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A Kernel Based Rejection Method for Supervised
Classification

Abdenour Bounsiar, Edith Grall, and Pierre Beauseroy

Abstract— In this paper we are interested in classification prob-
lems with a performance constraint on error probability. In such
problems if the constraint cannot be satisfied, then a rejection option
is introduced. For binary labelled classification, a number of SVM
based methods with rejection option have been proposed over the
past few years. All of these methods use two thresholds on the SVM
output. However, in previous works, we have shown on synthetic data
that using thresholds on the output of the optimal SVM may lead to
poor results for classification tasks with performance constraint. In
this paper a new method for supervised classification with rejection
option is proposed. It consists in two different classifiers jointly
optimized to minimize the rejection probability subject to a given
constraint on error rate. This method uses a new kernel based linear
learning machine that we have recently presented. This learning
machine is characterized by its simplicity and high training speed
which makes the simultaneous optimization of the two classifiers
computationally reasonable. The proposed classification method with
rejection option is compared to a SVM based rejection method
proposed in recent literature. Experiments show the superiority of
the proposed method.

Keywords— rejection, Chow’s rule, error-reject tradeoff, Support
Vector Machine.

I. INTRODUCTION

THE aim of a classifier in pattern recognition is to
optimize a performance criterion which can be error

probability or any classification cost for example. In real
world applications, there is usually a performance constraint
inherent to the application in hand that must be considered
in addition to the performance criterion to optimize. Perfor-
mance constraints refer to constraints on error probabilities.
In the pattern recognition community, performance constraints
usually refer to a constraint on the false positive rate (false
alarm rate) in Neyman-Pearson tests. However performance
constraints can be more complex, they can combine different
error probabilities, consider order constraints between different
error probabilities or even constraints on the ratio between two
different error probabilities, see [1][2]. Moreover, performance
constraints have been considered in multi-class [3][4] and
multi-label classification problems [5].
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When considering performance constraints on error proba-
bilities in classification problems, if the constraints cannot be
altogether satisfied, it is necessary to introduce a reject option
in order to satisfy the classification constraints. The reject
option consists of withholding decision of samples whose
decision is less confident in order to reduce error probabilities
so as to verifyi the constraints. In this paper we will consider
the binary classification problem of designing a classifier with
an error probability constraint lower than the error rate of the
best classifier, i.e., the best one separating two classes. In this
case, rejection must be introduced.

Allowing for the reject option is of great importance in
practice, as for example, in the case of medical diagnoses
where misclassifying a sick patient as healthy may have
serious consequences. Nevertheless, since the publications
of Chow on the error-reject tradeoff [6][7], this option has
not received a great deal of attention up until now and is
often ignored in statistical literature. Notable exceptions in
the engineering literature are Fumera and Roli [8], Fumera,
Roli and Giacinto [9], Golfarelli, Maio and Maltoni [10] and
Hansen, Liisberg and Salomon [11].

Other works have considered rejection with Support Vector
Machines (SVMs) [12][13][14][15][16]. All of the proposed
rejection techniques use two thresholds on the output of the
SVM classifier and produce a reject region delimited by two
parallel hyperplanes in the feature space. The SVM classifier
is generally the one giving minimum error.

However, it has been experimentally shown in [1] and [17]
that using the output dynamic of the optimal SVM (giving
minimum error) as decision thresholds for any other classifi-
cation task (classification problems with constraints on error
probabilities) instead of minimizing total error, gives poor
results. The authors propose not only to optimize the bias of
the SVM but also all the other parameters (kernel parameters
and training costs) in order to obtain high performances. Hence
in order to design a good classification method with rejection
option, one may use two different SVMs jointly optimized to
obtain the best rejection. However tuning the parameters of the
two SVMs (two training costs, kernel parameters and the bias
for each SVM) together is computationally highly expensive.

In this paper we propose using a kernel based linear
learning machine recently presented in literature [18]. This
machine is fast training and hence easier to optimize. The
proposed rejection method based on this learning machine
is compared to a SVM based rejection method proposed by
Tortorella in [16]. The comparison is based on the error-reject
curve. Results of experiment on synthetic data comparing the
proposed method to the SVM based method show encouraging
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results.
In the next section, a fast overview on the error reject

tradeoff is given. Assuming that the conditional density prob-
abilities, and the a priori probabilities are known, or can be
sufficiently well estimated, the results of Chow’s theory can be
directly applied. However in many real world problems where
data are represented by sample sets, probability density func-
tions cannot be well estimated. For such problems, discrimi-
nant function based classifiers such as SVMs are used. Section
(III) is devoted to SVM based rejection methods; firstly, SVMs
are introduced, thereafter, an overview on existing SVM based
rejection methods is given and finally, the method to which
the proposed method will be compared is reviewed in more
details. In section (IV-B) the proposed rejection method is
presented after the used learning machine has been developed.
Experimental results and discussions are presented in section
(V). Conclusions are given in section (VI).

