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A Low-Power Two-Stage Seismic Sensor Scheme
for Earthquake Early Warning System

Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract—The north-eastern, Himalayan, and Eastern Ghats Belt
of India comprise of earthquake-prone, remote, and hilly terrains.
Earthquakes have caused enormous damages in these regions in the
past. A wireless sensor network based earthquake early warning
system (EEWS) is being developed to mitigate the damages caused
by earthquakes. It consists of sensor nodes, distributed over the
region, that perform majority voting of the output of the seismic
sensors in the vicinity, and relay a message to a base station to alert
the residents when an earthquake is detected. At the heart of the
EEWS is a low-power two-stage seismic sensor that continuously
tracks seismic events from incoming three-axis accelerometer signal
at the first-stage, and, in the presence of a seismic event, triggers
the second-stage P-wave detector that detects the onset of P-wave
in an earthquake event. The parameters of the P-wave detector have
been optimized for minimizing detection time and maximizing the
accuracy of detection. Working of the sensor scheme has been verified
with seven earthquakes data retrieved from IRIS. In all test cases, the
scheme detected the onset of P-wave accurately. Also, it has been
established that the P-wave onset detection time reduces linearly with
the sampling rate. It has been verified with test data; the detection
time for data sampled at 10Hz was around 2 seconds which reduced
to 0.3 second for the data sampled at 100Hz.

Keywords—Earthquake early warning system, EEWS, STA/LTA,
polarization, wavelet, event detector, P-wave detector.

I. INTRODUCTION

THE Indian subcontinent is very susceptible to

earthquakes: more than half of the area of India is

considered earthquake-prone zone [1]. The north-eastern,

Himalayan and Eastern Ghats Belts are the most vulnerable

regions, where several earthquakes have caused enormous

damages in the past. The 2011 Sikkim earthquake [2]

of magnitude 6.9 and 2015 Gorkha, Nepal earthquake of

magnitude 7.8 [3] killed thousands of people and caused

property damages in tens of billions of dollars. A major factor

behind occurrence of these earthquakes is the movement of

Indian plate towards Eurasian plate at the rate of 47mm/year.

The people and properties in the earthquake-prone regions

are very vulnerable because the earthquakes cannot be

predicted in advance. However, their arrival can be detected

as a low-intensity faster moving primary wave (P-wave)

comes a few seconds before the damaging secondary wave

(S-wave). In these few seconds, an earthquake early warning

system (EEWS) can alert the people that can significantly

mitigate the potential damages. Many EEWSs have been

deployed across the world. Some examples are UrEDAS

(Urgent Earthquake Detection and Alarm System) in Japan
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Fig. 1 The architecture of the EEWS wireless sensor network

[4], ElarmS (Earthquake Alarms Systems) [5] in California,

USA, and PreSEIS (Pre-seismic Shaking) [6] in Istanbul,

Turkey. The sensor nodes of these EEWSs monitor seismic

activities in real-time and, in the wake of an earthquake event,

alarm the people in the earthquake shake zone.

A wireless sensor network based EEWS is being developed

to be deployed in the earthquake-prone regions in India.

It consists of wireless seismic sensors, distributed over the

regions, that would detect the onset of the P-wave and transmit

the data to nearest sensor node for majority voting based

decision. The sensor node would communicate with the base

station that would alert the residents in the earthquake shake

zone. Fig. 1 shows the architecture of the EEWS sensor

network.

The most important part of an EEWS is the seismic sensor

that detects earthquakes in real-time. In the literature, several

automated earthquake detection methods have been proposed.

The STA/LTA (short-time-average over long-time-average

trigger) algorithm [7] triggers by comparing the ratio of

average in the longer moving window to shorter moving

window with a defined threshold. Improvements of STA/LTA

algorithm update LTA only in the quiet period [8], and

calculate STA and LTA values in the moving window using

L2 norm [9], instead of L1 norm used in the original

algorithm. However, these algorithms rely on the statistics

of the seismic signal; thus, they are prone to detecting

non-earthquake seismic events as earthquake events and/or

missing the detection of actual earthquake events.

