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 
Abstract—Analytical techniques for measuring and planning 

railway capacity expansion activities have been considered in this 
article. A preliminary mathematical framework involving track 
duplication and section sub divisions is proposed for this task. In 
railways, these features have a great effect on network performance 
and for this reason they have been considered. Additional motivations 
have also arisen from the limitations of prior models that have not 
included them.  
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I. INTRODUCTION 

HIS article considers the capacity expansion of railways. 
This is an important topic worldwide and in countries like 

Australia [26] that have to transport increasing volumes of 
goods and passengers across large distances by road, rail, air 
and sea. Railways are considered in this article because of 
their great importance, and because of limitations in 
preliminary models and techniques such as those in [3] and 
[15]. To address this perceived deficiency, two improved 
analytical methods have been considered. First, an approach 
which considers where and when to duplicate tracks is 
proposed. An alternative approach, that sub-divides existing 
tracks to increase capacity, has then been proposed. In theory, 
both of these approaches can be integrated. Together they 
constitute a preliminary mathematical framework for railway 
capacity expansion. 

Articles on railway capacity analysis have increased over 
the last ten years. In summary, relatively few of the papers 
have proposed traditional analytical capacity models. One 
example, however, is [24] which extended the work of [3] and 
developed a new model that takes into account junctions and 
other more complex nodes and stations. Interference 
probabilities between trains are also taken into account. 
Yaghini et al. [27] also proposed a railway capacity model and 
applied it to several case studies in Iran. Their model however 
is based upon a prior binary multi-commodity network design 
formulation and a space-time representation of the network. 
Conceptually its nature is very similar to the model of [3]; 
however, it does additionally provide a saturated schedule at 
extra computational cost and complexity. Burdett [7] has most 
recently addressed multi-objective capacity identification and 
the inclusion of complex train paths to analytical capacity 
models.  
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The majority of papers have taken a more case study 
oriented and empirically based approach. These include [19], 
[9]-[13], [22], [25]. The approaches developed in those papers 
are of limited benefit for the problem addressed in this article.  

 Several recent articles have considered the related topic of 
infrastructure expansion and investment. In those articles, 
optimization models were proposed. Lui et al. [23] considered 
the capacity expansion of railroads and the spatial 
configuration of yards in a freight network. In particular, they 
formulated a model for the yard location problem and 
demonstrated that railroads can make significant savings by 
reconfiguring their networks. This outcome provides 
significant motivation for this article which considers general 
railway networks and their expansion, and proposes more 
generic models and techniques for expanding line capacity. 

Lai and Barkan [16] and [18] considered strategic capacity 
planning. Lai and Barkan [17] then extended their previous 
work and proposed a decision support framework for railway 
capacity planning. Singh et al. [26] developed a mixed integer 
linear programming (MILP) model for determining capacity 
requirements and infrastructure improvements for the Hunter 
Valley Coal Chain. A trade-off was made between the 
accuracy of simulation and the use of a more generic 
mathematical model. Due to its size and complexity however, 
meta-heuristics were necessary to optimize this bulk material 
supply chain. 

Decision support tools have proliferated greatly in recent 
years. Kontaxi and Ricci [14] have developed an online tool 
that compares different railway capacity methods. Abril et al. 
[1] presented an automated tool to perform several different 
forms of capacity analysis. They reported the presence of six 
international companies developing railway capacity software. 