II. CHOW’S THEORY ON THE ERROR-REJECT TRADEOFF

Assuming symmetrical 0-1 loss function for decision costs,
a binary decision rule with reject option is optimum if for a
given error rate (error probability) it minimizes the reject rate
(reject probability). Chow [7] demonstrates that the optimum
rule is to reject the pattern if the maximum of the a posteriori
probabilities is less than a certain threshold. More explicitly,
the optimum decision rule is to accept a pattern x for decision
and to identify it as of the kth (k = 1, 2) pattern class
whenever

Pkp(x|ωk) ≥ Pip(x|ωi), for all i = 1, 2,

or

Pkp(x|ωk) ≥ (1 − t)

2∑
i=1

Pip(x|ωi),

and to reject the pattern whenever

max
i

[Pip(x|ωi)] < (1 − t)

2∑
i=1

Pip(x|ωi),

where (P1, P2) are the a priori probabilities of the two classes
ω1 and ω2 respectively, p(x|ωi) is the conditional probability
density function for x given the ith class and t is a constant
between 0 and 1/2 (0 < t ≤ 1/2).

Now let m(x) denote the maximum of the a posteriori
probabilities of the classes given the pattern x

m(x) = max
i

[p(ωi|x)] =
max

i
[Pip(x|ωi)]

P (x)

The optimal decision rule can then be reformulated so as to
reject the pattern x whenever

m(x) < 1 − t, (1)

or accept the pattern otherwise.
When P1p(x|ω1) > P2p(x|ω2) then (1) implies
P1p(x|ω1)

P (x)
< 1 − t ⇔

P1p(x|ω1) < (1 − t) [P1p(x|ω1) + P2p(x|ω2)] ⇔
p(x|ω1)

p(x|ω2)
<

P2

P1

1 − t

t

Similarly, if P2p(x|ω2) > P1p(x|ω1) then (1) implies

p(x|ω1)

p(x|ω2)
>

P2

P1

t

1 − t

This decision rule can be formulated so as to decide⎧⎪⎪⎨
⎪⎪⎩

ω1 if p(x|ω1)
p(x|ω2)

> P2

P1

λ

ω2 if p(x|ω1)
p(x|ω2)

< P2

P1

λ−1

reject pattern x otherwise,

with λ = (1 − t)/t > 1.
So the optimal decision rule with reject option, consists

of a likelihood ratio based decision rule with two inversely
symmetrical thresholds with respect to Bayes threshold P2/P1.

In classification problems described by sample sets, probability
density functions of data are usually not known or difficult to
estimate and the results of Chow’s theory cannot be applied.
To deal with such problems, a number of rejection methods
based on classifiers with discriminant functions such as
SVMs have been developed. Such rejection methods involve
a labelled training data {xi, yi}, i = 1, ..., l, xi ∈ Rd and yi

is the xi pattern label taking value -1 or +1. In such
considerations we define positive class , say ω1 containing
positive labelled patterns {xi, yi = +1} and negative class ,
say ω2 containing negative labelled patterns {xi, yi = −1}.

III. SVM BASED REJECTION METHODS FOR SUPERVISED
BINARY CLASSIFICATION PROBLEMS

Because almost all the rejection solutions that have been
recently proposed in literature are SVM based, and the fact
that SVMs have gained considerable popularity in the machine
learning community in recent years, this section will be
devoted to SVM based rejection methods. Starting with a short
review on SVMs, a brief presentation of different existing
SVM based rejection methods is given. Special attention is
given to a method proposed by Tortorella that has been
experimentally shown in [16] to be successful. This method
will be the subject of more details in section III-B and will be
compared to the method proposed in section IV-B.

