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Abstract—We address the balancing problem of transfer lines in 

this paper to find the optimal line balancing that minimizes the non-
productive time. We focus on the tool change time and face 
orientation change time both of which influence the makespane. We 
consider machine capacity limitations and technological constraints 
associated with the manufacturing process of auto cylinder heads. 
The problem is represented by a mixed integer programming model 
that aims at distributing the design features to workstations and 
sequencing the machining processes at a minimum non-productive 
time. The proposed model is solved by an algorithm established using 
linearization schemes and Benders’ decomposition approach. The 
experiments show the efficiency of the algorithm in reaching the 
exact solution of small and medium problem instances at reasonable 
time. 
 

Keywords—Transfer line balancing, Benders’ decomposition, 
Linearization. 

I. INTRODUCTION 

HE transfer line balancing (TLB) problem concerns 
products that are manufactured in massive amounts. The 

line is composed of a number of workstations arranged in 
series. The product visits each workstation where a number of 
manufacturing operations are implemented. It is required to 
distribute these manufacturing operations on the existing 
workstations to achieve specific objectives, i.e minimizing 
cost, minimizing cycle time, minimizing non-productive time, 
and maximizing utilization. Certain capacity and technological 
constraints must be considered e.g., machine cycle time, 
precedence among the operations, inclusion constraints, and 
exclusion constraints. The problem is represented in the 
literature by different mathematical formulations, and solved 
through exact and metaheuristics algorithms. 

Dolgui et al. [1] solve a TLB problem using parametric 
decomposition and graph optimization methods to minimize 
costs of machines, tools, labour, area, and maintenance. 
Dolgui et al. [2]partition the manufacturing operations into 
blocks where operations in the same block are implemented in 
parallel. Mixed integer programming models of this problem 
are proposed in [3] and [4]. Heuristic algorithms to solve this 
problem are developed in [5]-[8].Dolgui et al. [9] study a TLB 
problem comprising multiple spindle head machines. The 
problem is reduced to a shortest path problem. Integer 
programming models of this problem are proposed in [10] and 
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[11]. The problem is reduced to a set covering problem in 
[12].  A heuristic method is devised in [13] to handle large 
scale instances of the multiple spindle machines. Dolgui et al. 
[14] solve this problem using a branch and bound algorithm. A 
more complex problem is studied in [15], where each station 
includes multi-spindle heads activated in a serial-parallel 
mode.  

Gurevsky et al. [16] deal with a TLB problem where the 
precedence relationship between two operations allows 
implementing both operations simultaneously. The problem is 
solved using a genetic algorithm. Large instances of the TLB 
problem with non-strict precedence relationships is solved in 
[17] using a greedy randomized adaptive search and a genetic 
algorithm. A transfer line comprising machines with rotary 
tables is studied in [18]. The problem is represented as a 
constrained shortest path problem. Large scale industrial cases 
of the TLB problem is tackled using an ant colony 
optimization algorithm in [19]. Masood[20] studies a TLB 
problem to reduce the cycle time and increase machine 
utilization in critical workstations. Das et al. [21] investigate a 
TLB problem to minimize the non-productive time. The 
problem is solved in two stages using two mathematical 
models. 

In this paper, we consider the same objective considered in 
[21], where a TLB problem is investigated to minimize the 
non-productive time. The problem is defined at an automotive 
company that executes machining operations on the engine 
cylinder head. The non-productive time involves the tool 
change time and the face orientation change time. Such non-
productive times significantly influence the makspane of the 
line and hence they required to be at minimum. We propose a 
new mathematical programming model to represent the 
problem. We consider capacity and technological constraints 
imposed on the manufacturing process of the part. The model 
aims at finding the optimal configuration of the transfer line 
that minimizes non-productive time. The model involves 
binary variables and nonlinear terms which bring difficulties 
in solving the model directly. To resolve these difficulties, the 
model is first decomposed using Benders’ decomposition 
approach and then linearized through applying a linearization 
scheme. The TLB problem has not been tackled before this 
way, therefore the main contribution of this paper lies in 
introducing a new approach providing exact solutions of TLB 
problems.  

The paper is organized as follows. The problem is described 
in section 2. Section 3 discusses the proposed mathematical 
model. Section 4 shows the linearization-decomposition based 
algorithms. Computational experiments are given in Section 5. 
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Section 6 provides the summary and the conclusions of the 
paper, and also gives potential extensions for future research.  

