
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3189

Abstract—This paper describes a new algorithm of arrangement

in parallel, based on Odd-Even Mergesort, called division and
concurrent mixes. The main idea of the algorithm is to achieve that
each processor uses a sequential algorithm for ordering a part of the
vector, and after that, for making the processors work in pairs in
order to mix two of these sections ordered in a greater one, also
ordered; after several iterations, the vector will be completely
ordered. The paper describes the implementation of the new
algorithm on a Message Passing environment (such as MPI). Besides,
it compares the obtained experimental results with the quicksort
sequential algorithm and with the parallel implementations (also on
MPI) of the algorithms quicksort and bitonic sort. The comparison
has been realized in an 8 processors cluster under GNU/Linux which
is running on a unique PC processor.

Keywords—Parallel algorithm, arrangement, MPI, sorting,
parallel program.

I. INTRODUCTION
HE arrangement of the elements of a vector is a process
very common in the present computer systems. It is used

in many algorithms so that the access to the information that
these need can more efficiently be made. It is used frequently
to execute general exchanges of data, including random access
as much for reading as for writing. These operations of data
movement can be used to solve problems in theory of graphs,
computational geometry and image processing in an optimal
or almost optimal time.

The present document defines a new parallel algorithm of
arrangement, denominated of division and concurrent mixes;
originally conceived for its application in multiprocessor
system (with shared memory). Here it is described its
implementation by Message Passing, MPI [6][7] and is
compared with the sequential algorithm of QuickSort
[5][5][9], Quicksort arrangement [8][9][10] and the Bitonic
Sort [1][1][4] algorithm of arrangement in parallel.

Ezequiel Herruzo, Juan José Cruz and José Ignacio Benavides are with the
Department of Computer Architecture and Electronic, University of Córdoba.,
Spain (corresponding author to provide phone: +34 957 218375; fax: +34 957
218316; e-mail: eze@uco.es).
 Oscar Plata is with the Department of Computer Architecture, University
of Málaga, Spain (e-mail: oscar@ac.uma.es).

II. DESCRIPTION OF THE ALGORITHM
A. Basic Idea
The main idea of the algorithm is to achieve that each

processor uses a sequential algorithm to order a part of the
vector, and once this has been done, to make the processors
work in pairs so as to mix two of these sections ordered in a
greater one, also ordered; after several iterations, the vector
will be completely ordered.

Our algorithm is divided in two parts: one part of division
and mixes contender of the elements of a vector, and another
one that makes the ordered mixture of subvectors already
sorted (algorithm PREZ).

B. Division and Mixes Contender Algorithm
We suppose a system with N processors, with a system of

shared memory and capacity of concurrent and denoted
reading and writing like P1, P2, ... PN, being N an even
number. We also suppose a vector of data S with n elements
initially jumbled. This vector is divided in subvectors of
length n/N, where n must be divisible by N1, and the handling
of each one of them is assigned to the processor Pi, as shown
in the Fig. 1.

Fig. 1 Scheme of the distribution of the vector between the

processors

The first step of the division and concurrent mixes

algorithm is that each processor Pi may order the Si subvector
sequentially using the sequential algorithm quicksort. In the
second step, the processors Pi and Pi+1, where i is odd, must
jointly sort their subvectors Si and Si+1 to a sorted vector Si’,
keeping in Si the lower half of Si’ and the higher half in Si+1.
The third step repeats the procedure with each Pi and Pi+1 with
i even (processors 1 and N, are in “stand by” in this step).
After N/2 iterations of the second and third steps, the
algorithm finishes with a sorted vector S.

1 In case of n not divisible by N, false elements are introduced to complete
the subvectors, or the leftover elements are excluded to insert them
sequentially. For the sake of simplicity, we have avoided the treatment of this
case in the description of the algorithm.