A. Support Vector Machines

A practical application of the principle of Structural Risk

Minimization (SRM) [19] to the problem of pattern recognition
leads to the definition of Support Vector Machines (SVM).
Support Vector Machines map a pattern x ∈ Rd into a high
(possibly infinite) dimensional space and construct an optimal
separating hyperplane in this space [20]. The mapping φ(.) is
implicitly introduced in the decision function via a dot product
of the data in that space, that is performed by a kernel function
K(., .) so that K(xi, xj) = 〈φ(xi), φ(xj)〉. The kernels that
have these properties satisfy the Mercer conditions [19], i.e.
for any g(x) with finite L2 norm (2), equation (3) must hold.
Any positif definite kernel satisfies this condition [21].∫ +∞

−∞
g2(x)dx < ∞ (2)
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∫ +∞

−∞

∫ +∞

−∞
K(u, v)g(u)g(v)dudv > 0. (3)

Here we consider a kernel Kθ depending on a set of parame-
ters θ. The decision function given by a SVM is thus:

fθ(x) = sign
(
〈wT

θ , φθ(x)〉 + b
)

= sign
( l∑

i=1

α0
i yiKθ(xi, x) + b

)
,

where wθ and b are referred to as weight vector and bias

respectively, and

wθ =

l∑
i=1

α0
i yiφ(xi)

The coefficients α0
i are obtained by maximizing the following

functional [20] [22]:

W (α) =
∑l

i=1 αi − 1
2

∑l
i,j=1 αiαjyiyjKθ(xi, xj),

subject to∑l
i=1 αiyi = 0 and αi ≥ 0, i = 1, ..., l.

The coefficients α0
i define the optimal hyperplane with the

maximal distance (in the high dimensional space) to the closer
image φθ(xi) from the training data, called the maximal mar-

gin. For the non-separable case, one need to allow for training
errors which results in the so called soft margin SVM [23],
in which the coefficients α0

i are obtained by maximizing the
same functional [22]:

W (α) =
∑l

i=1 αi − 1
2

∑l
i,j=1 αiαjyiyjKθ(xi, xj),

subject to∑l
i=1 αiyi = 0 and 0 ≤ αi ≤ C, i = 1, ..., l,

where C is the training cost penalizing the training errors, and
will be considered as just another parameter of the SVM:

f(x) = sign
( l∑

i=1

α0
i yiKθ(xi, x) + b

)
, 0 ≤ α0

i ≤ C. (4)

All of the SVM based rejection techniques that have been
proposed in literature produce a reject region delimited by
two parallel hyperplanes in the feature space. In [12], Fumera
and Roli developed a maximum margin classifier with reject
option, i.e. a SVM whose rejection region is determined during
the training phase. As a result, the rejection region provided by
their algorithm is delimited by a pair of parallel hyperplanes
whose positions and orientations depend on the rejection
cost. A different classification method with reject option is
presented in [13], where the reject decision is made for the
samples near the optimal hyperplane for which the classifier
may have not confidence in the class label. The authors
introduced confidence levels on the SVM output dynamic, d,
which provides the signed distance of the sample from the
optimal hyperplane. This allows rejection of samples below
a certain value of |d|. Another possible way to establish a
rejection rule for the SVM is to use the results of Chow’s
theory on the error-reject tradeoff [7] and apply them to
the posterior class probabilities estimated using the SVM

outputs [14][15]. Another rejection method with SVMs was
proposed recently by Tortorella. This method is compared to
the proposed method which is presented in section IV-B and
will be detailed in the next section.

B. SVM based reject method with two independent thresholds

In [16], Tortorella introduces a cost-sensitive reject rule for
SVM classifiers which is able to minimize the expected cost
of classification, defined on the basis of correct classification
and on the reject and error costs particular to the application.
The proposed approach is based on the Receiver Operating

Characteristic (ROC) curve, and defines two different reject
thresholds for the two classes. This way the reject region is
defined by two independent hyperplanes parallel to the optimal
separating hyperplane. The thresholds depend on the costs
defined for the application, but it is not necessary to retrain
the SVM when the costs change. The author showed exper-
imentally using toy and real data that with two independent
hyperplanes he obtained better rejection than with symmetrical
hyperplanes. Note that because the class of the classifiers
engendered by this method includes the class of classifiers
with symmetrical hyperplanes, the supremacy of this method
is not surprising.

If we consider that the optimal separating hyperplane be-
tween two different classes is

f(θ,b)(x) = 〈wθ, φθ(x)〉 + b,

then the decision rule with rejection option provided by this
method, can be formulated so as to decide⎧⎪⎨

⎪⎩
ω1 if f(θ,b1)(x) = 〈wθ, φθ(x)〉 + b1 > 0

ω2 if f(θ,b2)(x) = 〈wθ, φθ(x)〉 + b2 < 0

reject pattern x otherwise,

(5)

with b2 > b1. In this paper, this method is compared to
the proposed rejection method which is presented in the next
section. Note that as explained above, the method as presented
in [16] uses ROC curves in order to obtain a decision rule
with rejection option that minimizes the cost of classification.
However, in this paper, the aim of the introduction of a reject
option is to reduce error probability in order to respect a
constraint on the latter using a minimum of rejection. Hence
ROC curves are not used to determine the biases b1 and b2,
but an optimization method is.