II.  PROBLEM DESCRIPTION 
The transfer line under study is established to manufacture 

automotive engine cylinder heads. A cylinder head is 
composed of a number of design features, in which each of 
them requires a number of machining operations to be 
performed. These design features are located at different faces 
of the head. The cylinder head is mounted on the CNC 
machine through a titling fixture. The fixture can be oriented 
in all directions to reach different faces of the head. An 
orientation change is required when the next operation is done 
on a different face. Machining operations are executed by 
different cutting tools. Hence a tool change takes place when 
the next operation requires a different tool. The orientation 
change time and the tool change time affect the makespan of 
the transfer line. So they are required to be at minimum.   

The optimal line configuration that minimizes the non-
productive time is our focus in this study. The line 
configuration is specified by the number of sequential stations 
in the line, the number of machines in each station, the design 
features assigned to each station, and the sequence of 
operations in each station. The problem involves different 
kinds of constraints concerning capacity restrictions and 
technological requirements. Capacity restrictions represent the 
limits on the number of machines in each workstation, the 
available time of each machine (the given cycle time), where 
all the machines are identical and have the same cycle time. 
Technological constraints concern the precedence relationship 
of the machining operations of each design feature, and the 
inclusion and exclusion restrictions among design features.  

III. MATHEMATICAL REPRESENTATION 
The problem defined in the previous section is represented 

by the mathematical model shown in equations (1) - (16). The 
model determines the number of workstations from the 
available candidates, the design features and the number of 
parallel machines assigned to each formed workstation. The 
model also specifies the sequence of machining operations in 
each workstation. Indices, parameters and decision variables 
considered in the model are defined below. 

Indices 
g: Index set of stations, g = 1,...., G 
r: Index set of design feature, r = 1,...,R 
o: Index set of the operations to be performed on each feature 
r, o = 1,..., Or 

s: Index set of positions on the processing sequence in each 
station, s = 1,..., Sg 

Parameters  
:  Time for orientation change between feature  and featurerrF r r′ ′  

:Time for tool change between processing operation  on 

feature  and operation  on feature 
ror oT o

r o r
′ ′

′ ′
 

( ):Total number of design featurer to be processed demandrD  

:Time for processing opeartion on featureroTO o r  
:Refixturing time for processing opearation on featureroB o r  
:Maximum number of machines allowed in stationgU g  

:Available time of a machine E  

rrI ′ : 0-1 matrix, 1 if design features r and r′ must be assigned 

to one station and feature r must precede feature r′ . 

rrNI ′ : 0-1 matrix, 1 if design features r and r′ must not be 
assigned to one station  

Decision Variables 
:Equals1if design feature is assigned to station and 0

otherwise
rgZ r g  

:Equals1if process required for design feature isassigned

toposition in station and 0 otherwise
rosgX o r

s g
 

:Number of design featuresassigned tostationgS g  

:Number of machines that should exist in stationgN g  

 
1

( 1)
1 1 1 1 1 1

11

( 1) ( 1)( 1)
1 1 1 1

1

( 1)
1 1 1 1 1 1

r r g

r g

r r g

SG R R O O

rr rosg r o s g rg r g
g r r o o s

SG R O

ror o rosg r o s g rg
g r o s

SG R O R O

ror o rosg r o s g rg
g r o r o s

r r

Min NPT F X X Z Z

T X X Z

T X X Z Z

′

′

−

′ ′ ′ ′+
′ ′= = = = = =

−−

+ + +
= = = =

−

′ ′ ′ ′ ′+
′ ′= = = = = =
′≠

=

+ +

∑∑∑∑∑∑

∑∑∑ ∑

∑∑∑∑∑∑ r g

 (1) 

 
Subject to 
 

1

1 1, ...,
G

rg
g

Z r R
=

= =∑  (2) 

 
( ) 0 1, ..., ,

1, ..., , 1, ..., :

I Z Z g Grgrr r g

r R r R r r

− = =′ ′

′ ′= = >
 (3) 

 
( ) 1 1, ..., ,

1, ..., , 1, ..., :
rr rg r gNI Z Z g G

r R r R r r
′ ′+ ≤ =

′ ′= = >
 (4) 

 

GgSZO
R

r
grg

r ,,1                                  
1

…∑
=

==  (5) 

 

1

1,..., , 1,..., , 1,...,
gS

r
rosg rg

s

X Z r R o O g G
=

= = = =∑  (6) 

 

1 1

1 1,..., , 1,...,
rR O

rosg rg g
r o

X Z g G s S
= =

= = =∑∑  (7) 
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r g

r r g

SR R O O

rr rosg r o s g rg r g
r r o o s

r r

SR O

ror o rosg r o s g rg
r o s

SR O R O

ror o rosg r o s g rg r g
r o r o s

r r

r ro ro
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F X X Z Z
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′
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−
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−

