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Abstract—This paper describes a new algorithm of arrangement 

in parallel, based on Odd-Even Mergesort, called division and 
concurrent mixes. The main idea of the algorithm is to achieve that 
each processor uses a sequential algorithm for ordering a part of the 
vector, and after that, for making the processors work in pairs in 
order to mix two of these sections ordered in a greater one, also 
ordered; after several iterations, the vector will be completely 
ordered. The paper describes the implementation of the new 
algorithm on a Message Passing environment (such as MPI). Besides, 
it compares the obtained experimental results with the quicksort 
sequential algorithm and with the parallel implementations (also on 
MPI) of the algorithms quicksort and bitonic sort. The comparison 
has been realized in an 8 processors cluster under GNU/Linux which 
is running on a unique PC processor. 
 

Keywords—Parallel algorithm, arrangement, MPI, sorting, 
parallel program.  

I. INTRODUCTION 
HE arrangement of the elements of a vector is a process 
very common in the present computer systems. It is used 

in many algorithms so that the access to the information that 
these need can more efficiently be made. It is used frequently 
to execute general exchanges of data, including random access 
as much for reading as for writing. These operations of data 
movement can be used to solve problems in theory of graphs, 
computational geometry and image processing in an optimal 
or almost optimal time.  

The present document defines a new parallel algorithm of 
arrangement, denominated of division and concurrent mixes; 
originally conceived for its application in multiprocessor 
system (with shared memory). Here it is described its 
implementation by Message Passing, MPI [6][7] and is 
compared with the sequential algorithm of QuickSort 
[5][5][9], Quicksort arrangement [8][9][10] and the Bitonic 
Sort [1][1][4] algorithm of arrangement in parallel.  

 
 
  
 
 
 
 

Ezequiel Herruzo, Juan José Cruz and José Ignacio Benavides are with the 
Department of Computer Architecture and Electronic, University of Córdoba., 
Spain (corresponding author to provide phone: +34 957 218375; fax: +34 957 
218316; e-mail: eze@uco.es). 
 Oscar Plata is with the Department of Computer Architecture, University 
of Málaga, Spain (e-mail: oscar@ac.uma.es). 

II. DESCRIPTION OF THE ALGORITHM 
A. Basic Idea 
The main idea of the algorithm is to achieve that each 

processor uses a sequential algorithm to order a part of the 
vector, and once this has been done, to make the processors 
work in pairs so as to mix two of these sections ordered in a 
greater one, also ordered; after several iterations, the vector 
will be completely ordered. 

Our algorithm is divided in two parts: one part of division 
and mixes contender of the elements of a vector, and another 
one that makes the ordered mixture of subvectors already 
sorted (algorithm PREZ). 

B. Division and Mixes Contender Algorithm 
We suppose a system with N processors, with a system of 

shared memory and capacity of concurrent and denoted 
reading and writing like P1, P2, ... PN, being N an even 
number. We also suppose a vector of data S with n elements 
initially jumbled. This vector is divided in subvectors of 
length n/N, where n must be divisible by N1, and the handling 
of each one of them is assigned to the processor Pi, as shown 
in the Fig. 1. 

 

 
Fig. 1 Scheme of the distribution of the vector between the 

processors 
 
The first step of the division and concurrent mixes 

algorithm is that each processor Pi may order the Si subvector 
sequentially using the sequential algorithm quicksort. In the 
second step, the processors Pi and Pi+1, where i is odd, must 
jointly sort their subvectors Si and Si+1 to a sorted vector Si’, 
keeping in Si the lower half of Si’ and the higher half in Si+1. 
The third step repeats the procedure with each Pi and Pi+1 with 
i even (processors 1 and N, are in “stand by” in this step). 
After N/2 iterations of the second and third steps, the 
algorithm finishes with a sorted vector S. 
 

1 In case of n not divisible by N, false elements are introduced to complete 
the subvectors, or the leftover elements are excluded to insert them 
sequentially. For the sake of simplicity, we have avoided the treatment of this 
case in the description of the algorithm. 
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Procedure DIVISION_AND_CONCURRENT_MIXING (S) 

 for i=1 to N do in paralel 

  quicksort(Si) 

 end for 

 

 for j=1 to [N/2] do 

  for i=1,3 ... 2*[n/2]-1 do in parallel 

   PREZ(Si, Si+1, Si’) 

   Si<-{Si’(1), Si’(2),..., Si’(n/N)} 

   Si+1<-{Si’((n/N)+1), ... Si’(2-n/N)} 

  end for 

 

  for i=2, 4, ..., 2*[(N-1)/2] do in parallel 

   PREZ(Si, Si+1, Si’) 

   Si<-{Si’(1), Si’(2),..., Si’(n/N)} 

   Si+1<-{Si’((n/N)+1), ... Si’(2-n/N)} 

  end for 

 end for 

end procedure 

C. PREZ Algorithm 
The innovation of the method proposed here is the mixing 

algorithm: PREZ. PREZ involves in its execution two 
processors working in parallel to mix two sorted subvectors of 
n size, giving as a result a 2n-size vector, also sorted. 

