
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

283

Abstract—This paper describes important features of

JAPROSIM, a free and open source simulation library implemented

in Java programming language. It provides a framework for building

discrete event simulation models. The process interaction world view

adopted by JAPROSIM is discussed. We present the architecture and

major components of the simulation library. A pedagogical example

is given in order to illustrate how to use JAPROSIM for building

discrete event simulation models. Further motivations are discussed

and suggestions for improving our work are given.

Keywords—Discrete Event Simulation, Object-Oriented

Simulation, JAPROSIM, Process Interaction Worldview, Java-based

modeling and simulation.

I. INTRODUCTION

ROM an external point of view, the principal component

of simulation software is the simulation language (SL)

which allows description of simulation models and their

dynamic behavior. Such languages are descendants of

programming languages like FORTRAN, or ALGOL. Part of

this heritage includes the batch-programming environment. To

generate a program, the user had to create a source file,

compile it, link it and then execute it. The user detects syntax

errors in the compilation phase, and run time errors in the

execution phase. To correct any errors, all phases have to be

repeated. Such a procedure presents an extremely cumbersome

interface to the user and is very time-consuming. Actual trends

are in favor of integrated simulation and modeling

environments where graphical user interfaces (GUI) play a

great deal. This had led to the development and marketing of a

huge amount of such environments from a multitude of

sources.

The opportunity to extend features of existing commercial

simulation languages is limited due to the separation of the

user from the base languages by offering pre-specified

functionalities; thus deep access is reserved only to vendors.

Furthermore, separation has not eliminated the need for

programming in simulation model building. In fact, successful

industrial modelers are those who overcome separation by

“programming” around the limitations caused by separation.

Separation is also an obstacle to the long-term model

development and maintenance because this “programming

skill is outside of the mainstream of information systems

training in academia and within the enterprise, see [1].

Today, Object Oriented Modeling (OOM) is largely

Brahim Belattar is with the Department of computer Science, University

Colonel El Hadj Lakhdar, Batna 05000, Algeria (phone: 213-06-96-96-92-19;
fax: 213-33-86-89-42; e-mail: brahim.belattar@univ-batna.dz).

Abdelhabib Bourouis is with the Department of computer Science,

University Larbi Ben M’Hidi, Oum El Bouaghi 04000, Algeria (e-mail:
habib.bourouis@hotmail.com).

recognized as an excellent approach that deals with large and

complex systems through abstraction, modularity,

encapsulation, layering and reuse. A conceptual model is

obtained by decomposing a real system in a set of objects in

interaction. Each object represents a real world entity that

encapsulates state and behavior. A class is a template for

creating objects that share common related characteristics.

Object Oriented Simulation (OOS) benefits from all the

powerful features of the OOM especially model

conceptualization which is one of the early steps in a

simulation study.

JAPROSIM is an object oriented simulation library, free

and open source that adopts the popular process interaction

worldview. Its design is simple and easy to understand. The

library is implemented in Java programming language

allowing deep access to its powerful features. Java is a general

purpose language for creating safe, portable, robust, object-

oriented, multithreaded and interactive programs for

theoretically any area of application. It provides several

extensive class libraries for developing graphical user

interfaces, network and distributed applications with

capabilities for web-based computing. It also has a utility

package that contains useful classes that implement vectors,

arrays, linked lists, hash tables…etc. These features justify the

choice of Java as an implementation language for the

JAPROSIM library.

The library is documented using the UML and is divided

into packages to organize the collection of classes into

important functional areas. It is easy to build discrete event

simulation models using JAPROSIM, either for experimented

programmers in Java or for simulation experts with

elementary programming knowledge. JAPROSIM can serve as

a basis for the development of dedicated object-oriented

simulation environments. Furthermore, since Java has been

commonly adopted as a teaching language in Computer

Science area, JAPROSIM may also serves as an academic

material for teaching discrete event modeling and simulation.

The rest of the paper is organized as follows. We begin by

reviewing related works. In Section III we describe the

process interaction world view adopted by JAPROSIM. In

Section IV we present the major components of the simulation

library. A simple example is given in Section V in order to

illustrate how to use JAPROSIM for building discrete event

simulation models. Section VI summaries the paper and

provides suggestions for future improvements of our work.

II. RELATED WORKS

The idea of building process-oriented simulations using a

general purpose object-oriented programming language is not

original and several tools were developed in this way. For

Brahim Belattar, Abdelhabib Bourouis

A Java Based Discrete Event Simulation Library

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

284

example, both of CSIM++ [2] and YANSL [3] are based on

C++, while PsimJ [4], JSIM [5] are based on Java. Discrete

Event Simulation tools written in Java, like PsimJ and SSJ [6]

are well designed freeware libraries but not open source. Silk

from Threadtec [1] and [7] is also well designed but is a

commercial tool.