A Message Passing Implementation of a New
Parallel Arrangement Algorithm

Ezequiel Herruzo, Juan José Cruz, José Ignacio Benavides, and Oscar Plata

T

S1 S2 SN
S 1 1 S 1 2 S 1 3 S 1 4 S 21 S 22 S 23 S 24 ... SN1 SN2 SN3 SN4

 P1 P2 ... PN

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3190

Procedure DIVISION_AND_CONCURRENT_MIXING (S)

 for i=1 to N do in paralel

 quicksort(Si)

 end for

 for j=1 to [N/2] do

 for i=1,3 ... 2*[n/2]-1 do in parallel

 PREZ(Si, Si+1, Si’)

 Si<-{Si’(1), Si’(2),..., Si’(n/N)}

 Si+1<-{Si’((n/N)+1), ... Si’(2-n/N)}

 end for

 for i=2, 4, ..., 2*[(N-1)/2] do in parallel

 PREZ(Si, Si+1, Si’)

 Si<-{Si’(1), Si’(2),..., Si’(n/N)}

 Si+1<-{Si’((n/N)+1), ... Si’(2-n/N)}

 end for

 end for

end procedure

C. PREZ Algorithm
The innovation of the method proposed here is the mixing

algorithm: PREZ. PREZ involves in its execution two
processors working in parallel to mix two sorted subvectors of
n size, giving as a result a 2n-size vector, also sorted.

There are two processors, P1 and P2; two sorted subvectors,
S1 and S2 and a vector, SR, which finally will contain the mix
of S1 and S2. The algorithm uses four pointers, c11, c12, c21
and c22, two for each processor. The pointer c11 determines
the position to be read in S1 by P1; c21 indicates the position
of S2 which is treated by P1; in the same way, c12 and c22 are
used by P2.

Initially, the pointers of P1 points to S1(1) and S2(1). These
elements are compared to assign the minor of them to SR(1);
afterwards it is increased the pointer which points to SR and
the one that points to the subvector with the smallest of the
two elements. This process is repeated n times. The behaviour
of P2, working in parallel, is the opposite: the pointers initially
direct to S1(n) and S2(n), the greatest one is assigned to Sr(n),
and the corresponding pointers are decreased.

After n iterations, SR will contain the sequence of 2n sorted
elements.

The pseudocode for the PREZ algorithm is:

Procedure PREZ (S1, S2, SR)

 C11=1; c12=n; c21=1; c22=n

 /* 2 is the number or processors */

 for j=1 to 2 do in parallel

 for i=1 to n do

 P1: if(s1[c11]<=S2[c22]) then

 SR[i]=S1[c11]

 C11++

 else

 SR[i]=S2[c21]

 end if

 P2: if(S2[c22]>S1[c12]) then

 SR[(2*n+1)-1]=S2[c22]

 C22—

 else

 SR[(2*n+1)-1]=S1[c12]

 C12—

 end if

 end for

 end for

end procedure

Fig. 2, shows an example of the sorting procedure, for a
vector S={7, 0, 9, 1, 5, 6, 5, 2, 8, 4, 3, 1} with N=4
processors. For each step, the pairs of processors working in
their assigned subvectors are marked in bold. The arrows
indicate each pair of processors working jointly, performing
the PREZ algorithm.

At the beginning {7,0,9} {1,5,6} {5,2,8} {4,3,1}
 P1 P2 P3 P4

Quicksort {0,7,9} {1,5,6} {2,5,8} {1,3,4}
 P1 P2 P3 P4
Main loop:
j=1, Part 1 {0,1,5} {6,7,9} {1,2,3} {4,5,8}
 P1 P2 P3 P4

j=1, Part 2 {0,1,5} {1,2,3} {6,7,9} {4,5,8}
 P1 P2 P3 P4

j=2, Part 1 {0,1,1} {2,3,5} {4,5,6} {7,8,9}
 P1 P2 P3 P4

j=2, Part 2 {0,1,1} {2,3,4} {5,5,6} {7,8,9}
 P1 P2 P3 P4

Fig. 2 Example of the sorting of a 12-element vector

III. IMPLEMENTATION ON MPI

A. Implementation of the Division and Concurrent Mixing
The main handicap to implement the PREZ algorithm in a

Message Passing environment is the need to make two tasks
working with the same data as in a shared memory system. To
solve this problem we must implement a relatively complex
mechanism of intercommunication between pairs of tasks in
order to share their data in every iteration of the algorithm.