There are two processors, P1 and P2; two sorted subvectors, 
S1 and S2 and a vector, SR, which finally will contain the mix 
of S1 and S2. The algorithm uses four pointers, c11, c12, c21 
and c22, two for each processor. The pointer c11 determines 
the position to be read in S1 by P1; c21 indicates the position 
of S2 which is treated by P1; in the same way, c12 and c22 are 
used by P2. 

Initially, the pointers of P1 points to S1(1) and S2(1). These 
elements are compared to assign the minor of them to SR(1); 
afterwards it is increased the pointer which points to SR and 
the one that points to the subvector with the smallest of the 
two elements. This process is repeated n times. The behaviour 
of P2, working in parallel, is the opposite: the pointers initially 
direct to S1(n) and S2(n), the greatest one is assigned to Sr(n), 
and the corresponding pointers are decreased.  

After n iterations, SR will contain the sequence of 2n sorted 
elements. 

The pseudocode for the PREZ algorithm is: 
 

Procedure PREZ (S1, S2, SR) 

 C11=1; c12=n; c21=1; c22=n 

 /* 2 is the number or processors */ 

 for j=1 to 2 do in parallel 

  for i=1 to n do 

   P1: if(s1[c11]<=S2[c22]) then 

    SR[i]=S1[c11] 

    C11++ 

   else 

    SR[i]=S2[c21] 

   end if 

   P2: if(S2[c22]>S1[c12]) then 

    SR[(2*n+1)-1]=S2[c22] 

    C22— 

   else 

    SR[(2*n+1)-1]=S1[c12] 

    C12— 

   end if 

  end for 

 end for 

end procedure 

 

Fig. 2, shows an example of the sorting procedure, for a 
vector S={7, 0, 9, 1, 5, 6, 5, 2, 8, 4, 3, 1} with N=4 
processors. For each step, the pairs of processors working in 
their assigned subvectors are marked in bold. The arrows 
indicate each pair of processors working jointly, performing 
the PREZ algorithm. 

  
At the beginning {7,0,9} {1,5,6} {5,2,8} {4,3,1} 
 P1 P2 P3 P4 
     
Quicksort {0,7,9} {1,5,6} {2,5,8} {1,3,4} 
 P1 P2 P3 P4 
Main loop:     
j=1, Part 1 {0,1,5} {6,7,9} {1,2,3} {4,5,8} 
 P1      P2 P3      P4 
     
j=1, Part 2 {0,1,5} {1,2,3} {6,7,9} {4,5,8} 
 P1 P2      P3 P4 
     
j=2, Part 1 {0,1,1} {2,3,5} {4,5,6} {7,8,9} 
 P1      P2 P3      P4 
     
j=2, Part 2 {0,1,1} {2,3,4} {5,5,6} {7,8,9} 
 P1 P2      P3 P4 

Fig. 2 Example of the sorting of a 12-element vector 

III. IMPLEMENTATION ON MPI 

A. Implementation of the Division and Concurrent Mixing 
The main handicap to implement the PREZ algorithm in a 

Message Passing environment is the need to make two tasks 
working with the same data as in a shared memory system. To 
solve this problem we must implement a relatively complex 
mechanism of intercommunication between pairs of tasks in 
order to share their data in every iteration of the algorithm. 

As shown in the code below, for each iteration and step, 
every pair of tasks shares its subvectors by passing the data to 
each other. 

In this way, both tasks know the subvectors Si and Si+1. Pi 
calls the PREZ algorithm to sort the first half of the Si' vector, 
while Pi+1 will sort the second half. 

The below code fragment implements the procedure 
described above, where the used variables are: 

• v is the entire vector S. 
• subvsz is the size of subvectors n/N. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3191

 

 

• myv is each subvector Si. 
• recv is the subvector received by the other task. 
• rv is, for each task, the corresponding half of the 

resulting vector Si'. 
• nproc is the number of tasks. 