IV. PROPOSED CLASSIFICATION METHOD WITH REJECTION
OPTION

A. Description of the used learning method

To construct a decision rule with reject option, a kernel
based linear learning machine proposed in [18] is used.
Performances of this machine on standard data bases are
compared to those of other state of the art paradigms, such
as Support Vector Machines and Kernel Fisher Discriminant.
This machine has several interesting characteristics such as
simplicity, high training speed and good performance. The
principle of this learning machine will now be presented.
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Fig. 1. Varying the variable ρ from 0 to 1 in (10) makes the weight vector
varying from −c2 to c1.

In [24], authors have exposed a simple linear classifier. The
basic idea is to assign a new pattern to the class with the
closest mean. The means of the two classes are estimated
from training samples, they are denoted c1 =

∑
{xi∈ω1}

xi

m1

and c2 =
∑

{xi∈ω2}
xi

m2

for classes with positive and negative
labelled samples respectively, where m1 and m2 are the
number of positive and negative labelled training patterns. Half
way between c1 and c2 lies the point c = (c1+c2)/2. The class
of an input x is determined by comparing the absolute angle
between the vector x − c and the vector c1 − c2 to π/2. This
leads to the following analytical formulation of the decision
function

f(x) = sign (〈x − c, c1 − c2〉)
= sign

( ∑
{xi∈ω1}

〈x, xi〉
m1

−
∑

{xi∈ω2}

〈x, xi〉
m2

+ b
)
,

with b = 1
2 (‖c2‖2 −‖c1‖2). Note that other values of the bias

may lead to better performances.
In general, real world applications require discriminant

functions that are more complex than linear ones. Kernel
representations such as defined in section (III-A) offer a
solution by projecting the data from X into a high dimensional
feature space F = {φ(x)|x ∈ X}. Using such kernels, the
decision rule of the previous classifier can be expressed as

∑
{xi∈ω1}

Kθ(x, xi)

m1
−

∑
{xi∈ω2}

Kθ(x, xi)

m2
+ b

D1

≷
D2

0, (6)

where D1 and D2 are the decisions to assign a pattern to the
classes ω1 and ω2, respectively.

Assuming that Kθ is a probability density i.e., it is positive
and has a unit integral:

∫
X

Kθ(x, y)dx = 1 for all y ∈ X .
Assuming also that the conditional probability density of
each of the two classes is estimated by the Parzen windows

estimator:

p̂1(x) ∼
∑

{xi∈ω1}

Kθ(x, xi)

m1
, p̂2(x) ∼

∑
{xi∈ω2}

Kθ(x, xi)

m2
. (7)

In such conditions, if b = 0, (6) becomes an estimated

Class ω
1

     ’+’

Class ω
2

     ’−’

C
1

C
2

w
θ

〈 w
θ
,φ

θ
(x)〉+b = 0 

〈 w’
θ
,φ

θ
(x)〉+b’ = 0 w’

θ

ω

ω

Fig. 2. The best separating hyperplane may be obtained by rotation of the
one of (6).

likelihood ratio based classifier
p̂2(x)

p̂1(x)

D2

≷
D1

λ, (8)

with decision threshold λ = 1. By varying λ in [0,+∞[,
classifier (8) may cover a large scope of likelihood ratio based
decision rules (Bayes rule, Neyman-Pearson test, Mini-Max
test).

Using a parameter ρ ∈ [0, 1[, decision rule (8) with λ ∈
[0, +∞[ can be reformulated as

p̂2(x)

p̂1(x)

D2

≷
D1

ρ

1 − ρ
, (9)

which is equivalent to

ρp̂1(x) − (1 − ρ)p̂2(x)
D1

≷
D2

0.

This corresponds to a linear classifier in the feature space
without bias (b = 0) and the following weight vector

wθ = ρ
∑

{xi∈ω1}

φθ(xi)

m1
− (1 − ρ)

∑
{xi∈ω2}

φθ(xi)

m2

= ρC1 − (1 − ρ)C2, (10)

where C1 and C2 are the class means in the feature space.
Generally for linear classifiers, the bias is one of the

classifier parameters that must be optimized jointly with the
other classifier parameters in order to get a reliable classifier.
Considering a bias in (10) leads to

ρp̂1(x) − (1 − ρ)p̂2(x) + b
D1

≷
D2

0 ⇔ (11)

p̂2(x)

p̂1(x)

D2

≷
D1

ρ

1 − ρ
+

b

(1 − ρ)p̂1(x)
⇔

p̂2(x)

p̂1(x)

D2

≷
D1

ρ

1 − ρ
+ δ(x). (12)

Equation (12) is a likelihood ratio based decision rule, where
the probability densities are estimated by Parzen windows

estimators. The decision threshold consists of a constant term
that is defined by the parameter ρ, and a variable term δ(x)
that depends on ρ, b and the pattern under consideration .
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Fig. 3. An illustration of decision regions in feature space for the proposed
method.

