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A localized interpolation method using radial basis
functions

Mehdi Tatari

Abstract—Finding the interpolation function of a given set of
nodes is an important problem in scientific computing. In this work
a kind of localization is introduced using the radial basis functions
which finds a sufficiently smooth solution without consuming large
amount of time and computer memory. Some examples will be
presented to show the efficiency of the new method.

Keywords—Radial basis functions, Local interpolation method,
Closed form solution.

I. INTRODUCTION

INTERPOLATION of a given set of points is an important
problem in scientific computing. Polynomial interpolation

method is efficient way but it is not convergent always. Radial
basis functions are very efficient instruments for interpolating
of a set of points which have been used in last 20 years.
Convergence analysis of radial basis functions interpolation
method has been carried out by several researchers, see, e.g.
[7], [16], [8]. To find more about radial basis functions see
[2], [9].

The main problem in the use of these functions is the
instability behavior of this procedure. In fact the use of the
radial basis functions arise a linear system of equations which
its coefficient matrix is nonsingular and ill-conditioned [14].
Choice of interpolation nodes is important in the interpolation
by the radial basis functions. Under certain conditions, the
radial basis functions interpolation is equivalent to polynomial
interpolation [12]. In this work a localization idea has been
proposed for decreasing the size of the interpolation matrix.
By this idea, the solution is found in a short time and using of
more digits in floating point arithmetics is not needed. In the
new method it is possible to construct a sufficiently smooth
solution.

The organization of this paper is as follows:
In Section 2, the globally supported radial basis functions

are introduced. A new efficient method for interpolation have
been introduced in Section 3. Advantages of the present
method over other existing methods are explained in this
section. Also the solution of the resulted linear system of
equations have been investigated. To present a clear overview
of the method, in Section 4, it has been examined by several
examples. A conclusion is drown in Section 5.

II. GLOBALLY SUPPORTED RADIAL BASIS FUNCTIONS

In this section RBFs methods have been introduced for
interpolation of scattered data. Some well-known globally
supported radial basis functions (RBFs) are listed in Table
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TABLE I
SOME WELL-KNOWN FUNCTIONS THAT GENERATE RBFS.

Name of function Definition
Gaussian (GA) φ(r) = exp(−cr2)

Inverse Multiquadric (IMQ) φ(r) = (
√
r2 + c2)−1

Inverse Quadric (IQ) φ(r) = (r2 + c2)−1

I. Let r be the Euclidean distant between x∗ ∈ R
d and any

x ∈ R
d i.e. ‖x− x∗‖2. A radial function φ∗ = φ(‖x− x∗‖2)

depends only on the distance between x ∈ R
d and fixed point

x∗ ∈ R
d. This property results that radial basis function φ∗ is

radially symmetric about x∗. It is clear that functions in Table I
are globally supported, infinitely differentiable and depends to
a free parameter c. Let x1, x2, ..., xN be a given set of distinct
points in R

d. The idea behind the use of RBFs is interpolation
by translations of a single function i.e. the interpolating RBFs
approximation is considered as

F (x) =

N∑
i=1

λiφi(x), (1)

where φi(x) = φ(‖x − xi‖) and λi are unknown scalers for
i = 1, ..., N . Assume that we want to interpolate the given
values fi = f(xi), i = 1, ..., N . The unknown scalers λi are
chosen so that F (xj) = fj for j = 1, ..., N which results the
following linear system of equations

Az = f, (2)

where A = [ai,j ] with ai,j = φi(xj) for 1 ≤ i, j ≤ N ,
z = [λ1, ..., λN ]T and f = [f1, ..., fN ]T . Since all φ of the
interest have global support, this method produces a dense
matrix A. The matrix A can be shown to be positive definite
(and therefore nonsingular) for distinct interpolation points for
GA, IMQ and IQ by the Schoenberg’s theorem [15].