 

/* scatters the work */ 

MPI_Scatter(v, subvsz, MPI_INT, myv, subvsz, 

MPI_INT, 0, MPI_COMM_WORLD); 

 

/* First step: quicksort ordering */ 

quicksort(myv, 0, subvsz-1); 

 

/* PREZ mixing */ 

for(i=0; i<(nproc/2); i++) { 

 /* Second step: even mixing ([1/2][3/4]...) */ 

recv = (int *) malloc(subvsz * sizeof(int)); 

if(myid & 0x01) { /* odd task sends first and  

then receives */ 

  MPI_Send(myv, subvsz, MPI_INT, myid-1, 0, 

MPI_COMM_WORLD); 

MPI_Recv(recv, subvsz, MPI_INT, myid-1, 0, 

MPI_COMM_WORLD, NULL); 

/* Calls the PREZ algorithm */ 

rv = PREZ(myv, recv, subvsz, 0);  

} 

 else { /* even receives first and then sends */ 

  MPI_Recv(recv, subvsz, MPI_INT, myid+1, 0, 

      MPI_COMM_WORLD, NULL); 

  MPI_Send(myv, subvsz, MPI_INT, myid+1, 0, 

      MPI_COMM_WORLD); 

  /* Calls the PREZ algorithm */ 

  rv = PREZ(myv, recv, subvsz, 1);   

  } 

 free(myv); 

free(recv); 

myv = rv; /* Now, S(i) is the corresponding half of 

S(i') */ 

 

/* Third step: odd mixing ([2/3][3/4]...) */ 

if(myid > 0 && myid < (nproc-1)  

  && i < ((nproc/2)-1)) { 

 recv = (int *) malloc(subvsz * sizeof(int)); 

 if(myid & 0x01) { 

  MPI_Send(myv, subvsz,MPI_INT, myid+1, 0,  

     MPI_COMM_WORLD); 

  MPI_Recv(recv, subvsz,MPI_INT, myid+1, 0,  

     MPI_COMM_WORLD, NULL); 

  rv = PREZ(myv, recv, subvsz, 1);    

  } 

 else { 

  MPI_Recv(recv,subvsz, MPI_INT, myid-1, 0,  

     MPI_COMM_WORLD, NULL); 

  MPI_Send(myv, subvsz, MPI_INT, myid-1, 0,  

     MPI_COMM_WORLD); 

  rv = PREZ(myv, recv, subvsz, 0); 

  } 

 free(myv); 

 free(recv); 

 myv = rv; 

 } 

} /* end of the PREZ mixing */ 

/* gathers the work */ 

MPI_Gather(myv, subvsz, MPI_INT, v, subvsz, MPI_INT, 

  0, MPI_COMM_WORLD); 

B.  The PREZ Algorithm 
To implement the PREZ algorithm, it is only necessary to 

add a new argument, the pos argument, which indicates the 
portion of the resulting vector Si' that will process the task: 0 
for the first half and 1 for the last half. 
 
 
int *PREZ(int *v1, int *v2, int n, int pos) { 

 int i = 0; 

 int c1, c2; 

 int *r; 

 

 r = (int *) malloc(n * sizeof(int)); 

 

 c1 = c2 = (n-1)* pos; 

 if(pos)  

  for(i=n-1;i>=0;i--) 

   r[i] = v1[c1] > v2[c2] ? v1[c1--] : v2[c2--]; 

 else 

  for(i=0;i<n;i++)  

   r[i] = v2[c2] > v1[c1] ? v1[c1++] : v2[c2++]; 

 

 return r; 

} 

IV. ALGORITHM TESTING 

A.  Comparison Respect to the Sequential Quicksort 
In order to check the efficiency of the proposed algorithm 

and its implementation by Message Passing, several tests have 
been realized. They have consisted of the execution of a 
program that implements the algorithm in MPI. The program 
was run for 2, 4 and 8 tasks, with arrays of 215, 217, 219, 221 
and 223 elements (1 We have choosen vector sizes and number 
of tasks of 2n due to the restriction of the bitonic sort 
algorithm, which only works with vectors of 2n elements). For 
each combination of N and n, we realized 50 runs of the 
program, with different arrays, so that the result of each test 
was the average value of the 50 executions. 