The obtained result show that δ(x) can be considered as a
correction term to the decision rule (8). Once the probability
density functions are estimated by choosing the convenient
kernel function Kθ, the decision threshold and the bias b
are jointly chosen to give the best average correction to the
decision threshold in order to improve performances.

Note that because the estimation error of the likelihood ratio
p̂2(x)/p̂1(x) is a function of the pattern x, correction of the
decision threshold is also a function of the pattern x.

Decision rule (11) can also be reformulated as

p̂(x|ω2)

p̂(x|ω1)
+ δ(x)

D2

≷
D1

ρ

1 − ρ
⇔

p̂(x|ω2) − b/(1 − ρ)

p̂(x|ω1)

D2

≷
D1

ρ

1 − ρ
·

With such a formulation, the bias appears to modify the
discriminant function rather than the decision threshold. It can
be interpreted as an offset of the estimated probability density
function p̂(x|ω2), which gives a correction to the estimated
likelihood ratio. For different patterns x, this correction is not
the same. Considering this formulation or that of (12), the bias
b can be considered as a correction term of the decision rule
(9) estimation errors.

The family of classifiers defined by (6) is included in the
proposed more general family of classifiers defined by (11).
Disregarding the problem of parameter estimation, this family
of classifiers achieves better performances.

A geometric interpretation of this classifier is given as the
following: the estimated hyperplane separating the two classes
is perpendicular to the weight vector wθ whose direction varies
from −C2 to C1 when varying the value of the parameter ρ
from 0 to 1, as illustrated by figure 1. The position of this
hyperplane in wθ’s direction is set by the value of the bias b.
Figure 2 shows on a two dimensional case, the influence of
parameter ρ on the determination of the separating hyperplane.
The hyperplane 〈wθ, φθ(x)〉 + b = 0 given by (6) gives
a clearly poor separation. In this case, the best separating
hyperplane 〈w′

θ, φθ(x)〉 + b′ = 0 in the sense of minimum
error is a member of the family of hyperplanes given by
(11), which can be obtained by rotation of the first hyperplane
(rotation angle ω in figure 2) and a suitable value of b. Note

that for bi-dimensional classification problems such as the one
of figure 2, the weight vector of the best separating hyperplane
is obviously in the plane defined by (C1, C2) except if these
two vectors are collinear. This is not necessarily true for
higher dimensional problems, in such cases the best separating
hyperplane may not be a member of the family of hyperplanes
defined by (11).

A special attention to the choice of the kernel function Kθ

is necessary to verify that the two means C1 and C2 are not
collinear. If they are, the rotation of the weight vector wθ

in (10) would not be possible.
In the case of a RBF kernel

Kσ(x, y) = exp
(−σ‖x − y‖2

)
, (13)

since Kσ(x, x) = 1 for all patterns x, all the vectors φσ(xi)
in the feature space are located on a unit radius hyper-sphere:
‖φσ(xi)‖ = 1, ∀i. Furthermore, for all patterns x and y: 0 <

̂φσ(x)φσ(y) < +π/2 because 0 < Kσ(x, y) < 1. Thus all
data in the feature space are located on a surface bounded
by a solid angle of π/2. So, the two means can be collinear
only in the case where C1 = C2, a situation that is extremely
improbable.

B. Proposed decision rule with rejection option

The proposed rejection rule using the proposed learning
machine, consists of two different classifiers belonging to the
family of classifiers (11), say f1(x) = 〈w(θ1,ρ1), φθ1

(x)〉+ b1

and f2(x) = 〈w(θ2,ρ2), φθ2
(x)〉 + b2, combined to obtain four

regions of decision in the feature space corresponding to only
three regions of decision in the input space: one for each class
and a region of rejection. The corresponding hyperplanes are
not necessarily parallel. Each classifier defines two regions on
the feature space; one region corresponds to positive evaluated
patterns (f(x) ≥ 0) and the other to negative evaluated
patterns (f(x) < 0). Pattern x is rejected if the decision of
the two classifiers on it are incompatible. Thus the decision
rule for a pattern x is defined as (see figure 3):⎧⎪⎪⎨