Although Matrix A is nonsingular in the above cases,
usually it is very ill-conditioned i.e. the condition number of
A

κs(A) = ‖A‖s‖A−1‖s, s = 1, 2,∞, (3)

is a very large number. Therefore, a small perturbation in
initial data may produce large amount of perturbation in the
solution. Thus we have to use more precision arithmetics than
standard floating point arithmetic in our computations.

Despite researches are done by many scientists to develop
algorithms for selecting the values of c which produces most
accurate interpolation (e.g. see [3], [11]), the optimal choice
of shape parameter is still an open question.

Spectral accuracy is obtained in interpolating smooth data
using global, infinitely differentiable RBFs [1], [2], [6], [7].
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More information about the accuracy of the approximations
made by the radial basis functions can be found in [4], [17].
Node distribution near the boundaries in the use of the radial
basis functions is investigated for example in [5], [10].

III. THE NEW METHOD

Our strategy for overcoming to the instability is decreasing
the size of matrix A by a localization method. Set

D =

[
N − 1

n− 1

]
,

and

Ωi = {(xin−i−n+2, yin−i−n+2), ..., (xin−i+1, yin−i+1)},

i = 1, ..., D,

ΩD+1 = {(xDn−D+1, yDn−D+1), ..., (xN , yN)}.
In this case we have

Ω = (∪Di=1Ωi) ∪ΩD+1,

Ωi ∩Ωi+1 = {(xin−i+1, yin−i+1)}, i = 1, ..., D.

For interpolation of the points in Ω1 consider

Fn
1 (x) =

n∑
i=1

λ1,iφi(x), x1 ≤ x ≤ xn,

By interpolation of the first n points we have

Az1 = f1, (4)

where A = [ai,j ] with ai,j = φi(xj) for i, j = 1, ..., n,
z1 = [λ1,1, ..., λ1,n]

T and f1 = [y1, ..., yn]
T . In fact, the

interpolation of points in Ω1 has been presented using radial
basis functions. Notice that it is easy to find the solution of
system (4) because the size of its coefficient matrix is small
enough. For finding the interpolation on the Ω2 let

Fn,k
2 (x) =

2n−1∑
i=n

λ2,iφi(x)+

k−1∑
i=0

γ2,i
(x− xn)

i
∏2n−1

j=n (x− xj)

(i+ 1)!
∏2n−1

j=n+1(xn − xj)
, , xn ≤ x ≤ x2n−1,

for k = 1, 2, .... The unknowns λ2,1, ..., λ2,n and
γ2,0, ..., γ2,k−1 are found in a way that F n,k

2 (x) satisfy the
following conditions

Fn,k
2 (xi) = yi, (xi, yi) ∈ Ω2,

ds

dxs
Fn,k
2 (xn) =

ds

dxs
Fn
1 (xn), s = 1, ..., k,

which results a linear system of n+ k equations

Bz2 = f2,

where z2 = [λ2,1, ..., λ2,n, γ2,0, ...γ2,k−1]
T , f2 =

[yn, ..., y2n−1,
d
dxF

n
1 (xn), ...,

dk

dxkF
n
1 (xn)]

T and B is given by

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1(x1) . . . φn(x1) 0 . . . . 0
. . . .
. . . .
. . . .

φ1(xn) . . . φn(xn) 0 . . . . 0
φ′
1(xn) . . . φ′

n(xn) d1,1 0 . . . 0
φ′′
1 (xn) . . . φ′′

n(xn) . d2,2 . .
. . . . . .
. . . . . .
. . . . 0

φ
(k)
1 (xn) . . . φ

(k)
n (xn) dk,1 . . . . dk,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(5)
where

dp,q = g(p)(xn),

g(x) =
(x − xn)

q−1
∏2n−1

j=n (x− xj)

q!
∏2n−1

j=n+1(xn − xj)
,

for 1 ≤ q ≤ p ≤ k, which results

dp,p = 1, p = 1, ..., k.

The last k conditions guarantee the continuity of the k−th
differentiation of the interpolation function at x = xn. In fact
Fn,k
2 have been forced to have first k derivatives equal with

of Fn
1 at x = xn.