There is also a large collection of free open source libraries,

we may consider for instance:

• JavaSim [8] is a set of Java packages for building discrete

event process-based simulation, similar to that in Simula

and C++SIM.

• JSIM [5] is a Java-based simulation and animation

environment supporting Web-Based Simulation.

• Simjava [9] is a process based discrete event simulation

package for Java, similar to Jade's Sim++, with animation

facilities.

• jDisco [10] is a Java package for the simulation of

systems that contains both continuous and discrete-event

processes.

• DESMO-J [11] is a framework which supports both event

and process worldviews.

• SimKit [12] is a component framework for discrete event

simulation, influenced by MODSIM II and based on the

event graph modeling.

JAPROSIM is not a java version of any existing simulation

language as Simjava or JavaSim. There are, however, unique

aspects in JAPROSIM that lead to fundamental distinctions

between our work and others. For example, JAPROSIM

embeds a hidden mechanism for automatic collection of

statistics. This approach enables a clean separation between

implementing the dynamics of the model and gathering data,

so traditional performance measurements are automatically

computed. The model can thus be created without any concern

over which statistics are to be estimated, and the model classes

themselves will not contain any code involved with statistics.

This leads in more code source clarity. Nevertheless, users

could, if needed, implement specific statistics collection using

different classes offered by the JAPROSIM statistics package.

This feature makes the key difference between JAPROSIM

and the other discrete event simulation libraries written in

Java. Exception is made for SimKit which already offers this

possibility, but which uses a different modeling approach

based on event graphs.

III. THE PROCESS INTERACTION WORLDVIEW IN JAPROSIM

Process-interaction simulation denotes a particular world-

view used to model the dynamics of discrete-event systems.

The origins of this approach can be traced to the authors of

SIMULA. It provides a way to represent a system's behavior

from the active entities point of view. As in SIMULA, active

entities are transient entities moving through the system

(dynamic entities). A process-oriented model is a description

of the sequence of processing steps these entities experience as

they flow through the system. This approach has significant

intuitive appeal and is the predominant modeling worldview

supported by commercial simulation software tools.

Transaction flow is a special case of the more general process

interaction worldview.

A system is modeled as a set of active entities in interaction.

Interaction is a consequence of competition and/or cooperation

for the acquisition of critical resources. Each active entity’s

life cycle consists of a sequence of events, activities and

delays. A routine implementing an active entity requires

special mechanisms for interrupting, suspending and resuming

its execution at a later simulated time under the control of an

internal event scheduler. This can be achieved using special

programming languages that offer at least a SIMULA’s

coroutine like mechanism, thus programming languages

offering multithreading like Java are suitable.

An entity’s life cycle is a sequence of active and passive

phases. On one hand, an active phase is characterized by the

execution of the relevant process. Normally this corresponds

to the events during which system state changes without

progression of simulation time. On the other hand, passive

phases are characterized by activities and delays. So the

relevant process is suspended while simulation time advances.

Events are the criterion of scheduling which explain the use of

a future event list (FEL). After a process is suspended, the

scheduler resumes and decides of which is the next process to

reactivate according to the system state and the FEL. The

scheduler is a special process that coordinates the execution of

a simulation model.

IV. THE JAPROSIM LIBRARY

The JAva PRocess Oriented SIMulation (JAPROSIM)

library is part of an ongoing project that aims at providing an

advanced visual interactive simulation and modeling

environment for Discrete Event Systems (DES). The library is

currently divided into six main packages:

• kernel: a set of classes dealing with active entities,

scheduler, queues and resources.

• random: contains classes for uniform random stream

generation.

• distributions: contains a rich set of classes for useful

probability distributions.

• statistics: contains classes representing intelligent

statistical variables.

• gui: a set of graphical user interface classes to use for

project parameterization, trace and simulation results

presentation.

• Utilities: a set of useful classes for express model

development.

We will focus on the simulation kernel, random, statistics

and utilities packages.

A. The Kernel Package

The kernel package is at the heart of JAPROSIM. A UML

class diagram of the kernel is given below.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

285

Fig. 1 The Kernel class diagram

As we can see, the kernel package is made up of classes

dealing with active entities, scheduler, queues and resources.