As shown in the code below, for each iteration and step,
every pair of tasks shares its subvectors by passing the data to
each other.

In this way, both tasks know the subvectors Si and Si+1. Pi
calls the PREZ algorithm to sort the first half of the Si' vector,
while Pi+1 will sort the second half.

The below code fragment implements the procedure
described above, where the used variables are:

• v is the entire vector S.
• subvsz is the size of subvectors n/N.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3191

• myv is each subvector Si.
• recv is the subvector received by the other task.
• rv is, for each task, the corresponding half of the

resulting vector Si'.
• nproc is the number of tasks.

/* scatters the work */

MPI_Scatter(v, subvsz, MPI_INT, myv, subvsz,

MPI_INT, 0, MPI_COMM_WORLD);

/* First step: quicksort ordering */

quicksort(myv, 0, subvsz-1);

/* PREZ mixing */

for(i=0; i<(nproc/2); i++) {

 /* Second step: even mixing ([1/2][3/4]...) */

recv = (int *) malloc(subvsz * sizeof(int));

if(myid & 0x01) { /* odd task sends first and

then receives */

 MPI_Send(myv, subvsz, MPI_INT, myid-1, 0,

MPI_COMM_WORLD);

MPI_Recv(recv, subvsz, MPI_INT, myid-1, 0,

MPI_COMM_WORLD, NULL);

/* Calls the PREZ algorithm */

rv = PREZ(myv, recv, subvsz, 0);

}

 else { /* even receives first and then sends */

 MPI_Recv(recv, subvsz, MPI_INT, myid+1, 0,

 MPI_COMM_WORLD, NULL);

 MPI_Send(myv, subvsz, MPI_INT, myid+1, 0,

 MPI_COMM_WORLD);

 /* Calls the PREZ algorithm */

 rv = PREZ(myv, recv, subvsz, 1);

 }

 free(myv);

free(recv);

myv = rv; /* Now, S(i) is the corresponding half of

S(i') */

/* Third step: odd mixing ([2/3][3/4]...) */

if(myid > 0 && myid < (nproc-1)

 && i < ((nproc/2)-1)) {

 recv = (int *) malloc(subvsz * sizeof(int));

 if(myid & 0x01) {

 MPI_Send(myv, subvsz,MPI_INT, myid+1, 0,

 MPI_COMM_WORLD);

 MPI_Recv(recv, subvsz,MPI_INT, myid+1, 0,

 MPI_COMM_WORLD, NULL);

 rv = PREZ(myv, recv, subvsz, 1);

 }

 else {

 MPI_Recv(recv,subvsz, MPI_INT, myid-1, 0,

 MPI_COMM_WORLD, NULL);

 MPI_Send(myv, subvsz, MPI_INT, myid-1, 0,

 MPI_COMM_WORLD);

 rv = PREZ(myv, recv, subvsz, 0);

 }

 free(myv);

 free(recv);

 myv = rv;

 }

} /* end of the PREZ mixing */

/* gathers the work */

MPI_Gather(myv, subvsz, MPI_INT, v, subvsz, MPI_INT,

 0, MPI_COMM_WORLD);

B. The PREZ Algorithm
To implement the PREZ algorithm, it is only necessary to

add a new argument, the pos argument, which indicates the
portion of the resulting vector Si' that will process the task: 0
for the first half and 1 for the last half.

int *PREZ(int *v1, int *v2, int n, int pos) {

 int i = 0;

 int c1, c2;

 int *r;

 r = (int *) malloc(n * sizeof(int));

 c1 = c2 = (n-1)* pos;

 if(pos)

 for(i=n-1;i>=0;i--)

 r[i] = v1[c1] > v2[c2] ? v1[c1--] : v2[c2--];

 else

 for(i=0;i<n;i++)

 r[i] = v2[c2] > v1[c1] ? v1[c1++] : v2[c2++];

 return r;