Interpolation on the other points is performed similarly.
Generally for finding the interpolation on the Ωm we set

Fn,k
m (x) =

mn−m+1∑
i=mn−m−n+2

λm,iφi(x)+

k−1∑
i=0

γm,i

(x− xmn−m−n+2)
i
∏mn−m+1

j=mn−m−n+2(x− xj)

(i + 1)!
∏mn−m+1

j=mn−m−n+3(xmn−m−n+2 − xj)
,

with conditions

Fn,k
m (xi) = yi, (xi, yi) ∈ Ωm,

ds

dxs
Fn,k
m (xmn−m−n+2) =

ds

dxs
Fn,k
m−1(xmn−m−n+2), s = 1, ..., k,

for finding unknowns λm,1, ..., λm,n and γm,0, ..., γm,k−1. The
resulted linear system in this case is

Bzm = fm,

where

zm = [λm,1, ..., λm,n, γm,0, ..., γm,k−1]
T ,

and

fm = [ymn−m−n+2, ..., ymn−m+1,
d

dx
Fn,k
m−1(xmn−m−n+2),

...,
dk

dxk
Fn,k
m−1(xmn−m−n+2)]

T .

Notice that the matrix B have been appeared again as coeffi-
cient matrix. In fact the value of the elements of the matrix B
depends on the xi − xj for certain i and j not on the values
of the xi and xj .



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1255

Also the Matrix B is invertible because by a simple com-
putation we find

det(A) = det(B).

Therefore, a unique interpolation function exists for each
Ωi, i = 1, ..., D.

For finding the interpolation of the points of ΩD+1, let v =
|ΩD+1| and consider

F v,k
D+1(x) =

N∑
i=Dn−D+1

λD+1,iφi(x)

+

k−1∑
i=0

γD+1,i

(x− xDn−D+1)
i
∏N

j=Dn−D+1(x − xj)

(i+ 1)!
∏N

j=Dn−D+2(xDn−D+1 − xj)
,

with conditions

F v,k
D+1(xi) = yi, (xi, yi) ∈ ΩD+1,

ds

dxs
F v,k
D+1(xDn−D+1) =

ds

dxs
F v,k
D (xDn−D+1), s = 1, ..., k,

for finding unknowns λD+1,1, ..., λD+1,N and
γD+1,0, ..., γD+1,k−1. The resulted linear system in this
case is

BvzD+1 = fD+1,

where

zD+1 = [λD+1,1, ..., λD+1,N , γD+1,0, ..., γD+1,k−1]
T ,

fD+1 = [yDn−D+1, ..., yN ,
d

dx
F v,k
D (xDn−D+1),

...,
dk

dxk
F v,k
D (xDn−D+1)]

T ,

and Bv is a matrix which is resulted from ignoring of the
(v + 1)−th to n−th rows and columns of the Matrix B.

It is easy to verify that

det(Bv) = det(Av),

where Av is a v × v matrix which has been resulted from A
by ignoring of the last n− v rows and columns of matrix A.
By the Schoenberg’s theorem [15] Av is invertible. Therefore,
the matrix Bv is a nonsingular matrix.

At the end we consider the piecewise function F n,k as the
interpolation function for the points of the set Ω as

Fn,k(x) =

⎧⎪⎪⎨⎪⎪⎩
Fn
1 (x) if x1 ≤ x ≤ xn,

Fn,k
i (x) if xin−i−n+2 ≤ x ≤ xin−i+1

i = 1, ..., D,

F v,k
D+1(x) if xDn−D+1 ≤ x ≤ xN .

Remark 1. The globally interpolation method is an special
case of the new presented method with n = N .

Remark 2. Since in the new method computations have
been based on n nodes, the parameter c should be chosen in
a way that be compatible with n. Furthermore, in the present
method despite of the global interpolation method use of more
digits in floating point arithmetics is not needed.