The coroutine like mechanism is implemented trough

SimProcess, Scheduler, StaticEntity and Entity classes. A

coroutine program is a collection of coroutines which run in

quasi-parallel with one another. Each coroutine is an object

with its own execution state, so that it may be suspended and

resumed. Our aim in the design of JAPROSIM was putting a

great emphasis into following the semantic of SIMULA but

the design itself is not close to it. The advantage of this

approach is that design is simpler without ex

class support and the semantics of facilities that are well

known and thoroughly tested through many years use of

SIMULA are completely supported. Native support for

multithreaded execution is a fundamental aspect to the

implementation of a natural process

capability in Java. Every active entity’s life cycle is executed

in a single separate thread.

In a process oriented worldview, simulation processes are

placed into the FEL with respect to chronology (increasing

simulation time) and managed by a scheduler. Processes are

executed in pseudo-parallel and only one (which has the

imminent simulation time) is running at any instance of real

time. Simulation processes may execute concurrently at any

instance of simulation time. Hence the scheduler executes in

alternation with other simulation processes. This shared

behavior is modeled through the SimProcess abstract class

which extends the Java Thread class. The method

processResume(Entity e) is called by the scheduler to

reactivate a simulation process and mainResume() is called by

a simulation process to reactivate the scheduler. Each

simulation process has its own lock object.

combination with wait() and notify() to synchronize

implementation threads instead of the Java deprecated

methods suspend() and resume(). A thread which calls any of

the previous methods will block on its own lock after

notifying the appropriate one. schedule(Entity e) is a

synchronized method offered by the SimProcess class which

could be called by the scheduler or by a newly created

simulation process for an appropriate insertion into the FEL

At the end of its life cycle, a simulation process calls

The Kernel class diagram

As we can see, the kernel package is made up of classes

dealing with active entities, scheduler, queues and resources.

The coroutine like mechanism is implemented trough

StaticEntity and Entity classes. A

coroutine program is a collection of coroutines which run in

parallel with one another. Each coroutine is an object

ate, so that it may be suspended and

ur aim in the design of JAPROSIM was putting a

great emphasis into following the semantic of SIMULA but

the design itself is not close to it. The advantage of this

approach is that design is simpler without explicit coroutine

class support and the semantics of facilities that are well-

known and thoroughly tested through many years use of

Native support for

multithreaded execution is a fundamental aspect to the

a natural process-oriented modeling

capability in Java. Every active entity’s life cycle is executed

In a process oriented worldview, simulation processes are

placed into the FEL with respect to chronology (increasing

n time) and managed by a scheduler. Processes are

parallel and only one (which has the

imminent simulation time) is running at any instance of real

time. Simulation processes may execute concurrently at any

ence the scheduler executes in

alternation with other simulation processes. This shared

behavior is modeled through the SimProcess abstract class

which extends the Java Thread class. The method

processResume(Entity e) is called by the scheduler to

te a simulation process and mainResume() is called by

a simulation process to reactivate the scheduler. Each

process has its own lock object. Locks are used in

combination with wait() and notify() to synchronize

the Java deprecated

methods suspend() and resume(). A thread which calls any of

the previous methods will block on its own lock after

notifying the appropriate one. schedule(Entity e) is a

synchronized method offered by the SimProcess class which

called by the scheduler or by a newly created

simulation process for an appropriate insertion into the FEL.

At the end of its life cycle, a simulation process calls

automatically the dispose () method to reactivate the scheduler

without blocking itself. So the corresponding thread could be

terminated. This leads to free occupied memory and improve

simulation performance. Otherwise this may cause a Java

runtime error “java.lang.OutOfMemoryError: unable to create

new native thread” as we experienced with an

version of the commercial package Silk

Specific behavior of a simulation process is normally

described using the dedicated abstract method body(). It must

be rewritten to be an ordered sequence of method invocations

terminated by an implicit auto

behavior of the scheduler is also described using this method

Since SimProcess is abstract, it is intended to be extended.

A new class is created to model simulation processes. The

Entity class provides the basis for defining

the process-oriented simulation worldview. This class is

declared to be abstract, so instances of Entity

created directly. Instead, modelers define their own classes

that extend Entity and describe the dynamic behavior of th

corresponding system components in terms of the process

oriented methods inherited in particular from those classes.

Each class derived from Entity runs in its own thread of

execution, a capability inherited from SimProcess. The Entity

class provides the implementation of the run() method which

in turn invokes body(). The user is required to supply the

body() method. Four remarkable methods are offered

remove(), seize(), hold() and release(). They could be used to

model familiar queuing scenari

used to wait until a specific system state is reached (ex:

waiting for a resource to be free). Since the thread will be

suspended and inserted into the passive list (PL) after a call to

passivate(), this call is typically used

Each time the scheduler takes control; it starts reactivating

suspended threads in the PL first, then dealing with the FEL.