Train sequencing and scheduling techniques can be used to 
verify whether a railway network has sufficient capacity to 
cater for a specified mix of trains, over a given time period, as 
determined from an independent capacity determination 
approach. There are many techniques available for doing this. 
The latest techniques such as [4]-[6], [20], [21], [8] treat this 
problem as a hybrid machine scheduling (i.e. job-shop) 
problem. Solving the train scheduling problem however is 
difficult as these problems are computationally intractable and 
become considerably harder to solve as the problem size 
increases. Hence, they are not good techniques for assessing 
capacity over longer time periods, nor for performing capacity 
expansion analysis. 
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II. METHODOLOGY 

The concept of theoretical capacity is utilized in this article. 
In [3], it is defined as an ideal level that only occurs when 
critical sections of rail are saturated (i.e. continuously 
occupied) and train "interaction effects" and "interference 
delays" that are resolved by proper train scheduling, are 
ignored. Although theoretical capacity is an overestimation of 
real "operational" capacity, it is sufficiently accurate for high 
level planning purposes, for example, that is considered in this 
article. The purpose of the analytical models in this article is 
to maximize the theoretical capacity denoted by ८. 

A. Track Duplications (Static) 

Duplicating existing tracks can significantly increase the 
capacity of a rail network, however as shown in preliminary 
numerical investigations in [2], choosing the right sections is 
not entirely transparent, even more so when costs of 
duplications vary at different locations. Capacity expansion 
models for doing this are therefore proposed here. The first 
type of model is "static" and this means that there is no time 
element to track duplications. The second however considers 
track duplications over time. 

To include track duplication in a static capacity expansion 
model, the following constraints are necessary. 

 
∑ ൫ݕԦ௜

௦ ሬܶԦ
௜
௦ ൅ ശ௜ݕ

௦ ശܶሬ
௜
௦൯ ൑௜∈ூ ሺ߬௦ ൅∥௦ሻܶ		∀ݏ ∈  [Section saturation]     (1) 

 
  ∑ ൫ԧ௦

∥. ∥௦൯௦∈ௌ ൑ ९  [Limitation on spending]                (2) 
 

0 ൑∥௦൑∥௦୫ୟ୶ 			 ݏ∀ ∈ ܵ  [Limit on track numbers]       (3) 
 

Here: ݕԦ௜
௦ and ݕശ௜

௦ are the number of trains of type i that traverse 
section s. Their value is determined from the decision 
variables, ݔԦ௜

௖ and ݔശ௜
௖, which are the number of trains of type i 

that traverse corridor ܿ. In particular, ݕԦ௜
௦ ൌ ∑ ሺݔԦ௜

௖ሻ௖∈஼|௦∈ஐ೎
 and 

ശ௜ݕ
௦ ൌ ∑ ሺݔശ௜

௖ሻ௖∈஼|௦∈ஐ೎
 ]  ∀݅ ∈ ,ܫ ݏ∀ ∈ ܵ. Also: ∥௦ is an integer 

decision variable (i.e. ∥௦∈ Ժ) for the number of parallel tracks 
to add on section s. Furthermore ԧ௦∥ is the cost of a single 
additional track (i.e. cost of duplication), ∥௦୫ୟ୶ is an upper 
bound on track numbers, and there is some total budgetary 
limit (i.e. ९). Constraint (1) includes the number of newly 
assigned tracks ∥௦. The models objective is to maximize the 
capacity, i.e. ८ ൌ ∑ ∑ ሺݔԦ௜

௖ ൅ ശ௜ݔ
௖ሻ௜∈ூ௖∈஼ . It has been assumed that 

sectional running times are the same on parallel tracks. This 
assumption must be made otherwise it is necessary to define 
additional decision variables that describe which parallel track 
individual trains are assigned to. 

From a practical perspective, track duplication cannot be 
separated from budgetary considerations. This is because the 
problem would become unbounded, and sections would be 
duplicated without limit. However, a variant decision making 
problem is to decide upon what sections should be upgraded in 
order to achieve a specified level of demand capacity. This 
variant problem has an alternative objective which is 
minimization of spending. 