Now we present an efficient method for solving of the
resulted linear systems

Az1 = f1, (6)

Bzi = fi, i = 2, ..., D. (7)

BvzD+1 = fD+1 (8)

Since the matrix A is positive definite, we can decompose it
via Choleski method as

A = LLT ,

where L = [lij ] is a lower triangular matrix. This factorization
needs O(n3) number of operations.

Therefore the linear system (6) can be written as

LLT z1 = f1,

If we set p1 = LT z1 then using the forward substitution with
O(n2) number of operations, the solution of the

Lp1 = f1,

is founded with

p1,i =
1

lii

⎛⎝yi −
i−1∑
j=1

lijp1,j

⎞⎠ , i = 1, ..., n.

Also we find z1 by solving

LT z1 = p1,

using the backward substitution which needs O(n2) number
of operations with

λ1,i =
1

lii

⎛⎝p1,i −
n∑

j=i+1

ljiλ1,j

⎞⎠ , i = n, ..., 1,

and the solution of the linear system (6) is founded.
For solving the linear systems (7), according to the (5) we

rewrite them as
Azi,1 = fi,1, (9)

Bn+j .zTi = γi,j−1, j = 1, ..., k, (10)

where z1,i = [λi,1, ..., λi,n]
T , fi,1 = [yin−i−n+2, ..., yin−i+1]

and Bn+j is the (n+ j)−th row of B.
Now since we have computed the Choleski decomposition

of A, by an only forward and backward substitutions the
solution of (9) will be found. Also according to (5) and (10)
the unknowns γi,0, ..., γi,k−1 are found as

γi,j =
dj+1Fn,k

i−1(xin−i−n+2)

dxj+1
−

n∑
p=1

φ(j+1)
p (xin−i−n+2)λi,p+

j∑
q=1

dj+1,qγi,q−1, j = 0, ..., k−1.

Also for finding the solution of the linear system (8) we rewrite
it as

AvzD+1,1 = fD+1,1,

Bv+j .zTD+1 = γD+1,j−1, j = 1, ..., k.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:9, 2010

1256

Notice that the Choleski decomposition of the matrix Av is in
the form

Av = LvLT
v ,

where the matrix Lv obtain by ignoring the last (n− v) rows
and columns of matrix L. In fact any computations for finding
Choleski decomposition for matrix Av is not needed. Again the
solution obtain by only a forward and backward substitutions
similar the previous cases.

In this method, we find the solution of the problem in hole of
the domain by Choleski decomposition, forward and backward
substitutions. Notice n and k are chosen as small integers
and so the size of matrices A and B is small. This method
is specially efficient for finding the interpolation in the large
domains.

IV.NUMERICAL EXAMPLES

A.Example 1

In this example we consider the problem of finding inter-
polation function of the points

(xi, f(xi)) , i = 1, ..., N,

where xi = (i− 1)h and f(x) = sin(x).
In Table II, the results of the new method have been shown

using the Gaussian radial basis function with shape parameter
c = 0.1, n = 4, k = 2 h = 0.1 and δ = 10 digits in floating
points arithmetics by the RMS error

E2 =

(
1

N − 1

N−1∑
i=1

∣∣∣∣f(xi +
h

2
)− Fn,k(xi +

h

2
)

∣∣∣∣
) 1

2

,

and the max error

E∞ = max
1≤i≤N−1

∣∣∣∣f(xi +
h

2
)− Fn,k(xi +

h

2
)

∣∣∣∣ ,
also we propose the time which have been consumed for
finding the solution in this table. In this case the matrix B
is

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0.999 0.996 0.991 0 0

0.999 1 0.999 0.996 0 0
0.996 0.999 1 0.999 0 0
0.991 0.996 0.999 1 0 0
0 0.0199 0.0398 0.0594 1 0
−0.2 −0.199 −0.197 −0.194 −36.666 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

In Table III, the global interpolation method has been used
for this problem using the Gaussian radial basis function with
shape parameter c = 0.1, and h = 0.1. It is clear from the
contents of Table II that the solution will obtain using the
new method in a short time and without loss of accuracy in
the large domains.