P-wave detection algorithm uses polarization information of

the seismic signal to detect the onset of P-wave [10]. The
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Fig. 2 Block diagram of the two-stage seismic sensor system

P-wave is longitudinally polarized from the hypocenter to

the monitoring station which makes it distinctively different

from other seismic signals. The P-wave detection algorithm

performs eigenvalue decomposition of the seismic signal to

extract the polarization information of the seismic signal.

This method is more robust and accurate; however, it

consumes a significant amount of power in doing the required

computations. Learning based automated earthquake detection

methods [11] are also coming up, which adjust weights for

the features extracted to trigger at the onset of P-wave in the

seismic signal even in a very noisy environment.

The P-wave detection method is robust, but a direct

implementation is not feasible for our purpose. The seismic

sensors would be deployed in the remote and hilly

earthquake-prone terrains; therefore, these sensors need to be

low-power devices. Thus, a robust and low-power two-stage

earthquake detection scheme for the seismic sensors is being

developed. The first stage comprises of STA/LTA and event

detector blocks. The drifts and fluctuations present in the

3-axis accelerator signal are removed at STA/LTA block,

and the seismic events are detected at the event detector

block. When a seismic event is detected, the second stage,

comprising of the P-wave detector and neural network blocks,

is activated. At this stage, the P-wave detector block performs

a wavelet-based multiresolution analysis (MRA) followed by

windowing and singular value decomposition (SVD) on the

incoming data. The generated output has a peak at the onset

of the P-wave. This output is sent to a simple feed-forward

neural network block for the final decision at the sensor.

Fig. 2 shows the block diagram of the seismic sensor. The

parameters of the P-wave detector have been optimized to

minimize P-wave detection time and maximize the accuracy of

detection. The P-wave detection scheme has been tested with

seven test data from actual earthquakes retrieved from IRIS

(Incorporated Research Institutions for Seismology). In all test

cases, the seismic sensor accurately detected the arrival of

P-waves. It has also been established that the P-wave detection

time reduces linearly with increase in the sampling rate of the

accelerometer signal. This finding has been verified with the

test data; for test data sampled at 10Hz, the P-wave detection

time was around 2 seconds, while for the test data sampled at

100Hz, the detection time was reduced to 0.3 second.

II. STA/LTA BLOCK

Fig. 3 shows a 3-axis test data (test data #5, Table I).

The three axes have very different biasing. In some cases,

there is a substantial fluctuation in the biasing as well.

These biasing and fluctuations influence the polarization

information of the seismic signal which can lead to a

very erroneous P-wave detection result. To remove biasing

and fluctuations present, two moving windows—large and
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Fig. 3 Raw 3-axis data for test case #5
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Fig. 4 Architecture of the STA/LTA block

small—are formed at each axis to calculate long-time-sum

(LTS) and short-time-sum (STS). The LTS and STS values

are divided by the corresponding window size to result in LTA

and STA values. The difference (= STA−LTA) is produced at

the output for each axis.

A moving window of size 512 samples gave a fairly accurate

estimation of the average value of the signal while a moving

window of size 4 reduced the high-frequency noise without

significantly compromising with the polarization information.

Fig. 4 shows the architecture of the STA/LTA block. The 512

registers array stores past 512 samples for LTS calculation; the

first four registers of this array are also for the STS calculation.

Thus, for each new sample x0, the LTS and STS values are

modified as,

LTS = LTS + x0 − x512 (1)

STS = STS + x0 − x4 (2)

The above equations give the update of the sum of all

samples stored in the corresponding windows. To get the final

output, the outputs of the LTS and STS registers are shifted

by 9-bits and 2-bits respectively. Thus, the final output is,

y =
STS

4
− LTS

512
(3)

Initially, the registers are reset.
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Fig. 5 Raw data, STA, and LTA plot for x-axis test data
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Fig. 6 STA/LTA block output for 3-axis seismic data

Fig. 5 plots the long-time average (LTA) and short-time

average (STA) values on top of x-axis raw data of the test

data #5.