 
 

B. Track Duplications (Over Time) 

Section II. A determines in the preceding section how 
capacity should be expanded straight away. This is perhaps 
not entirely useful or realistic. A better approach may be to 
construct and implement a long term plan of infrastructure 
expansions that takes into account any intermediate stage 
capacity requirements, and regular or intermittent budgets and 
funding. The following questions are, hence, pertinent to 
infrastructure expansion and modelling activities: i) what is 
the minimum time required to update the network to a 
specified level of capacity given a specified budget?, ii) what 
is the minimum budget required to update the network to a 
specified level of capacity in a specified time?, and iii) can the 
network be upgraded to a specified capacity within the given 
time and with the given budget?. Mathematical models for 
long term planning are hence investigated to see whether the 
aforementioned questions can be answered. Those models will 
be explained in due course. First let ܲ ൌ ሼ1,2,… , ሽ be the set of 
planning periods (typically in years) available for expansion 
activities, where തܲ ൌ |ܲ| is the upper bound on the number of 
periods. Let ෠ܲ ൑ തܲ be the actual number of periods required or 
designated. Furthermore, let ݁௣ be the expenditure in time 
period p, and let ∥௦,௣ be the number of tracks added in time 
period p in section s. The main assumptions for modelling are 
as: 
 A budget ܾ௣ is provided at various planning periods, not 

necessarily every period (but could be).  
 If the budget is not used then it rolls over into the next 

period. Hence തܾ௣ is the cumulative budget up to and 
including period p, i.e. തܾ௣ ൌ ∑ ܾ௨௨ୀଵ,…,௣ . 

 There may or may not be intermediate absolute capacity 
requirements ८௣, however there is a definite long term 
goal for capacity. Let ८ഥ be the absolute capacity required 
at the end of expansion activities. Hence, ८௣ ൌ ८ഥ for 
݌ ൌ തܲ. If there is no requirement then ८௣ is defined as the 
current “initial” system capacity, say ८଴. It is necessary 
for ८௣ ൒ ८௣ିଵ		∀݌|݌ ൒ 1.  

 All track duplications can be constructed within a time 
period. 

Three models can be been formulated: 
 Model 1.Given ܾ௣ and capacity requirement ८ഥ, create an 

expansion plan of minimal duration ෠ܲ.  
 Model 2. Given a planning period ܲ and capacity 

requirement ८ഥ, create a plan that minimises total spending 
ॺ. 

 Model 3.Given ९, ܲ, ८ഥ, determine whether a feasible plan 
can be constructed. 

Each of these requires the same set of core constraints: 
 
∑ ൫ݕԦ௜,௣

௦ ሬܶԦ
௜
௦ ൅ ശ௜,௣ݕ

௦ ശܶሬ
௜
௦൯௜∈ூ ൑ ܶ ൈ ߬௦,௣		∀ݏ ∈ ܵ, ݌ ∈ ܲ	[Section saturation] (4) 

 
Ԧ௜,௣ݕ	
௦ ൌ ∑ ൫ݔԦ௜,௣

௖ ൯௖∈஼|௦∈ஐ೎ ശ௜,௣ݕ ;
௦ ൌ ∑ ൫ݔശ௜,௣

௖ ൯௖∈஼|௦∈ஐ೎
 [Section usage] (5) 

 
Ԧ௜,௣ݔ
௖ , ശ௜,௣ݔ

௖ ൒ 0	∀݅ ∈ ,ܫ ܿ ∈ ,ܥ ݌ ∈ ܲ  [Positivity]       (6) 
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߬௦,ଵ ൌ ߬௦,଴; 	߬௦,௣ ൌ ߬௦,௣ିଵ ൅∥௦,௣ିଵ ݏ∀ ∈ ܵ, ݌∀ ∈ ݌|ܲ ൐ 1 

[Track number counter]                        (7) 
 
0 ൑ ∑ ∥௦,௣௣∈௉ ൑∥௦୫ୟ୶ 				 ݏ∀ ∈ ܵ [Limit on track numbers]   (8) 

 

௣ܣ ൌ෍ ෍ ൫ݔԦ௜,௣
௖ ൅ ശ௜,௣ݔ

௖ ൯
௜∈ூ௖∈஼

൒ ८௣∀݌ ∈ 

[Intermediate and final requirement]                (9) 
 