In Table IV, the results have been for N = 241, c = 0.1,
k = 2, δ = 10 and some values of n.

Table V shows the results of the new method for δ = 10,
k = 2 and consumed time for N = 241 and some values of
c.

In the Table VI, the results of the new method have been
shown for k = 2, n = 7 and consumed time for N = 241 and

TABLE II
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN

RADIAL BASIS FUNCTIONS WITH c = 0.1, δ = 10, k = 2, n = 4 AND
CONSUMED TIME FOR SOME VALUES OF N USING THE NEW METHOD.

N E2 E∞ time(s)
31 0.202×10−2 0.184×10−6 0.047
61 0.191×10−2 0.434×10−7 0.094
91 0.215×10−2 0.219×10−7 0.141

121 0.212×10−2 0.471×10−8 0.188
151 0.205×10−2 0.582×10−8 0.234
181 0.210×10−2 0.269×10−7 0.282
211 0.204×10−2 0.633×10−8 0.312
241 0.205×10−2 0.295×10−7 0.374
271 0.206×10−2 0.542×10−8 0.406

TABLE III
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN
RADIAL BASIS FUNCTIONS WITH c = 0.1, δ = 10, AND CONSUMED TIME
FOR SOME VALUES OF N USING THE GLOBAL INTERPOLATION METHOD.

N E2 E∞ time(s)
31 0.109×10−1 0.155×10−4 0.047
61 0.161×10−1 0.113×10−5 0.391
91 0.238×10−1 0.133×10−4 1.344
121 0.189×10−1 0.115×10−5 3.438
151 0.193×10−1 0.259×10−5 7.078
181 0.514×10−2 0.220×10−6 13.326
211 0.744×10−2 0.252×10−8 22.312
241 0.136×10−1 0.236×10−6 36.796
271 0.521×10−2 0.190×10−6 56.219

TABLE IV
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN

RADIAL BASIS FUNCTIONS WITH c = 0.1, δ = 10, k = 2 AND CONSUMED
TIME FOR N = 241 USING THE NEW METHOD.

n E2 E∞ time(s)
2 0.358×10−1 0.314×10−5 1.861
3 0.427×10−2 0.352×10−6 0.436
4 0.205×10−2 0.295×10−7 0.374
7 0.226×10−2 0.811×10−8 0.343
13 0.817×10−2 0.258×10−7 0.437

TABLE V
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN
RADIAL BASIS FUNCTIONS WITH δ = 10, k = 2, n = 7 AND CONSUMED

TIME FOR N = 241 USING THE NEW METHOD.

c E2 E∞ time(s)
1 0.100×10−2 0.371×10−8 0.484
5 0.610×10−2 0.628×10−7 0.390
10 0.164×10−1 0.112×10−5 0.375
15 0.286×10−1 0.137×10−4 0.376
20 0.414×10−1 0.128×10−4 0.374

TABLE VI
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN
RADIAL BASIS FUNCTIONS WITH k = 2, n = 7, c = 1 AND CONSUMED

TIME FOR N = 241 USING THE NEW METHOD.

δ E2 E∞ time(s)
10 0.100×10−2 0.371×10−8 0.484
16 0.459×10−3 0.306×10−8 0.390
24 0.459×10−3 0.306×10−8 0.390
32 0.459×10−3 0.306×10−8 0.390
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Fig. 1. Plot of u(x) − sin(x) for global interpolation function using the
Gaussian radial basis functions with δ = 16, c = 0.1 and N = 481.
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Fig. 2. Plot of F 7,2(x) − sin(x) for local interpolation function F 7,2(x)
(n = 7 and k = 2) using the Gaussian radial basis functions with δ = 16,
c = 0.1 and N = 481.

some values of δ. It is clear from the contents of this table
that the use of the more precision is not needed.

In Figure 1, the error u(x) − sin(x) is plotted for global
interpolation function u(x) with δ = 16, c = 0.1 and N =
481. Also in Figure 2 the error F 7,2(x)− sin(x) is plotted for
the local interpolation function with n = 7, k = 2, δ = 16, c =
0.1 and N = 481. As an interesting points, the consumed time
for finding the global interpolation function is t = 620.595
seconds while for local interpolation this is only t = 1.031
second.