So such a reactivated thread would have the opportunity to

return back to the PL, if there is no expected ev

system state.

The abstract class StaticEntity is used to model the behavior

of active entities that have not the ability to move. Typical

examples of those entities are “intelligent resources”.

StaticEntity derives directly from SimProcess.

Entity class is used to model dynamic entities, it derives from

StaticEntity and defines two new methods insert() and

remove(). The other methods: seize(), hold(), release() and

passivate() discussed previously are defined in the StaticEntity

and hence inherited by Entity.

The scheduler proceeds in two phases. First, it reactivates

each thread in the PL. So the reactivated thread checks for

expected changes in the system state and may return back to

the PL as it may continue executing the rest of

Secondly, the scheduler picks the imm

from the FEL and reactivates the corresponding thread. These

two phases are repeated as long as the simulation experiment

termination condition isn’t verified.

an attribute rng which is an instance of a random number

generator and could be customized by the user. The

EntityCompare class implements the Java Comparator

) method to reactivate the scheduler

o the corresponding thread could be

terminated. This leads to free occupied memory and improve

simulation performance. Otherwise this may cause a Java

runtime error “java.lang.OutOfMemoryError: unable to create

new native thread” as we experienced with an academic

version of the commercial package Silk.

Specific behavior of a simulation process is normally

described using the dedicated abstract method body(). It must

be rewritten to be an ordered sequence of method invocations

terminated by an implicit automatic call to dispose(). The

behavior of the scheduler is also described using this method.

Since SimProcess is abstract, it is intended to be extended.

A new class is created to model simulation processes. The

Entity class provides the basis for defining classes that obey to

oriented simulation worldview. This class is

declared to be abstract, so instances of Entity cannot be

created directly. Instead, modelers define their own classes

that extend Entity and describe the dynamic behavior of the

corresponding system components in terms of the process-

oriented methods inherited in particular from those classes.

Each class derived from Entity runs in its own thread of

execution, a capability inherited from SimProcess. The Entity

implementation of the run() method which

in turn invokes body(). The user is required to supply the

body() method. Four remarkable methods are offered: insert(),

remove(), seize(), hold() and release(). They could be used to

model familiar queuing scenarios. The passivate() method is

used to wait until a specific system state is reached (ex:

waiting for a resource to be free). Since the thread will be

suspended and inserted into the passive list (PL) after a call to

passivate(), this call is typically used within a while() loop.

Each time the scheduler takes control; it starts reactivating

suspended threads in the PL first, then dealing with the FEL.

So such a reactivated thread would have the opportunity to

return back to the PL, if there is no expected evolution in the

The abstract class StaticEntity is used to model the behavior

of active entities that have not the ability to move. Typical

examples of those entities are “intelligent resources”.

StaticEntity derives directly from SimProcess. Since The

Entity class is used to model dynamic entities, it derives from

StaticEntity and defines two new methods insert() and

remove(). The other methods: seize(), hold(), release() and

passivate() discussed previously are defined in the StaticEntity

hence inherited by Entity.

The scheduler proceeds in two phases. First, it reactivates

each thread in the PL. So the reactivated thread checks for

expected changes in the system state and may return back to

the PL as it may continue executing the rest of its operations.

Secondly, the scheduler picks the imminent simulation process

from the FEL and reactivates the corresponding thread. These

two phases are repeated as long as the simulation experiment

termination condition isn’t verified. The Scheduler class has

an attribute rng which is an instance of a random number

generator and could be customized by the user. The

EntityCompare class implements the Java Comparator

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

286

interface and is used to implement priority queuing

mechanism.

The Resource class represents a passive entity characterized

by a capacity. Generally, a simulation process seizes some

units of a resource to accomplish a service and releases them

later. The hold() method of the StaticEntity class is used to

specify the service duration. The Queue class models a space

for waiting which may be limited. It provides an ordered list

where entities (or other user-defined types) can reside.

Typically, an entity is inserted into a queue by having it

activate the insert(Queue q) method of the Entity class. There

is no implicit conditional status delay logic associated with

queues, which means that the entity's thread of execution is

not suspended pending some system status evolution.

Modeling conditional status delays is the realm of the while()

and passivate() constructs. As a consequence, an entity can

reside simultaneously in any number of queues. This feature

can be particularly convenient in collecting certain types of

system statistics related to waiting times or queue lengths.