′ ′ ′ ′ ′+
′ ′= = = = =
′≠

+
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∑ ∑ ∑
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1 1

1,...,
rR O

rg g
r

Z E N g G
= =

≤ =∑ ∑

 (8) 

 
1,...,g gN U g G≤ =  (9) 

 

( 1)
1 1

1,..., , 1,..., ,

1,..., , 1,...,

g gS S
r

ros g r o s g
s s

g

X X r R o O

g G s S

′ ′+
′ ′= =

≥ = =

= =

∑ ∑  (10) 

 
binary 1, ..., , 1, ...,rgZ r R g G= =  (11) 

 
binary 1, ..., , 1, ..., ,

1, ..., 1, ...,

r
rosg

g

X r R o O

s S g G

= =

= =
 (12) 

 
integer 1, ...,gN g G=  (13) 

 
integer 1, ...,gS g G=  (14) 

 
Equation (1) shows the objective function representing the 

non-productive time (NPT). The first term of the equation 
depicts the orientation change time. The second and third 
terms represent the tool change time. A tool change should 
take place only in the following two cases: (i) between two 
consecutive operations of a design feature and (ii) between 
two operations belonging to two different design features.  

Equation (2) is the assignment constraint that assigns each 
design feature to only one station. Inclusion and exclusion 
constraints are represented by equations (3) and (4) 
respectively. The number of sequence positions in each station 
is found by equation (5). Equations (6) and (7) are the 
assignment constraints that ensure assigning operation o 
required for feature r to only one position and to ensure that 
each position is assigned to only one operation, respectively. 
Equation (8) represents the time capacity constraint where the 
processing time, the refixuring time, and the non-productive 
time of each workstation should not exceed the available time 
of all machines. The processing time and the refixturing time 
of each operation are depicted in the fourth term of the left 
hand side of the constraint. Equation (9) shows the upper limit 
imposed on the number of machines allowed in each 

workstation. Precedence relationship between operations of a 
given design feature is represented by equation (10). The 
remaining constraints represent the binary and integrality 
restrictions imposed on the decision variables.  

The model involves two complexities. The first complexity 
is the multiplication of the binary variables, as in the terms 
involving ( 1)rosg r o s g rg r gX X Z Z′ ′ ′+  and ( 1)( 1)rosg r o s g rgX X Z+ + . 

The second complexity belongs to the number of sequencing 
positions gS in a given workstation g. The model considers 

this number as a decision variable while it is required to 
specify the index s representing the set of sequencing positions 
in workstation g. The following section shows how these two 
complexities are resolved using the proposed solution 
algorithm. 

IV. SOLUTION APPROACH 
The problem under study is solved through decomposing 

the proposed model into two problems using the generalized 
Benders’ decomposition approach introduced by Geoffrion 
[22]. The first problem, Benders’ master problem, is solved to 
assign design features to workstations and to decide on the 
formed workstations from the available candidates. The 
second problem, Benders sub-problem, is solved to determine 
the sequence of operations in each workstation formed by 
Benders’ master problem. The master problem sends the 
values of the decision variables Zrgand Sg to the sub-problem, 
then the sub-problem finds the optimal solutions of the other 
variables given these values of Zrgand Sg. If the sub-problem is 
feasible, it sends a Benders’ optimality cut to the Benders’ 
master problem. If the sub-problem has no feasible solution, a 
combinatorial Benders’ cut is added to the Benders’ master 
problem in order to generate different values of the decision 
variable Zrg. This decomposition scheme resolves the 
difficulty implied in the decision variable Sg and reduces the 
multiplication of binary variables ( 1)rosg r o s g rg r gX X Z Z′ ′ ′+  and

( 1)( 1)rosg r o s g rgX X Z+ + to only two variables multiplied 

together rg r gZ Z ′ in the master problem, and ( 1)rosg r o s gX X ′ ′ +

and ( 1)( 1)rosg r o s gX X + + in the sub-problem. These binary 

multiplications call for applying a linearization scheme to 
resolve the nonlinearity of these terms. 