The results shown here have been performed by a PC 
running under SUSE Linux 10.0, with LAM MPI. The values 
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are provided by the clock () function, which returns an 
approximation of processor time used by the program. 
Because the values returned by this function for array sizes 
smaller than 215 aren’t significants, the cases of study begins 
at this size. 

Table I and Graphic 1 show the values of speed-up [3], 
defined as: 

p

s

C
CS =  

where S is the speed-up, Cs the number of cycles of the 
sequential algorithm execution and Cp the cycles employed in 
the parallel algorithm. 

The percentage of gain, shown in Table II is defined as: 

1001 ⋅⎟
⎠
⎞

⎜
⎝
⎛ −=

P
SG  

being, G the percentage of gain, S the number of processor 
cycles for the sequential algorithm, and P the same for parallel 
execution. 
 

TABLE I 
SPEED-UP RESPECTING THE SEQUENTIAL QUICKSORT 

  Qsort PREZ 
N=2 

PREZ 
N=4 

PREZ 
N=8 

n  = 215 1 1,300 1,733 1,156 
n = 217 1 1,491 2,327 2,327 
n = 219 1 1,564 2,522 3,295 
n = 221 1 1,628 2,749 4,106 
n = 223 1 1,671 2,883 4,262 
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Graphic 1 Speed-up respecting the sequential quicksort 

 
The best performance is achieved at greater values of n, 

which decrease when the number of tasks increases. Specially 
outstanding it is the result for N=8 with vector sizes under 217 

The conclusion is that the algorithm obtains satisfactory 
results in speed-up, in relation to the sequential execution of 
the quicksort algorithm. 

 

TABLE II 
PERCENTAGE OF GAIN RESPECTING THE SEQUENTIAL QUICKSORT 

  PREZ 
N=2 

PREZ 
N=4 

PREZ 
N=8 

n  = 215 30,000 73,333 15,556 
n = 217 49,102 132,710 132,710 
n = 219 56,379 152,212 229,480 
n = 221 62,766 174,879 310,560 
n = 223 67,099 188,339 326,229 

B. Comparison Respect to the Arrangement in Parallel 
A much more reliable way to determine the validity of our 

algorithm is to compare it with other methods of parallel 
arrangement. The chosen methods to contrast with PREZ have 
been quicksort and bitonic sort, both adapted to parallelism by 
message passing with MPI. 

The test realized was the same as with PREZ: 50 executions 
for each N=2, 4 and 8, and each n= 215, 217, 219, 221 and 223. 
The average values obtained are shown in Table III, expressed 
like numbers of cycles of execution in a scale of 105. 

 
TABLE III 

RESULTS FOR ALL THE TESTS REALIZED 
N 1 2 4 8 

PREZ 
n  = 215  0,080 0,060 0,090
n = 217 0,334 0,214 0,214
n = 219 1,458 0,904 0,692
n = 221 6,306 3,734 2,500
n = 223  27,288 15,814 10,698

 Bitonic Sort 
n  = 215  0,308 0,198 0,138
n = 217 1,458 0,810 0,488
n = 219 6,884 3,592 1,966
n = 221 32,314 16,564 8,660
n = 223  150,914 76,936 39,882

 Quicksort 
n  = 215 0,104 0,116 0,124 0,166
n = 217 0,498 0,418 0,346 0,314
n = 219 2,280 1,788 1,422 1,210
n = 221 10,264 8,078 6,122 4,636
n = 223 45,598 35,936 27,376 19,850

 
 
1.  Quicksort 
Quicksort algorithm [5] does not need presentation, because 

it is possibly one of best known and most used sorting 
algorithms. Its function is based on the divide-and-win 
strategy, that is to say, it makes recursive partitions of the 
vector, using a value as pivot, where the values smaller o 
equals to the pivot go to one partition, and the values greater 
than the pivot go to the other one. The procedure is repeated 
with each one until getting partitions of 1 element. Then, the 
vector will be sorted. 

The parallel implementation of quicksort may be, in some 
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cases, less efficient than the sequential version, as it is shown 
in Table V. The efficiency depends on the pivot chosen to do 
the partition. An inadequate pivot may cause, in most cases, 
an unbalanced workload. 

Basically, the parallel algorithm realizes the first partition, 
then, it passes one of the subvectors to a dependent task. In 
the next iteration, both tasks will spawn a dependent process 
to which one of the new partitions of vectors passes. The 
process will continue until it is reached the maximum number 
of task, and after that, all of them will continue sequentially. 
When each task finishes its work, the result (the sorted 
subvector) returns to its parent-task recursively until the root 
task has the vector completely sorted. 