⎪⎪⎩

decide ω1 if f1(x) ≥ 0 and f2(x) ≥ 0
decide ω2 if f1(x) < 0 and f2(x) < 0
reject pattern x if f1(x) ≥ 0 and f2(x) < 0
reject pattern x if f1(x) < 0 and f2(x) ≥ 0

(14)

or ⎧⎨
⎩

decide ω1 if f1(x) ≥ 0 and f2(x) ≥ 0
decide ω2 if f1(x) < 0 and f2(x) < 0
reject pattern x otherwise,

(15)

Note that since the parameters of the kernel function are not
necessarily the same in f1(x) and f2(x), the two separating
hyperplanes presented in figure (3) may not be in the same
feature space. Hence the four regions as defined in figure (3)
may not exist in any feature space; figure (3) is just an
illustration of the decision rule (14). However, returning to
the input space X these four regions can be defined and are
easily identified.

The optimal rejection rule as defined in (15) is obtained by
optimizing the parameters ρ1, ρ2, θ1, θ2, b1 and b2 all together
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Fig. 4. Probability Density Functions of the synthetic data.

in order to minimize reject probability subject to an error
probability constraint. The simultaneous optimization of six
parameters may be computationally very heavy for other
learning machines such as SVM. In the case of SVMs, for
each combination of SVM parameters, the optimization of the
l Lagrange coefficients αi

0 (4) is necessary. In the case of the
proposed learning machine, the weight vector is immediately
determined without any complex calculus or optimization
step (10). This makes the optimization of the six parameters
a computationally reasonable task.

V. EXPERIMENTAL RESULTS

A good method to compare two classifiers with a rejection
option, is to perform the comparison for different values of the
constraint on error rate, and to plot the reject-error curve for
each of them. In order to compare the proposed classification
method with a rejection option to the one with SVM, two
series of tests on synthetic data were performed; the first one
using 50 training data sets of 50 samples and the second one
using larger 50 training data sets of 200 samples. The data
were drawn from the distribution used in [1] and [17]. It
consists in two equiprobable and mirrored probability density
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Fig. 5. ER= f(FPR) curves obtained with optimal SVM (bold solid line)
and theoretical results (solid line).
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Fig. 6. Partitions corresponding to FPR= 0.1.

functions (pdfs) with respect to the axe x = 1 and took the
form of letter ‘E’ (see figure 4). The trunk of the letter is
uniformly distributed and the distribution of the three branches
are uniform according to variable y and linearly decreasing
according to x. The left shape in figure 4 represents a top
view of the pdf of one class (consider the class ω1) and the
right shape represents a lateral view of the pdf of the second
class (consider the class ω2). This specific distribution was
introduced in [1] and [17] due to the difficulty to estimate
properly the corresponding decision function using drawn
data. Because the two pdfs are symmetrical, the theoretical
optimal separation (Bayes classifier) between the two classes
is obtained for the plane x = 1. An optimal separating SVM
may approach the optimal theoretical solution. However the
optimal separation for any Neyman-Pearson test is not linear
but fits the shape of the three legs of the probability density
function. Hence any solution of a Neyman-Pearson test using
the dynamic of the output of an optimal separating SVM on
this data will lead to poor solution [1][17]. The ER= f(FPR)
(error rate (ER) in y-axis versus false positive rate (FPR) in x-
axis) curves obtained on the data with theoretical results (solid
line) and with optimal SVM (bold solid line) by varying only
the bias, are represented on figure 5 [1][17]. This figure shows
clearly that an optimal SVM can separate optimally the two
classes, but performs badly in the case of Neyman-Pearson
tests (regions on the ER= f(FPR) curve corresponding to
non minimum error probability). For example the boundaries
corresponding to FPR = 0.1 obtained with theoretical results
and optimal SVM are depicted both on figure 6. It is clear that
the solution obtained with the optimal SVM is very bad.

In figure 5 the performances of classifiers are presented in
ER= f(FPR) curves instead of the standard ROC (Receiver
Operating Characteristic) curves which are defined as plots of
true positive rate (TPR) as the ordinate versus false positive
rate (FPR) as the abscissa. In fact, ROC analysis does not di-
rectly commit to any particular measure of performance. This
is sometimes considered as an advantageous feature of ROC
curves. For example, Van Rijsbergen [25] quotes Swets [26]
who argues that this is useful as it measures "discrimination
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power independent of any ‘acceptable criterion’ employed".
But, being independent of any particular performance measure
can be a disadvantage when one has a particular performance
measure in mind. ROC curves do not visually depict the
quantitative performance of a classifier or the difference in
performance between two classifiers [27]. This is why the
ER versus FPR curves have been adopted in [1] and [17].
Such curves enable to appreciate the quantitative difference
between classifiers in term of Error Rate subject to a given
False Positive Rate.