The objective function of the Benders’ master problem 

considers only the term 
1 1 1

G R R

rr rg r g
g r r

F Z Z′ ′
′= = =

∑∑∑ from the 

original objective function. As this term involves the 
multiplication of two binary variables, it needs applying a 
linearization scheme to replace it with its equivalent linear 
term. Therefore, the linearization scheme proposed in [23] is 
used to linearize this nonlinear term. The scheme replaces the 
multiplication of the two binary variables rg r gZ Z ′ by a new 

binary variable rg r gY ′ ′ , and adds the two auxiliary constraints 

shown in equations (18), (19). The objective function of the 
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Benders’ master problem also involves a function α  which 
provides a lower bound on objective function of the Benders’ 
sup-problem. The Benders’ optimality cut is shown in 
equation (16). The term y

rgλ , appearing in this cut, represents 

the multiplier representing the effect of the binary variable Zrg 
on the objective function of the Benders’ sub-problem. At 
each feasible iteration y, the Benders’ sub-problem is solved 
for each Zrg to find the multiplier y

rgλ . The combinatorial 

Benders’ cut is shown in equation (17). In addition to these 
new constraints, the Benders’ master problem considers the 
constraints related to assigning design features to stations, 
equation (2), and inclusion and exclusion constraints given in 
equations (3) and (4). The formulation of the Benders’ master 
problem is depicted below. 

 

1 1 1

G R R

rr rg r g
g r r

M in M P F Z Z α′ ′
′= = =

= +∑ ∑ ∑  (15) 

 
Subject to 
Equations (2), (3), (4), (11) 

 

1 1

( ) 1,..,
R G

y y y
rg rg rg

r g

BSP Z Z y Yα λ
= =

≥ + − =∑∑  (16) 

 

1 11: 0 1: 1

1 1 1,...,
k k
rg rg

R G R G

rg rg
r rg Z g Z

Z Z k K
= == = = =

+ − ≥ =∑ ∑ ∑ ∑  (17) 

 

1

1, 2,.... , 1, 2,...., ,

1, 2,....,

G
r g

rg rg
g

Z Y g G r R

r R

′ ′

′=

= = =

′ =

∑  (18) 

 
1, 2,.... , 1, 2,...., ,

1, 2,.... , 1, 2,.... ,

rgr g
rg r gY Y r R r R

g G g G r r

′ ′
′ ′ ′= = =

′ ′= = <
 (19) 

 
1, 2,.... , 1, 2,...., ,

1, 2,.... , 1, 2,....

r g
rgY is binary r R r R

g G g G

′ ′ ′= =

′= =
 (20) 

 
The Benders’ sub-problem considers the constraints given 

by equations (5)-(10), (12)-(15). The objective function of this 
problem is the same objective function (1) except that the 
variable Zrg is considered as an input parameter. The 
multiplication of each of the two binary variables 

( 1)rosg r o s gX X ′ ′ +  and ( 1)( 1)rosg r o s gX X + + should be replaced by 

one binary variable. Similarly as done before in the Benders’ 
master problem, the linearization scheme adds the new binary 
variable ( 1)r o s

grosW ′ ′ + and the new constraints shown in equations 

(24) and (25). The linearized objective function and 

constraints considered in the Benders sub-problem are shown 
below. 

 
*

*

*

1
( 1)

1 1 1 1 1 1

( 1)( 1)
( 1)

1 1 1 1

1
( 1)

1 1 1 1 1 1

r r g

r g

r r g

SG R R O O
r o s
grosrr rg r g

g r r o o s
r r

SG R O
r o s
grosror o rg

g r o s

SG R O R O
r o s
grosror o rg r g

g r o r o s
r r

Min SP F W Z Z

T W Z

T W Z Z

′

′

−
′ ′ +

′ ′
′ ′= = = = = =
′≠

+ +
+

= = = =

−
′ ′ +

′ ′ ′
′ ′= = = = = =
′≠

= +
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Equations (5)-(10), (12)-(15) 
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* : 1, ... , 1, ...rg rg rgZ Z g G r Rλ= = =  (23) 

 

1 1

1, 2,.... , 1, 2,.... ,

1, 2,...., , 1, 2,.... , 1, 2,.... :

rR O
r o s

r o gs gros g
r o

r
g

X W g G s S

r R o O s S s s

′ ′ ′
′ ′ ′

= =
′

= = =

′ ′ ′ ′= = = ≠

∑∑  (24) 

 
1, 2,.... , 1, 2,.... ,

1, 2,...., , 1, 2,.... , 1, 2,.... :

r o s ros
gros gr o s g

r
g

W W g G s S

r R o O s S s s

′ ′ ′
′ ′ ′

′

= = =

′ ′ ′ ′= = = ≠
 (25) 

 
binary 1, 2,.... , 1, 2,.... ,

1, 2,...., , 1, 2,.... , 1,2,.... :

r o s
gros g

r
g

W g G s S

r R o O s S s s

′ ′ ′

′

= =

′ ′ ′ ′= = = ≠
 (26) 

 
The Benders’ sub-problem is separable for each workstation 

g which leads to decomposing the Benders’ sub-problem into 
G sub-problems and then solving the sequencing problem of 
each workstation g individually. The iterations between the 
master problem and the sub-problem stop when the value of 
function α, representing the lower bound of the objective 
function (1), is greater than or equal to the value of the 
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objective function of the Benders’ sub-problem which 
represents the upper bound of objective function (1). 

