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Abstract—Prediction of fault-prone modules provides one way to 

support software quality engineering. Clustering is used to determine 
the intrinsic grouping in a set of unlabeled data. Among various 
clustering techniques available in literature K-Means clustering 
approach is most widely being used. This paper introduces K-Means 
based Clustering approach for software finding the fault proneness of 
the Object-Oriented systems. The contribution of this paper is that it 
has used Metric values of JEdit open source software for generation 
of the rules for the categorization of software modules in the 
categories of Faulty and non faulty modules and thereafter 
empirically validation is performed. The results are measured in 
terms of accuracy of prediction, probability of Detection and 
Probability of False Alarms. 
 

Keywords—K-Means, Software Fault, Classification, Object 
Oriented Metrics.  

I. INTRODUCTION 

AULTS in software systems continue to be a major 
problem. Many systems are delivered to users with 

excessive faults. This is despite a huge amount of 
development effort going into fault reduction in terms of 
quality control and testing. It has long been recognized that 
seeking out fault-prone parts of the system and targeting those 
parts for increased quality control and testing is an effective 
approach to fault reduction. Fault-proneness of a software 
module is the probability that the module contains faults. A 
correlation exists between the fault-proneness of the software 
and the measurable attributes of the code (i.e. the static 
metrics) and of the testing (i.e. the dynamic metrics). 
Prediction of fault-prone modules provides one way to 
support software quality engineering through improved 
scheduling and project control. Quality of software is 
increasingly important and testing related issues are becoming 
crucial for software. Methodologies and techniques for 
predicting the testing effort, monitoring process costs, and 
measuring results can help in increasing efficiency of software 
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testing. Being able to measure the fault-proneness of software 
can be a key step towards steering the software testing and 
improving the effectiveness of the whole process. In the past, 
several metrics for measuring software complexity and testing 
thoroughness have been proposed. Static metrics, e.g., the 
McCabe's cyclomatic number or the Halstead's Software 
Science, statically computed on the source code and tried to 
quantify software complexity. Despite this it is difficult to 
identify a reliable approach to identifying fault-prone software 
components.  

Clustering is used to determine the intrinsic grouping in a 
set of unlabeled data. It is the process of organizing objects 
into groups whose members are similar in some way. Among 
various clustering techniques available in literature K-Means 
clustering approach is most widely being used. K-Means is an 
unsupervised clustering technique used to classify data in to K 
clusters. It is   partitional clustering approach, each cluster is 
associated with a centroid (center point), each point is 
assigned to the cluster with the closest centroid, Number of 
clusters, K, must be specified.Hence, in this study, a K-Means 
Based Clustering Approach is used for finding faulty Modules 
in Open Source Software Systems. In order to perform the 
analysis we validate the performance of the K-Means based 
clustering method for dataset derived from open source 
software JEdit [1]. We investigate the accuracy of the fault 
proneness predictions using object oriented design using 
metrics suite given by Chidamber and Kemerer [2] and used 
in  [3] for fault prediction.  In the literature [3]-[17] various 
types of Fault-Proneness Estimation Models are discussed.  

The paper is organized as follows: section II explains about 
the methodology followed and section III the result of the 
study. Finally conclusions of the research are presented in 
section IV.  

II. METHODOLOGY FOLLOWED 
The following are the steps used for the predicton of fault 

prone modules: 
First of all, find the structural code and design attributes of 

software systems. Thereafter, select the suitable metric values 
as representation of statement. Next step is to analyze, refine 
metrics and normalize the metric values. We used JEdit open 
source software in this study [18]. JEdit is a programmer's text 
editor developed using Java language. JEdit combines the 
functionality of Window, Unix, and MacOS text editors. It 
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was released as free software and the source code is available 
on [19]. JEdit includes 274 classes. The number of developers 
involved in this project was 144. The project was started in 
1999. The number of bugs was computed using SVC 
repositories. The release point for the project was identified in 
2002. The log data from that point to 2007 was collected. The 
header files in C++ were excluded in data collection. The 
word bug or fixed was counted. Details on bug collection 
process can be found in [20]. The following are the metrics 
used in the classification process: 

• Coupling between Objects( CBO) 
• Lack of Cohesion (LCOM) 
• Number of Children (NOC) 
• Depth of  inheritance (DOI) 
• Weighted Methods per Class(WMC) 
• Response for a class (RFC) 
• Number of Public Methods(NPM) 
• Lines of Code ( LOC) 
The data collection is performed and subsequently the it is 

tried to use Correlation-based Feature Subset Selection and 
Chi-squared Ranking Filter is applied to find the attributes 
that are important for the prediction. Correlation-based 
Feature Subset Selection Evaluates the worth of a subset of 
attributes by considering the individual predictive ability of 
each feature along with the degree of redundancy between 
them [21]. Subsets of features that are highly correlated with 
the class while having low intercorrelation are preferred. Chi-
squared Ranking Filter evaluates the worth of an attribute by 
computing the value of the chi-squared statistic with respect to 
the class. 