݁௣ ൌ ∑ ൫ԧ௦,௣
∥ . ∥௦,௣൯	∀݌ ∈ ܲ௦∈ௌ      [Expenditure]    (10) 

 
In summary, the solution of the static planning model for a 

fixed budget should be quite similar to the solution for Model 
1. Model 1, however, determines when spending should occur 
over time and takes into account the fact that ԧ௦,௣∥  is not 
necessarily static. In Model 2, there is no limit on spending in 
any time period but some additional upper limit may be 
imposed. It should be noted that this model is applied under 
the assumption that ԧ௦,௣∥  is not static; otherwise, all spending 
should occur straight away. Model 3 is also applied under the 
assumption that ԧ௦,௣∥  is not static. Otherwise, the static 
expansion model would be more appropriate for this task. 

C. Section Sub Divisions 

In the preceding sections, the expansion of capacity via 
track duplications was considered. However, that method is 
quite costly and permanent. Construction time for track 
duplications may also be prohibitive. As capacity is highly 
related to travel times on critical bottleneck sections, it is 
possible to expand system capacity by sub-dividing existing 
sections of track, for example using signals. The positioning of 
sub sections is very important. This is clearly demonstrated by 
preliminary numerical investigations.  

 The main idea behind partitioning sections is that it allows 
more trains to run at the same time and to reduce the distance 
between trains in a safe way. In addition making difficult 
“slower” sections into proper signalized sections, means that 
bottleneck issues are reduced as much as possible. The length 
of the sub section is important; however, it is the travelling 
time that is most important 

The first mathematical model that is proposed for section 
sub division assumes that each section of rail can be divided 
into many parts and that the travelling time across each part is 
linearly proportional to the time to travel across the entire 
section. Furthermore, there is no profile for the travel times or 
train speeds across each section. Let ݊௦ be a decision variable 
for the number of sub sections created on section s. The cost 
of dividing a section is denoted by ԧ௦

‡ and it primarily includes 
the cost of signalization. This model seeks to maximize 
absolute capacity subject to a specified limit on spending. 

When track gradients and curvature vary considerably over 
the entire length of a section, the previous assumption of a 
uniform train speed is quite unrealistic. In order to avoid this 
assumption, and to formulate a suitable mathematical model 
that determines how many sub sections to have, and where 
each sub section begins and ends, it is necessary for some type 
of profile to be provided. The aforementioned profile should 

provide the travelling time, gradient, and/or velocity on all 
parts of a section. From a practical point of view, the best case 
is when the time to traverse each linear segment in the profile, 
occurring between adjacent locations, and in both directions, 
is measured. Otherwise, a theoretical approximation could be 
used. It should be noted that another mathematical 
optimization model is not required since the aforementioned 
“first” model is sufficient. That optimization model does not 
need to know where to divide sections, because the effect of 
dividing sections into so many parts is known. For instance, 
the increase in capacity is at most n times if there are n sub 
sections. The position of each chosen sub section can be 
determined later. For that task, however, a separate 
mathematical model is required and is proposed here. That 
model must take into account that travelling on an inclined 
section of rail is efficient in one direction, and inefficient in 
the opposite direction. 

The idea behind the mathematical model for determining 
the position of the n sub sections is to use the discretization 
specified by the profile. It is not necessary to further discretize 
the domain. The following binary variables ߛ௨,௝

ି , ௨,௝ߛ
ା ,  ௨,௝ areߛ

defined for each combination of sub section (i.e. j) and profile 
segment (i.e. u). They signify whether segment u contains the 
start and end respectively of sub section j or whether segment 
u is part of sub section j. The constraints of the model must 
ensure that each sub section starts and ends somewhere. A 
function that determines the travelling time on each sub 
section is critical to the success of this model. It is as: 
 