B.Example 2

In this example consider the function

f(x) =
1

1 + x2
,

for finding the interpolation function in [−6, 6].
In Table VII, the values of E2 and E∞ has been presented

for c = 0.1, n = 4, δ = 10, k = 2 and some values of h
(distance of two adjacent points). Also in Table VIII, the cor-
responding results have been shown using global interpolation
method.

TABLE VII
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN

RADIAL BASIS FUNCTIONS WITH c = 0.1, k = 2, n = 4, δ = 10 AND
CONSUMED TIME USING THE NEW INTERPOLATION METHOD.

h E2 E∞ time(s)
0.05 0.900×10−2 0.913×10−8 0.203
0.1 0.308×10−2 0.264×10−7 0.109
0.2 0.721×10−2 0.479×10−6 0.062

TABLE VIII
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN
RADIAL BASIS FUNCTIONS WITH c = 0.1, δ = 10 AND CONSUMED TIME
FOR SOME VALUES OF h (DISTANCE OF TWO ADJACENT POINTS) USING

THE GLOBAL INTERPOLATION METHOD.

h E2 E∞ time(s)
0.05 1.151 0.435×10−2 35.467
0.1 0.468 0.295×10−3 3.390
0.2 0.767 0.111×10−1 0.391

In Table IX, the results have been shown for c = 0.1, k = 2,
h = 0.1, δ = 10 and some values of n. Using the same
parameters in the global interpolation method we have

E2 = 2.658,

E∞ = 0.437× 10−1,

with the consumed time t = 35.312. These experimental
results shows the efficiency and accuracy of the new method
against the global interpolation scheme.

In the Figures 3 and 4, the F 7,2(x) − 1
1+x2 (error of the

new method) and u(x)− 1
1+x2 (error of the global interpolation

method using the Gaussian radial basis functions) have been
plotted respectively for δ = 32, c = 0.1 and N = 121.

In Figure 5, the error s(x)− 1
1+x2 is plotted for cubic natural

spline function s(x) with δ = 32 and N = 121. It is clear from
the Figures 4 and 5 that the new method, without any need of
solving large system of linear equations provides an accurate
approximation comparing with natural cubic splines.

V. CONCLUSION

The problem of interpolation of a given set of points is a
hot subject of research in applied mathematics. The use of the
global interpolation schemes usually occurs some problems. In
this work a local interpolation method has been proposed using
the globally supported radial basis functions. The method has
been designed in a way that the interpolation function will
be sufficiently smooth in the domain of the problem. The
computational cost of the method is lower than the that of
computational effort which is needed for finding the global

TABLE IX
THE ERRORS E2 , E∞ OF INTERPOLATION FUNCTION USING GAUSSIAN
RADIAL BASIS FUNCTIONS WITH c = 0.1, δ = 10, h = 0.1, k = 2 AND

CONSUMED TIME USING THE NEW METHOD.

n E2 E∞ time(s)
2 0.953×10−2 0.304×10−5 2.080
3 0.201×10−2 0.169×10−7 0.235
4 0.308×10−2 0.264×10−8 0.1009
7 0.379×10−2 0.580×10−8 0.188
13 0.329×10−1 0.580×10−8 0.249
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Fig. 3. Plot of F 7,2(x)− 1
1+x2 for local interpolation function (n = 7 and

k = 2) using the Gaussian radial basis functions with δ = 32, c = 0.1 and
N = 121.
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Fig. 4. Plot of u(x) − 1
1+x2 for global interpolation function u(x) using

the Gaussian radial basis functions with δ = 32, c = 0.1 and N = 121.

interpolation method. In fact we need to solve only an small
system of linear equations and the solution of other resulted
systems will find explicitly with only backward and forward
substitutions. Also the provided solution is accurate. The
method is more efficient when we are interested of solving
a problem in large domains.
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