Thereafter, the reduced number of attributes are givcen as 
input to the K-means clustering algorithm. As Clustering is a 
technique that divides data in to two or more clusters 
depending upon some criteria. As, in this study data is divided  
in to two clusters depending upon that whether they are fault 
free or fault prone. In the K-means technique Euclidean 
distance as well as Manhattan distance measures are 
experimented. If the Manhattan distance is used, then 
centroids are computed as the component-wise median rather 
than mean. 

To predict the results, we have used confusion matrix. The 
confusion matrix has four categories: True positives (TP) are 
the modules correctly classified as faulty modules. False 
positives (FP) refer to fault-free modules incorrectly labeled 
as faulty. True negatives (TN) are the fault-free modules 
correctly labeled as such. False negatives (FN) refer to faulty 
modules incorrectly classified as fault-free modules. 

The following set of evaluation measures are being used   
to find the results: 

• Probability of Detection (PD), also called recall or 
specificity, is defined as the probability of correct 
classification of a module that contains a fault. 

                    PD = TP / (TP + FN)                      (1) 
• Probability of False Alarms (PF) is defined as the 

ratio of false positives to all non defect modules. 
                   PF = FP / (FP + TN)                        (2) 

Basically, PD should be maximum and PF should be 
minimum. 

TABLE  I 
A CONFUSION MATRIX OF PREDICTION OUTCOMES 

Pr
ed

ic
te

d 

Real Data 

 Fault No fault 

Fault TP FP 

No Fault FN TN 

 

III. RESULT AND DISCUSSION  
The data is collected from [1] and the statistics of the metric 

data of the WMC, DIT, NOC, CBO, RFC, LCOM, NPM, 
LOC metrics is tabulated in Table II, III, IV, V, VI, VII, VIII 
and IX metrics respectively.  The details of the number of 
Faulty and Non-Faulty Modules present in the dataset is 
shown in Table X.  

TABLE II  
STATICS OF THE WMC METRIC VALUES IN JEDIT DATA 

 

TABLE III  
STATICS OF THE DIT METRIC VALUES IN JEDIT DATA  

 

TABLE  IV 
 STATICS OF THE  NOC METRIC VALUES IN JEDIT DATA  

 

TABLE V  
STATICS OF THE  CBO METRIC VALUES IN JEDIT DATA  

 

TABLE VI  
STATICS OF THE  RFC METRIC VALUES IN JEDIT DATA  
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TABLE VII  
STATICS OF THE  LCOM METRIC VALUES IN JEDIT DATA  

 

TABLE VIII  
STATICS OF THE  NPM  METRIC VALUES IN JEDIT DATA  

 

 

TABLE IX  
STATICS OF THE  LOC METRIC VALUES IN JEDIT DATA  

 

 
 

TABLE X  
STATICS OF THE  BUGS PRESENT  VALUES IN JEDIT DATA  

 

 
 
 

 
Fig. 1 Graphical Representation of the Statistics of the Metric 

Data of the Attributes of Dataset 
 

First, the dataset is evaluated using Correlation-based 
Feature Subset Selection using BestFirst Search. The 
parameters are: 

• locallyPredictive -- Identify locally predictive 
attributes. Iteratively adds attributes with the highest 
correlation with the class as long as there is not 

already an attribute in the subset that has a higher 
correlation with the attribute in question The default 
value is True is used in the experiment. 

• missingSeparate -- Treat missing as a separate value. 
Otherwise, counts for missing values are distributed 
across other values in proportion to their frequency. 
The default value False is used in the experiment. 

   
BestFirst Searches the space of attribute subsets by greedy 

hillclimbing augmented with a backtracking facility. Setting 
the number of consecutive non-improving nodes allowed 
controls the level of backtracking done. Best first may start 
with the empty set of attributes and search forward, or start 
with the full set of attributes and search backward, or start at 
any point and search in both directions (by considering all 
possible single attribute additions and deletions at a given 
point). 

The parameters used are: 
• direction -- Set the direction of the search. The 

default value ‘forward’ is used. 
• lookupCacheSize -- Set the maximum size of the 

lookup cache of evaluated subsets. This is expressed 
as a multiplier of the number of attributes in the data 
set. It is set to 1. 

• searchTermination -- Set the amount of backtracking. 
It is set to 5. 

 
The figure 2 shows the results after applying Correlation-

based Feature Subset Selection using BestFirst Search. It has 
proposed the use of  DIT, CBO, RFC, NPM and LOC metric 
as significant metrics for the prediction. 
 