Since the registers are reset in the beginning, the LTA

computation takes 512 samples to give the correct values.

Similarly, STA computation takes four samples. These are

visible in Fig. 5 as the build-up of LTA and STA output

waveforms. The STA/LTA block output of the 3-axis test data

is shown in Fig. 6.

III. EVENT DETECTOR

The P-wave detector at the second stage consumes a lot

of power in performing the computations for extracting the

polarization information of the seismic signal. Also, some

unwanted peaks are present in the non-seismic activity zone of

data (see Fig. 7) due to one or two axis value(s) being much

larger in ratio compared to the rest (although all of them are

close to zero at the LTA/STA output). Therefore, to remove

unwanted spikes and minimize the power consumption, the

second stage is activated only when a seismic event occurs.

These seismic events are detected by forming moving windows

of size NE (= 24) on each axis of the STA/LTA output and

finding the range of values (MAX −min) for each iteration

in the windows. The maximum of the ranges of the three axes

is compared with a threshold (thr) to detect the occurrence of

the events in real-time.
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Fig. 7 P-wave detector output directly from STA/LTA data

Conventionally, a threshold-based event detection is used,

which compares the input signal to a threshold for event

detection. This method is simple in analog as well as

digital implementation. However, for the test data set, it was

observed that the non-seismic noise amplitude was comparable

to the initial P-wave amplitude. Thus, the threshold-based

event detection missed the onset of P-wave detection. On

the other hand, the swing of the noise signal was much

smaller in comparison to the P-wave amplitude. So, a more

effective range-based event detection method was designed

which ignored the non-seismic noise but picked the seismic

events instantaneously. The algorithm for event detection is as

follows:

x0 ← (input data)
xN ← (window output data)
count ← 0 (event detector smoothing parameter)
if MAX = xN then

FINDMAX
else

if MAX < x0 then
MAX ← x0

end if
end if
if min = xN then

FINDMIN
else

if min > x0 then
min ← x0

end if
end if
if MAX −min > thr then

event = 1
count ← 100

else
if count > 0 then

event = 1
count = count− 1

else
event = 0

end if
end if
The algorithm introduces a parameter count that smooths

the event detector output to reduce toggles that add some

unwanted peaks in the P-wave detector output. Based on

testing, N = 24 and thr = 10−3 is taken for the parameters.

Since the statistics of the seismic signal recorded using the

accelerometer of the seismic sensor may differ from that of

the test data, that event detector algorithm may be modified

in the hardware implementation.

Fig. 8 shows the event detector output plotted over the x-axis

test data and the corresponding P-wave detector output.

IV. WAVELET-BASED P-WAVE DETECTOR

For an EEWS, it is very critical to accurately and reliably

detect the onset of P-wave in real-time. The STA/LTA

algorithm consumes very small power, but it cannot reliably

differentiate earthquake signals from other seismic signals

since it depends on the statistical properties of the seismic

signal. This necessitates a more robust and accurate P-wave

detection scheme for the seismic sensor. Kanasewich [10]

developed a P-phase detection method that extracts the

polarization information of the seismic signal to detect



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:12, No:6, 2018

406

0 100 200 300 400 500 600 700 800 900 1000
time (s)

-0.04

-0.02

0

0.02

0.04

A
cc

el
(m

/s
2 )

0 100 200 300 400 500 600 700 800 900 1000
time (s)

0
0.2
0.4
0.6
0.8

C
R

F 
A

m
p

Fig. 8 Event detector output with count parameter (top) and corresponding
CRF amplitude plot (bottom)

the onset of P-wave. This method performs multiresolution

analysis to decompose the data at multiple wavelet scales,

extracts polarization information at those scales, and multiplies

them together to suppress the false results.