 Table IV shows the results obtained in tests of speed-up, 
for N=1 (sequential), 2, 4 and 8 tasks. Only for N=2, the 
values are acceptable. It can be seen that PREZ obtains better 
results in all the tests. 

 
TABLE IV 

SPEED-UP VALUES FOR QUICKSORT IN PARALLEL RESPECTING THE 
SEQUENTIAL ALGORITHM 

 N=1 N=2 N=4 N=8 
n  = 215 1,000 0,897 0,839 0,627
n = 217 1,000 1,191 1,439 1,586
n = 219 1,000 1,275 1,603 1,884
n = 221 1,000 1,271 1,677 2,214
n = 223 1,000 1,269 1,666 2,297

 
Table V shows the gain values for 2, 4 and 8 tasks, where 

negative values can be seen for n=215, respect to the sequential 
quicksort.  

 
TABLE V 

GAIN VALUES FOR QUICKSORT IN PARALLEL RESPECTING TO THE 
SEQUENTIAL ALGORITHM 

 N=2 N=4 N=8 
n  = 215 -10,345 -16,129 -37,349
n = 217 19,139 43,931 58,599
n = 219 27,517 60,338 88,430
n = 221 27,061 67,658 121,398
n = 223 26,887 66,562 129,713

 
2.  Bitonic Sort 
Bitonic sort [1] is a sorting network. Sorting networks are a 

special kind of sorting algorithms, where the sequence of 
comparisons is not data-dependent. This is why they are very 
suitable for implementation in hardware or parallel processor 
arrays. 

Bitonic sort is based on the usage of bitonic sequences. A 
sequence a1, a2, ...ak, ak+1, ... an, is bitonic if it contains at least 
two changes of “tonic”, i.e, initially increasing from a1 to ak, 
and decreasing from ak+1 to an, or vice versa.  

The algorithm divides the vector into several bitonic 
sequences so as to recursively mix them two by two, making 
bitonic sequences of a double size in every iteration, until the 
entire vector is sorted. 

To implement the algorithm on MPI in order to perform this 

test, it has been developed a procedure which splits the vector 
onto N subvectors. Each task will execute the bitonic sort; the 
odd tasks in ascending order and the even tasks in descending 
order, to get N/2 bitonic sequences. After this, the procedure 
will send the data to the corresponding task to continue the 
sorting. The explanation of the complete mechanism is too 
complex and it is not the aim of this article. 

 
TABLE VI 

SPEED-UP VALUES FOR BITONIC SORT IN PARALLEL RESPECTING THE 
SEQUENTIAL ALGORITHM 

  Qsort N=2 N=4 N=8 
n  = 215 1 -66,234 -47,475 -24,638
n = 217 1 -65,844 -38,519 2,049
n = 219 1 -66,880 -36,526 15,972
n = 221 1 -68,237 -38,034 18,522
n = 223 1 -69,785 -40,733 14,332

 
The results obtained in the tests (see Table VI for speed-up) 

are, in all cases, less efficient than PREZ.  
 
3.  Algorithms Comparisons 
The following graphics are offered so as to compare the 

performance of PREZ respecting to the other algorithms. 
There are graphic representations of data on Table III: 

• Graphic 2 shows the cycles of execution of three 
algorithms for 2 tasks. 

• Graphic 3 shows the same data for 4 tasks, and 
• Graphic 4 for 8 tasks. 

In all cases, PREZ lines indicate the best results, which are 
more significant as the number of elements to sort is growing. 
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Graphic 2 Cycles of execution for 2 tasks 
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 Graphic 3 Cycles of execution for 4 tasks 
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Graphic 4 Cycles of execution for 8 tasks 

V. CONCLUSION 
The sorting algorithm presented here has proved to be 

powerful in terms of speed, in comparison with the others 
studied in this paper.  

The algorithm presents a better performance with bigger 
arrays (220 elements and more). 

With respect to the Bitonic Sort, the improvement is really 
noteworthy, presenting notable differences in all cases.  

In the results of the comparison with parallel quicksort, the 
contrast presents minor differences, but always better results 
for PREZ vs. quicksort. Once again, the advantage increased 
as the size of arrays did it. 

Finally, our conclusion is that PREZ is a very interesting 
algorithm which presents good results on MPI, but it is 
necessary to realize more analysis, comparing it with other 
algorithms and, principally, executing the tests in a real 

distributed memory environment, in order to check how the 
transmission of data affects the performance. 
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