V.  COMPUTATIONAL STUDY 
The computational experiments were implemented on Intel 

i7 CPU 870@2.93 GHz and 8 MP RAM. The algorithm is 
coded using AMPL. The commercial solver used to solve the 
mathematical models is CEPLX. Table 1 shows the uniform 
distributions used to randomly generate values of the 
parameters of the proposed model.  

 
TABLE 1  

PARAMETER SETTINGS IN THE TESTED PROBLEMS 
Parameter Data range Parameter Data range 

rrF ′  Uniform(1,5) sec roTO  Uniform(1,5) sec 

ror oT ′ ′  Uniform(2,7) sec roB  Uniform(1,2) sec 

rD  Uniform(5,12) unit gU  Uniform(3,5) 
machine 

E Uniform(330,550) sec gV  Uniform(5,10) sec 

gU  Uniform(2,5) machine Or Uniform(2,4) 
operations 

 
Table II illustrates the configuration of the six problem 

instances tested in our study.  The second column depicts the 
number of design features, the number of operations, and the 
number of candidate workstations, respectively given by R /O 
/G. The third and fourth columns show the inclusion and 
exclusion restrictions imposed on the design features. For 
example, in the first problem, design features 1 and 2 must be 
processed in one workstation, while design feature 3 should be 
processed in a workstation different from the one processing 
design feature 1. The last column of the table gives the 
solution time of the algorithm. All the six problems are solved 
to optimality, since the upper bound given by the objective 
function of the Benders’ sub-problem equals the lower bound 
given by function α represented in the Benders’ master 
problem. As shown by the solution time, small instances are 
solved in seconds but the time increases to hours in larger 
instances. The algorithm failed to solve problems comprising 
more than 40 processes even when we allow 6 hours. This 
calls for developing an efficient metaheuristic algorithm to 
solve larger problem instances containing 25 to 30 design 
features with 80 to100 operations. In this case, our algorithm 
can be used to evaluate the efficiency of the metaheuristic 
algorithms in reaching optimal solutions. 

 
TABLE II 

CONFIGURATION AND SOLUTION TIME OF THE TESTED PROBLEMS 
Problem 
number R /O /G Inclusion 

relationships 
Exclusion 

relationships Solution tim

1 4/10/2 [1,2] [1,3] 5.2 sec 
2 6/17/2 [1,4], [2,5] [3,5], [4,6] 50.4 sec. 
3 8/25/2 [3,4], [5,7] [2,7], [6,8] 20.1 min. 
4 10/29/3 [2,4], [3,5] [6,10] 2.8 hr. 

5 12/35/3 [1,4], [2,6], 
[4,5], [3,9] 

[6,9], [6,10], 
[9,10] 

3.4 hr. 

6 14/40/3 [5,6], [5,9], 
[10,13] 

[1,8], [6,13], 
[8,10] 

3.7 hr. 

VI. SUMMARY, CONCLUSIONS, AND FUTURE EXTENSIONS 
A transfer line balancing problem is investigated in this 

paper. This problem is very common in the manufacturing 
lines of automotive parts such as cylinder heads and cylinder 
block. We focus on minimizing the non-productive time 
associated with tool change and face orientation change. A 
new mathematical model is proposed to specify the optimal 
line configuration achieving the minimum non-productive 
time. We develop an algorithm using linearization schemes 
and Benders’ decomposition approach to solve the model to 
optimality.  Results given by a computational study show the 
efficiency of the proposed algorithm in solving small and 
medium problem sizes in relatively short time.  

The problem can be extended in many directions. The 
transportation time of moving parts from one workstation to 
another can be considered in a future work. This non-
productive time, unlike the tool change time and the face 
orientation change time, favors processing the design features 
in a minimum number of workstations. In some transfer lines, 
there exists a precedence relationship among the design 
features, rather than the one considered in this paper which 
states precedence relations between the manufacturing 
processes. In addition, tool life limitation and tool magazine 
capacity may restrict the assignment of design features to 
workstations. All of these constraints could be added to our 
proposed model in a future work. Lastly, the experiments in 
this paper depicted the need for developing a metaheurisitc 
algorithm, i.e. genetic algorithm or ant colony optimization 
algorithm, to solve the large sizes of the defined problem in 
short time.  
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