}

IV. ALGORITHM TESTING

A. Comparison Respect to the Sequential Quicksort
In order to check the efficiency of the proposed algorithm

and its implementation by Message Passing, several tests have
been realized. They have consisted of the execution of a
program that implements the algorithm in MPI. The program
was run for 2, 4 and 8 tasks, with arrays of 215, 217, 219, 221
and 223 elements (1 We have choosen vector sizes and number
of tasks of 2n due to the restriction of the bitonic sort
algorithm, which only works with vectors of 2n elements). For
each combination of N and n, we realized 50 runs of the
program, with different arrays, so that the result of each test
was the average value of the 50 executions.

The results shown here have been performed by a PC
running under SUSE Linux 10.0, with LAM MPI. The values

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3192

are provided by the clock () function, which returns an
approximation of processor time used by the program.
Because the values returned by this function for array sizes
smaller than 215 aren’t significants, the cases of study begins
at this size.

Table I and Graphic 1 show the values of speed-up [3],
defined as:

p

s

C
CS =

where S is the speed-up, Cs the number of cycles of the
sequential algorithm execution and Cp the cycles employed in
the parallel algorithm.

The percentage of gain, shown in Table II is defined as:

1001 ⋅⎟
⎠
⎞

⎜
⎝
⎛ −=

P
SG

being, G the percentage of gain, S the number of processor
cycles for the sequential algorithm, and P the same for parallel
execution.

TABLE I
SPEED-UP RESPECTING THE SEQUENTIAL QUICKSORT

 Qsort PREZ
N=2

PREZ
N=4

PREZ
N=8

n = 215 1 1,300 1,733 1,156
n = 217 1 1,491 2,327 2,327
n = 219 1 1,564 2,522 3,295
n = 221 1 1,628 2,749 4,106
n = 223 1 1,671 2,883 4,262

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

n = 32768 n = 131072 n = 524288 n =
2097152

n =
8388608

vector size

Sp
ee

d-
up

Quicksort

N=2

N=4

N=8

Graphic 1 Speed-up respecting the sequential quicksort

The best performance is achieved at greater values of n,

which decrease when the number of tasks increases. Specially
outstanding it is the result for N=8 with vector sizes under 217

The conclusion is that the algorithm obtains satisfactory
results in speed-up, in relation to the sequential execution of
the quicksort algorithm.

TABLE II
PERCENTAGE OF GAIN RESPECTING THE SEQUENTIAL QUICKSORT

 PREZ
N=2

PREZ
N=4

PREZ
N=8

n = 215 30,000 73,333 15,556
n = 217 49,102 132,710 132,710
n = 219 56,379 152,212 229,480
n = 221 62,766 174,879 310,560
n = 223 67,099 188,339 326,229

B. Comparison Respect to the Arrangement in Parallel
A much more reliable way to determine the validity of our

algorithm is to compare it with other methods of parallel
arrangement. The chosen methods to contrast with PREZ have
been quicksort and bitonic sort, both adapted to parallelism by
message passing with MPI.

The test realized was the same as with PREZ: 50 executions
for each N=2, 4 and 8, and each n= 215, 217, 219, 221 and 223.
The average values obtained are shown in Table III, expressed
like numbers of cycles of execution in a scale of 105.

TABLE III

RESULTS FOR ALL THE TESTS REALIZED
N 1 2 4 8

PREZ
n = 215 0,080 0,060 0,090
n = 217 0,334 0,214 0,214
n = 219 1,458 0,904 0,692
n = 221 6,306 3,734 2,500
n = 223 27,288 15,814 10,698

 Bitonic Sort
n = 215 0,308 0,198 0,138
n = 217 1,458 0,810 0,488
n = 219 6,884 3,592 1,966
n = 221 32,314 16,564 8,660
n = 223 150,914 76,936 39,882