The P-wave detection scheme is as follows:

1) The incoming data (from STA/LTA block) is

decomposed at different scales using multiresolution

analysis (MRA). The Daubechies wavelet is used for the

MRA as it closely resembles the earthquake waveform.

2) Moving windows of size N are formed at each level

of the wavelet output for three axes to store the current

data and past N − 1 data.

3) Covariance matrix M defines as

M =

⎡
⎣

V ar(X) Cov(X,Y ) Cov(X,Z)
Cov(Y,X) V ar(Y ) Cov(Y, Z)
Cov(Z,X) Cov(Z, Y ) V ar(Z)

⎤
⎦

where,

Cov(X,Y) =
∑N

i=1(xi − ux)(yi − uy)
and X ,Y and Z are wavelet coefficients, is formed at

all wavelet levels j.

4) Singular Value Decomposition (SVD) is applied to

covariance matrices at each level to get the associated

singular values. The covariance matrix M is multiplied

with its Hermitian to extract the eigenvalues (λi’s). Thus,

M = UΣV (4)

Σ2 = MHM = V HΣ2V (5)

where, Σ2 is the diagonal eigenvalue matrix.

5) Rectilinearity function, F, defined as

F = 1− λ2

λ1
(6)

where, λ1 and λ2 are largest and second largest

eigenvalues from the SVD decomposition of covariance

matrix, is calculated at each scale.
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Fig. 9 Architecture of the multiresolution analysis. (S = scaled output, W =
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Fig. 10 The LP and HP filter coefficients for Daubechies 10 wavelet

6) The output of P-wave detector—composite rectilinearity

function (CRF) is formed by multiplying Fj’s at scales,

CRF =
L∏

j=1

Fj (7)

7) CRF value ranges from 0 to 1 with the value close to

zero value for unpolarized seismic data and near 1 for

the polarized P-wave data.

The P-wave detection scheme has three parameters: wavelet

number, wavelet levels (L), and window size (N). For the 10Hz

test data, a cost minimization integer optimization script was

used to minimize the root mean square (RMS) value of the

CRF output in the non-seismic region, and maximize it in the

P-wave region of test data. The parameters were swept in the

range (2,12), (2,16), and (2,24), respectively. The optimum

value achieved was Daubechies 10 wavelet, at six wavelet

levels (L = 6), at window size of 12 (N = 12).

Fig. 9 shows the architecture of wavelet-based MRA. It has

been implemented with a 16-bit fixed data point. Fig. 10 shows

the discrete coefficients used for low-pass (LP) and high-pass

(HP) finite impulse response (FIR) filters implementation. At

each stage, the FIR HP filter generates the wavelet output

while FIR LP filter generates the scaled data output.

After forming the moving windows at the MRA outputs,

the SVD is implemented at each level using (4) and (5). The

final CRF output is computed by multiplying the Fj’s at each

level, as described earlier.

V. RESULTS

Table I lists onset of P-wave detection time for seven

test data of recent earthquakes retried from IRIS. It has
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TABLE I
ONSET OF P-WAVE DETECTION TIME FOR TEST DATA

No. Loc. Mag. Date Station Sampling Rate N td
1 PNG 7.5 25/02/2018 PMG 10Hz 12 3.1s

