%]

k 1.204×10-1 0.10 20

d 4.007×10-2 4.0×10-2 0.17

m 6.000×10-1 0.60 0.0

TABLE III
MEAN VALUES OF IDENTIFICATION RESULTS WITH TIME WINDOW

Parameter Mean Value Accurate value Error Rate [%]

k 1.052×10-1 0.10 5.2

d 4.000×10-2 4.0×10-2 0.0

m 6.000×10-1 0.60 0.0