 Quicksort
n = 215 0,104 0,116 0,124 0,166
n = 217 0,498 0,418 0,346 0,314
n = 219 2,280 1,788 1,422 1,210
n = 221 10,264 8,078 6,122 4,636
n = 223 45,598 35,936 27,376 19,850

1. Quicksort
Quicksort algorithm [5] does not need presentation, because

it is possibly one of best known and most used sorting
algorithms. Its function is based on the divide-and-win
strategy, that is to say, it makes recursive partitions of the
vector, using a value as pivot, where the values smaller o
equals to the pivot go to one partition, and the values greater
than the pivot go to the other one. The procedure is repeated
with each one until getting partitions of 1 element. Then, the
vector will be sorted.

The parallel implementation of quicksort may be, in some

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3193

cases, less efficient than the sequential version, as it is shown
in Table V. The efficiency depends on the pivot chosen to do
the partition. An inadequate pivot may cause, in most cases,
an unbalanced workload.

Basically, the parallel algorithm realizes the first partition,
then, it passes one of the subvectors to a dependent task. In
the next iteration, both tasks will spawn a dependent process
to which one of the new partitions of vectors passes. The
process will continue until it is reached the maximum number
of task, and after that, all of them will continue sequentially.
When each task finishes its work, the result (the sorted
subvector) returns to its parent-task recursively until the root
task has the vector completely sorted.

 Table IV shows the results obtained in tests of speed-up,
for N=1 (sequential), 2, 4 and 8 tasks. Only for N=2, the
values are acceptable. It can be seen that PREZ obtains better
results in all the tests.

TABLE IV

SPEED-UP VALUES FOR QUICKSORT IN PARALLEL RESPECTING THE
SEQUENTIAL ALGORITHM

 N=1 N=2 N=4 N=8
n = 215 1,000 0,897 0,839 0,627
n = 217 1,000 1,191 1,439 1,586
n = 219 1,000 1,275 1,603 1,884
n = 221 1,000 1,271 1,677 2,214
n = 223 1,000 1,269 1,666 2,297

Table V shows the gain values for 2, 4 and 8 tasks, where

negative values can be seen for n=215, respect to the sequential
quicksort.

TABLE V

GAIN VALUES FOR QUICKSORT IN PARALLEL RESPECTING TO THE
SEQUENTIAL ALGORITHM

 N=2 N=4 N=8
n = 215 -10,345 -16,129 -37,349
n = 217 19,139 43,931 58,599
n = 219 27,517 60,338 88,430
n = 221 27,061 67,658 121,398
n = 223 26,887 66,562 129,713

2. Bitonic Sort
Bitonic sort [1] is a sorting network. Sorting networks are a

special kind of sorting algorithms, where the sequence of
comparisons is not data-dependent. This is why they are very
suitable for implementation in hardware or parallel processor
arrays.

Bitonic sort is based on the usage of bitonic sequences. A
sequence a1, a2, ...ak, ak+1, ... an, is bitonic if it contains at least
two changes of “tonic”, i.e, initially increasing from a1 to ak,
and decreasing from ak+1 to an, or vice versa.

The algorithm divides the vector into several bitonic
sequences so as to recursively mix them two by two, making
bitonic sequences of a double size in every iteration, until the
entire vector is sorted.

To implement the algorithm on MPI in order to perform this

test, it has been developed a procedure which splits the vector
onto N subvectors. Each task will execute the bitonic sort; the
odd tasks in ascending order and the even tasks in descending
order, to get N/2 bitonic sequences. After this, the procedure
will send the data to the corresponding task to continue the
sorting. The explanation of the complete mechanism is too
complex and it is not the aim of this article.

TABLE VI

SPEED-UP VALUES FOR BITONIC SORT IN PARALLEL RESPECTING THE
SEQUENTIAL ALGORITHM

 Qsort N=2 N=4 N=8
n = 215 1 -66,234 -47,475 -24,638
n = 217 1 -65,844 -38,519 2,049
n = 219 1 -66,880 -36,526 15,972
n = 221 1 -68,237 -38,034 18,522
n = 223 1 -69,785 -40,733 14,332

The results obtained in the tests (see Table VI for speed-up)

are, in all cases, less efficient than PREZ.