2 PNG 7.5 25/02/2018 HNR 10Hz 12 1.4s

3 LL 7.6 25/12/2016 TRQA 10Hz 12 2.0s

4 LL 7.6 25/12/2016 LCO 10Hz 12 1.1s

5 GA 7.9 23/01/2018 COLA 10Hz 12 3.5s

6 GA 7.9 23/01/2018 KDAK 10Hz 12 1.7s

7 GA 7.9 23/01/2018 KDAK 100Hz 24 0.3s

(N = Window size; PNG = Papua New Guinea, New Guinea; LL = Los Lagos, Chile;
GA = Gulf of Alaska, USA)
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Fig. 11 P-wave detection time (in second) vs sampling rate (in Hz)

six 10Hz data and one 100Hz test data. Several 100Hz

earthquake data were retrieved from IRIS, but all except one

were fragmented. The seismic sensor scheme takes around 2

seconds for detecting the onset of P-wave for 10Hz sampled

data while only 0.3 second for detecting the onset of P-wave

for 100Hz sampled data. This linear reduction in detection

time with increase in sampling frequency was predicted from

the implementation of the scheme: The P-wave detection

scheme needs a few more samples than the window size (N)

to build the CRF peak at the onset of P-wave. As the window

size does not increase significantly with increase in sampling

rate, the required number of samples for CRF peak buildup are

available in shorter duration for a higher sampling rate. This

result has also been verified with the test data #7, sampled

at 100Hz. Lower sampling rate test data (at 100/nHz) were

generated by picking every nth sample of the 100Hz test data.

The P-wave detection scheme was ran at these test data and

the corresponding P-wave detection time is plotted in Fig. 11.

It can be seen that the detection time reduces linearly with

increase in the sampling rate. However, it can be argued that

this reduction will crease at a sampling frequency, as sampling

the signal higher than that frequency will have samples taken

from a small part of P-wave waveform, which would not

capture the polarization information of the P-wave signal.

Two sample test cases and corresponding P-wave detector

outputs are plotted in Fig. 12 (test case #2, sampling rate:

10Hz) and Fig. 13 (test case #7, sampling rate: 100Hz). It can

be seen that the onset of P-wave is detected very effectively

using the two-stage scheme. Some undesired CRF peaks are

also present in the P-wave detector output. Thus, the event

detector output along with the P-wave detector output would

be sent to a trained neural network for final classification.

Table II compares the time taken by the P-wave detector

system to the state-of-the-art in earthquake detection. The

P-wave detector time is taken for 100Hz sampling test case,
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Fig. 12 The P-wave detector output plot for test case #2
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Fig. 13 The P-Wave Detector Output Plot for Test Case #7

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART

No. EEWS Alerting/ P-wave detection time
1 UrEDAS [4] 3 sec

2 ElarmS [5] 5 sec

3 PreSEIS [6] 2 sec

4 Two-stage detector (100Hz) 0.3 sec

as the same sampling rate is being used for the hardware

implementation. It should be noted that the state-of-the-art

do not specifically mention the time required for P-wave

detection; they instead mention the alert time from the onset

of P-wave at their sensor network. Since the proposed scheme

takes only a fraction of a second in detecting the onset of an

earthquake, it is at par with the state-of-the-art in earthquake

detection time.

VI. CONCLUSION AND FUTURE WORK

The P-wave detection scheme reliably and accurately detects

the onset of P-wave. The P-wave detection time is very

critical because the damaging S-wave is only a few seconds

away, and in that time, the P-wave detector has to reliably
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detect the onset of P-wave and communicate with the base

station to send emergency warning messages on the phones,

radio, and televisions of the residents in surrounding region.

The residents can seek nearby shelter before an earthquake

hits the area, which would reduce the damages. The P-wave

detector system is being implemented at a sampling rate of

100Hz as the P-wave detection is almost real-time (only a

fraction of a second) with this sampling rate. As the P-wave

detector generates some undesired CRF peaks along with the

actual peaks, the final decision is made at a feedforward

neural network that classifies the results using the event

detector and P-wave detector outputs. The developed scheme

is currently being implemented on board level using ZedBoard

in all digital fashion. After the verification of the working of

the scheme in a simulated earthquake environment, a chip

level implementation of the scheme would be carried out,

wherein the first stage would be implemented in analog in

the subthreshold region [12]. This would reduce the power

consumption in event detection to orders of nW.
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