ሬܶԦ௜,௝ ൌ ∑ ቆߛ௨,௝
ା Ԧ߬௜,௨ െ ௨,௝ߛ

ି Ԧ߬௜,௨ିଵ ൅ ൬
ఊೠ,ೕ
ష ௦௧ೠ

ఋ
െ

ఊೠ,ೕ
శ ௘௡ೠ

ఋ
൰ ঔԦ௜,௨ ൅

ঔԦ೔,ೠ
ఋ
൫ߛ௨,௝

ା ௝ߚ െ௨ୀଵ,..,௎

௨,௝ߛ
ି  ௝൯ቇ     (11)ߙ

 

ശܶሬ௜,௝ ൌ ∑ ቆߛ௨,௝
ା ശ߬௜,௨ െ ௨,௝ߛ

ି ശ߬௜,௨ିଵ ൅ ൬
ఊೠ,ೕ
ష ௦௧ೠ

ఋ
െ

ఊೠ,ೕ
శ ௘௡ೠ

ఋ
൰ ঔശ௜,௨ ൅

ঔശ೔,ೠ
ఋ
൫ߛ௨,௝

ା ௝ߚ െ௨ୀଵ,..,௎

௨,௝ߛ
ି  ௝൯ቇ         (12)ߙ

 
where: 
 

௨,௝ߛ௨ݐݏ
ି ൑ ௝ߙ ൏ ݁݊௨ ൅ ൫1 െ ௨,௝ߛ

ି ൯(13)                ܯܩܫܤ 
 

௨,௝ߛ௨ݐݏ
ା ൏ ௝ߚ ൑ ݁݊௨ ൅ ൫1 െ ௨,௝ߛ

ା ൯(14)    ܯܩܫܤ 
 
These equations involve the known cumulative travel time 
from the profile. Above ߙ௝ and ߚ௝ are the start and end 
position of the jth sub section. The start and end of the uth 
segment in the profile is ݐݏ௨ and ݁݊௨. The cumulative time to 
travel to the uth location from the beginning of the profile for 
trains of type i is denoted by Ԧ߬௜,௨ and ശ߬௜,௨. Finally ঔԦ௜,௨ and ঔശ௜,௨ 
are the time to travel across the uth segment by trains of type i. 
In the profile the spacing between segments is denoted by ߜ. 

D. A General Expansion Model 

The two capacity expansion alternatives investigated in 
previous sections can be combined into a single decision 
model. The reason for doing this is that the costs and effects of 
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duplications and sub divisions are very problem specific. 
There are many real life technical constraints that may need to 
be added, that will restrict options at different locations within 
the railway network. 

III. CONCLUSIONS 

Railway capacity determination and railway capacity 
expansion are increasingly important topics as railways will 
become more developed, sophisticated, and have greater 
demands placed upon them in the future. To help railway 
capacity planning activities, a mathematical framework 
involving optimization models has been introduced to expand 
the theoretical capacity of a railway. The proposed framework 
is high level and strategic, and this is why increases to 
theoretical capacity is concentrated upon. This approach 
provides a valuable reference point to compare other 
approaches, for example those for determining operational 
capacity. The results of simulation activities can also be 
compared to this reference point.  

Two capacity expansion possibilities should be considered 
in such a framework. The first is track duplications, and the 
second is section sub divisions. Choosing the right sections to 
duplicate is not entirely transparent, even more so when costs 
of duplications, and other restrictions vary at different 
locations. Capacity is highly related to travel times on critical 
bottleneck sections too. Hence, it is possible to increase 
capacity by sub-dividing existing sections of track, for 
example using signals. This alternative is necessary because 
track duplications are quite costly and permanent and 
construction times may also be prohibitive. The track sub 
division approach should utilize a profile of the travelling 
time, gradient, and/or velocity on all parts of a section if it is 
available. A model that combines both alternatives is most 
beneficial.  
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