3. Algorithms Comparisons
The following graphics are offered so as to compare the

performance of PREZ respecting to the other algorithms.
There are graphic representations of data on Table III:

• Graphic 2 shows the cycles of execution of three
algorithms for 2 tasks.

• Graphic 3 shows the same data for 4 tasks, and
• Graphic 4 for 8 tasks.

In all cases, PREZ lines indicate the best results, which are
more significant as the number of elements to sort is growing.

0

20

40

60

80

100

120

140

160

n =
 32

76
8

n =
 13

10
72

n =
 52

42
88

n =
 20

97
15

2

n =
 83

88
60

8

Size of array

cy
cl

es
 o

f e
xe

cu
tio

n
(x

 1
00

 0
00

)

PREZ
BitonicSort
Quicksort

Graphic 2 Cycles of execution for 2 tasks

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3194

0

10

20

30

40

50

60

70

80

90

n =
 32

76
8

n =
 13

10
72

n =
 52

42
88

n =
 20

97
15

2

n =
 83

88
60

8

Size of arrays

cy
cl

es
 o

f e
xe

cu
tio

n
(x

 1
00

 0
00

)

PREZ
BitonicSort
Quicksort

 Graphic 3 Cycles of execution for 4 tasks

0

5

10

15

20

25

30

35

40

45

n =
 32

76
8

n =
 13

10
72

n =
 52

42
88

n =
 20

97
15

2

n =
 83

88
60

8

Size of arrays

cy
cl

es
 o

f e
xe

cu
tio

n
(x

10
0

00
0)

PREZ
BitonicSort
Quicksort

Graphic 4 Cycles of execution for 8 tasks

V. CONCLUSION
The sorting algorithm presented here has proved to be

powerful in terms of speed, in comparison with the others
studied in this paper.

The algorithm presents a better performance with bigger
arrays (220 elements and more).

With respect to the Bitonic Sort, the improvement is really
noteworthy, presenting notable differences in all cases.

In the results of the comparison with parallel quicksort, the
contrast presents minor differences, but always better results
for PREZ vs. quicksort. Once again, the advantage increased
as the size of arrays did it.

Finally, our conclusion is that PREZ is a very interesting
algorithm which presents good results on MPI, but it is
necessary to realize more analysis, comparing it with other
algorithms and, principally, executing the tests in a real

distributed memory environment, in order to check how the
transmission of data affects the performance.

REFERENCES
[1] Batcher, K. E. “Sorting Networks an their Applications”. Proc. AFIPS

Spring Joint Comput. Conf., Vol. 32, 307-314, 1968.
[2] Cormen, T.H. et al. “Introduction to Algorithms”. 2. Auflage, The MIT

Press 2001.
[3] Culler, E., Singh, J.P. “Parallel Computer Architecture: A

Hardware/Sotware approach”. Morgan Kaufmann Publishers, Inc, San
Francisco, 1999. ISBN 1-55860-343-3.

[4] Grama, A. Et al. “Introduction to Parallel Computing”. Second Edition.
Addison-Wesley 2003, SIBN 0-201-64865-2.

[5] Hoare, C. “Quicksort”. Computer Journal, Vol. 5, 1, 10-15, 1962.
[6] Message Passing Interface Forum. MPI: A Message-Passing Interface

standard. The International Journal of Supercomputer Applications and
High Performance Computing, 8, 1994.

[7] Message Passing Interface Forum. MPI: A Message-Passing Interface
standard (version 1.1). Technical report, 1995. http://www.mpi-
forum.org.

[8] Pratt, V. “Shellsort and Sorting Networks”. Garland, New York, 1979.
[9] Sedgewick, R. “Algorithms in Java”, Parts 1-4. 3. Auflage, Addison-

Wesley, 2003
[10] Shell, D. L. “A High-Speed Sorting Procedure”. Communications of the

ACM, 2, 7, 30-32. 1959.