A. Tests on classes of 50 samples

The first series of tests was achieved using 50 training
sets of 50 samples per class. On each data set we have
trained the two rejection methods. For 10 predefined values
of error probability, the parameters of the two methods where
optimized in order to give the minimum reject probability
subject to each of these 10 values of error probability. The
optimization of the parameters was done using validation error
and reject probabilities obtained using real probability density
functions on the decision areas. This gives unbiased estimates
of validation error and reject probabilities. Then, the error-
reject curve for each set is constructed using the 10 obtained
couples of reject and error probabilities plus the trivial point
(reject = 1, error = 0): by using interpolation, 10 values of
reject probability corresponding to the 10 prefixed values of
error rates were picked up. The obtained mean Error-Reject
curves with standard-deviation bars on the rejection values for
the two classification methods are depicted on figure 7.

Note that because, the validation error and reject probabili-
ties are estimated using the true probability density functions
on the decision areas, the Error-Reject curves of the two
classification methods that are represented in figure 7, are the
best ones we can obtain.

B. Tests on classes of 200 samples

The second series of tests was achieved using 50 training
sets of 200 samples. Similarly to the first series of test, the
mean Error-Reject curves with standard-deviation bars on the
rejection values obtained by using the same experimental
procedure than with the fist series for the two classification
methods, are depicted on figure 8.

C. Discussion of experimental results

The comparison between the proposed rejection method
and the SVM based one that was presented in this paper,
was performed on the error-reject curve. Any decision rule
minimizing reject probability subject to a given error rate, can
be formulated as to decide⎧⎨

⎩
ω1 if f(x) > t1
ω2 if f(x) < t2
reject pattern x otherwise,

(16)

where f(x) is any discriminant function and thresholds t1 and
t2 are real quantities that may be dependent or not. If we
suppose that for a given problem we obtain the validation
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Fig. 7. Error-Reject curves (mean and standard-deviation bars) evaluated
on 50 sets of 50 samples (a) using the true likelihood ratio evaluated o data
sets, (b)using the proposed method, (c) using the SVM based method. In (d)
the previous curves and the theoretical error-reject curve is also represented
(solid), are represented all together for comparison
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Fig. 8. Error-Reject curves (mean and standard-deviation bars) evaluated on
50 sets of 200 samples (a) using the true likelihood ratio evaluated o data
sets, (b)using the proposed method, (c) using the SVM based method. In (d)
the previous curves and the theoretical error-reject curve is also represented
(solid), are represented all together for comparison

errors P (D1|ω2) = FPR∗ and P (D2|ω1) = FNR∗ (False
Negative Rate), with (FPR∗, FNR∗) ∈ [0, 1]2 and where D1 is
to decide ω1 if f(x) ≥ t1 and D2 is to decide ω2 if f(x) < t2,
then in such conditions, the initial problem can be seen as the
problem of designing a binary classifier verifying

P (D1|ω2) = FPR∗ and P (D2|ω1) = FNR∗, (17)

for which the solution is the intersection of the following two
Neyman-Pearson tests [1]:

f(x)
D1

≷
D2

t1 with
∫

Z1

P (x|ω2)dx = FPR∗,

f(x)
D1

≷
D2

t2 with
∫

Z2

P (x|ω1)dx = FNR∗.
(18)

The decision areas Z1 and Z2 are determined by the first and
the second tests (18) respectively [28]. It has been shown in [1]
that in the case where t1 > t2 then the decision rule of the
classifier verifying (17) is the one of (16). So the use of the
output dynamic of the optimal SVM must be not successful for
problems consisting of minimizing reject probability subject
to a given error rate, since such practice has been shown to
be not successful for Neyman-Pearson tests [1][17].

On previous works [1][17] we have proposed a SVM based
solution for problems of Neyman-Pearson type. It consists
of tuning all SVM parameters to find a set of parameters
giving the best solution. However for a rejection technique
we may need two SVMs and tuning the parameters of the
two SVMs together is computationally highly expensive. This
is why the training machine presented in section (IV-A) have
been used. This machine is fast training and hence convenient
with optimization algorithms.