 

 
Fig. 3 Snapshot of the Output of Correlation-based Feature 

Subset Selection using BestFirst Search 
 
In case of Chi-squared Ranking Filter selection Ranks 

attributes by their individual evaluations. Use in conjunction 
with attribute evaluators (ReliefF, GainRatio, Entropy etc). 
The following parameters are used: 
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• binarizeNumericAttributes -- Just binarize numeric 
attributes instead of properly discretizing them. The 
false value of this parameter is used. 

• missingMerge -- Distribute counts for missing 
values. Counts are distributed across other values in 
proportion to their frequency. Otherwise, missing is 
treated as a separate value. The false value of this 
parameter is used. 

• generateRanking -- A constant option. Ranker is only 
capable of generating  attribute rankings. The true 
value of this parameter is used. 

• numToSelect -- Specify the number of attributes to 
retain. The default value (-1) indicates that all 
attributes are to be retained. Use either this option or 
a threshold to reduce the attribute set. 

• startSet -- Specify a set of attributes to ignore.  When 
generating the ranking, Ranker will not evaluate the 
attributes  in this list. This is specified as a comma 
seperated list off attribute indexes starting at 1. It can 
include ranges. Eg. 1,2,5-9,17. 

• threshold -- Set threshold by which attributes can be 
discarded. Default value results in no attributes being 
discarded. Use either this option or numToSelect to 
reduce the attribute set. The Default value                   
-1.7976931348623157E308 is used in the 
experimentation. 

 
Snapshot of the Output of Chi-squared Ranking Filter is 

shown in figure 3. It shows that rank of the five attributes 
recommended by the CFS is better than other attributes. So, 
we selected the 5 attributes as selected by CFS algorithm 

 

 
Fig. 3 Snapshot of the Output of Chi-squared Ranking Filter 

 
Thereafter, K-Means algorithm is applied on the reduced 

dataset. First of all the Euclidean distance is used and results 
are shown in figure 4 and values of the cluster centriods are 
tabulated in table XI. Second, ManhattanDistance is used and 
cluster centriods are tabulated in table XII. Manhattan distance 
(or Taxicab geometry) is the distance between two points is 
the sum of the (absolute) differences of their coordinates [22]. 
In both the cases the following parameters are used:  

• distanceFunction -- The distance function to use for 
instances comparison. First set to  EuclideanDistance 
and therafter set to ManhattanDistance.  

• dontReplaceMissingValues -- Replace missing values 
globally with mean/mode. Default value False is 
used. 

• maxIterations -- set maximum number of iterations. It 
is set to 500. 

• numClusters -- set number of clusters. It is set to 2. 
• preserveInstancesOrder -- Preserve order of 

instances. It is set to False. 
• seed -- The random number seed to be used. It is set 

to 10. 
 

 
 
Fig. 4 Snapshot of the Output Kmeans algorithm using Euclidean 

Distance 
 

TABLE XI  
K-MENAS CLUSTER  CENTRIODS  USING EUCLIDEAN DISTANCE  
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TABLE XII  
K-MENAS CLUSTER  CENTRIODS  USING MANHATTAN DISTANCE 

 
The  61 (means  22%) Clustered Instances belongs to 

cluster 0 and  213 ( means 78%) instances belongs to cluster 
1. In both the cases the same confusion matrix is recorded as 
shown in table XIII. 

TABLE XIII  
RECORDED CONFUSION MATRIX OF PREDICTION OUTCOMES 

   
Pr

ed
ic

te
d 

 

Real data 
 Fault No Fault 

Fault 46 88 

No Fault 15 125 
 

The Accuracy of classification, Probability of detection 
(PD) and Probability of False Alarms (PF) values are 62.4% 
0.754 and  0.413 respectively. 

IV. CONCLUSION  
This paper empirically evaluates performance of Kmeans 

based Clustering technique in predicting fault-prone classes 
using open source software. The proposed KMeans based 
classification technique shows 62.4 percent accuracy. It also 
shows high value of Probability of detection (PD) i.e. 0.754  
and low value of Probability of False Alarms (PF) i.e. 0.413. 

This study confirms that construction of Kmeans based 
model is feasible, adaptable to Object Oriented systems and 
useful in predicting faulty prone classes. It is therefore 
concluded that model is implemented using Kmeans based 
technique for classification of the software components into 
faulty/fault-free systems is found satisfactory. The 
contributions of the study can be summarized as follows: First 
open source software systems analyzed. These systems are 
developed with different development methods than 
proprietary software. In previous studies mostly proprietary 
software were analyzed. Second, we examine K-Means 
clustering method to predict the faulty classes with better 
accuracy. 

The future work can be extended in following directions: 
• Most important attribute can be found for fault prediction 

and this work can be extended to further programming 
languages.  

• More algorithms can be evaluated and then we can find 
the best algorithm. We plan to replicate our study to predict 

model based on hybrid genetic algorithms or soft computing 
techniques. 
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