On figures (10), (11) and (9) are represented decision areas
obtained respectively by SVM based method, the proposed
method and the true likelihood ratio. These decision areas
correspond to minimal reject probability given a constraint
on error rate ER = 9.4%. The decision areas obtained with
the proposed method (figure 11) are closer to the optimal
ones (figure 9) than those obtained with SVM based method
(figure 10). For comparison, the optimal reject probability
corresponding to the constraint ER = 5% is 42.5%, the
average one obtained by SVM based method is 63.5% and
the average one obtained using our method is 52.5%, this
corresponds to an average amelioration of performance of
47.6% which is an encouraging result.

The inadequacy of the SVM based rejection method can be
seen on figures (7) and (8) through the SVM curves especially
in figure (8) with training sets of 200 samples/class. In figure
(10) this inadequacy is clearly seen, the SVM rejection method
with two thresholds is incapable to detect the structure of the
training data, contrary to the proposed method which produces
decision areas that follow this structure (figure 11).

On figures (7) and (8) the first plots represent the error-reject
curves obtained with Chow’s rule, where error and reject rates
were evaluated on the training sets of 50 samples/class and 200
samples/class, respectively. The aim of these two plots is to
show the variability or the dispersion existing between differ-
ent training sets. Taking into account the standard-deviations
of different values of the reject rate in these two plots on the
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one hand and the standard-deviations on the plots obtained
with the SVM based method and the proposed one on the other
hand, it seems that the two methods present good robustness.
However, the fact that the size of the training sets increases
don’t bring any amelioration in term of mean and standard-
deviation to the performance of the SVM based method, for
the considered data. On the contrary, more the size of the
training sets is larger, better is the average performance of the
proposed method.

It seems that the average performance of the proposed
method is asymptotically approaching the performance of the
optimal Chow’s rule based on likelihood ratio. Such result
is not surprising if we take into consideration the fact that
the used learning machine may have asymptotically the same
performance as any likelihood based classifier (12). Indeed,
the used learning machine uses Parzen windows estimators

for the probability density functions of the two classes (7),
such estimators are known to be asymptotically convergent to
the true probability density functions.

VI. CONCLUSION

In this paper the problem of classification with a con-
straint on error probability has been considered. When the
constraint is lower than the error probability obtained with
the best classifier, an option of reject needs to be introduced.
For supervised classification, SVM based rejection methods
proposed in literature use one SVM with two thresholds
on its output, the area between these two thresholds is the
rejection area. Some use two symmetrical thresholds to the
optimal separating hyperplane and others use non dependent
thresholds. However having shown in previous works on
synthetic data that using the output dynamic of optimal SVM
for classification tasks with performance constraint may lead
to poor results (especially for Neyman-Pearson tests), we
have proposed a SVM based solution consisting in tuning all
SVM parameters to find a set of parameters giving the best
performance with respect to the constraint, a method that we
have shown to be efficient. However for a rejection technique
we need two SVMs and tuning the parameters of the two
SVMs together is computationally very heavy because of the
additional optimization of Lagrange coefficients αi

0 (4) for
each set of SVM parameters.

In order to construct an efficient classification method with
reject option, the learning machine presented in section (IV-A)
has been used. This machine is fast training and hence con-
venient with optimization algorithms. The results on synthetic
data obtained using the proposed classification method with
rejection option are better than those obtained with the SVM
based method, especially for large training sets. Indeed, the
average performance of the proposed method improves with
the increase of the number of training samples, contrary to
the SVM based method for which there is no amelioration of
performance due to the complexity of the data structure.

Any classifier minimizing classification errors is optimized
to provide a separation that approximates the optimal separa-
tion between classes. However, there is no reason to use the
output of such classifiers for classification tasks with perfor-
mance constraints since these classifiers were not specifically
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optimized for. So, for any classification problem with or with-
out performance constraints, the best solution is to optimize
classifiers in order to provide separations that approximates
the optimal ones for and only for the considered problem.
The proposed method is based on this. Thus, the use of the
output of optimal SVM for classification with rejection option
is not justified and may lead to poor performances.

Note that because the aim of this article was to propose
an alternative classification method for the bad one using the
output dynamic of optimal SVM for classification problems
with a rejection option, all results presented in this paper were
based on validation error and reject probabilities evaluated on
decision areas with real probability density functions. This
resulted in classifiers with high robustness to the variations
between training sets. However, testing the performance of
the proposed method on real world problems, needs to use
validation techniques on test sets. This will result in negative
effects on the estimation of the proposed method parameters.

Future works will consider this problem and will try to find
efficient methods for parameter selection that allow for good
performance and robustness. Then, using the obtained results,
this work will be extended to multi-category classification
problems with a rejection option.
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