Another important distinction is that the removal of an entity

from a queue could be independent of the ordering of the

queue at the time of removal. Users are required to explicitly

identify the entity to be removed at the time of removal.

Typically this is accomplished by having the corresponding

entity activate the remove(Queue q) method of the Entity

class. While entities are generally inserted and removed from

queues using the insert(Queue q) and remove(Queue q)

methods of the Entity class, the same tasks can be

accomplished using the insert(Entity e) and remove(Entity e)

methods defined in the Queue class.

B. The Random and Statistics Packages

Random number generators (RNGs) are the basic tools of

stochastic modeling. The random package provides the

RandomStream interface which represents a base reference for

creating Random Number Generators. Each RNG must rewrite

the RandU01() method which normally returns a uniformly

distributed number (a Java double) in the interval [0, 1].

JAPROSIM provides a set of well known good RNGs see [13]

and [14], as Park-Miller, McLaren-Marsaglia and RandMrg in

which the backbone generator is the combined multiple

recursive generator (CMRG) proposed in [15]. The

setSeed(long[] seed) method is used to specify seeds instead of

default values.

The user can define its own RNG by implementing the

RandomStream interface. To be used with JAPROSIM, an

instance of the user-defined RNG must be assigned to the

Scheduler’s static public attribute rng. A prosperous set of

discrete and continuous Random Variate Generators (RVGs)

is offered by the distribution sub-package. This set covers

typically most practical distributions to be used in discrete

event simulation. However, the user could supply it with

additional RVGs.

Fig. 2 The distribution sub-package

The statistics package provides two useful classes.

DoubleStatVar class dealing with time-independent statistical

variables (having double values) as response time and waiting

time in a queue. It implements the mechanisms for keeping

track of observational-based statistics and must be updated

every time its value change using the update() method.

TimeIntStatVar class is used for time-dependent statistics

(with integer values) such as a queue length or number of

customers in a system. Typically, the user instantiates the

desired class, then puts and updates it in the appropriate code

locations. The placement of statistical variables and their

update is a source of several pitfalls. For this reason we have

enhanced automatic placement and update of those variables

for the most known and useful performance measures.

C. The Utilities Package

This package offers pre-specified entities with specific

behavior. The SimpleServiceStation is used to model

intelligent servers which are able to take decisions like “batch

servers”. The SymetricServiceStation models a service station

with identical servers while AsymetricServiceStation models a

service station with multiple heterogeneous servers. The

homogeneity/heterogeneity of servers here comes from service

distributions.

V. SIMULATION USING JAPROSIM

A. Example Description

Let us give an example which illustrates a simplified

simulation model of a TVs inspection and adjustment process

as described in [16]. In this model, an arriving TV is first

inspected at an inspection station. If a TV is found to be

functioning improperly, it is routed to an adjustment station.

After adjustment, the TV is sent back to the inspection station

where it is again inspected. TVs passing inspection whether to

the first time or after one or more routings through the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

287

adjustment station, are sent to a packing area. A probabilistic

branching is used when a TV passes the inspection station. It

specifies that 15% of the TVs inspected are sent to the

adjustment station and 85% are sent to the packing area. The

inter-arrival time between TVs to the system, the inspection

delay and the adjustment delay are all modeled as uniform

variates (See the source code in Fig. 5).

Fig. 3 The TVs Inspection example

From the description given, we can easily identify two

resources which represent the two stations of the system

modeled. The first resource represents the inspector and has a

capacity of two units. The second resource represents the

adjustor and has a capacity of one unit. Since we have one

input arrivals, we distinguish one active entity in the model.

B. The JAPROSIM Simulation Model

In JAPROSIM we can model each active entity in a

separate class derived from the Entity class. A class diagram

of the JAPROSIM simulation model for this example is shown

below:

Fig. 4 A class diagram of the simulation model

From Fig. 4, it appears that the JAPROSIM simulation

model of the example uses two classes: TVInspection and

TV1. The source code of each class is given below.

Fig. 5 Source code of The TV1 class

We can easily distinguish four parts in the source code of The

TV1 class. The first part (from line 4 to line 11) serves to set

the parameters of the model. We can see that the inspection

delay, the adjustment delay and the inter-arrival time are

defined as uniform variates with specific arguments. We have

also to define the inspector and adjustor resources and their

associated queues. The variable destination is defined as a

uniform variate and is used when deciding if a TV just

inspected is to be routed to the adjustment station or to exit the

system.

The second part (from line 12 to line 15) serves to route the

active entity to the inspection station and to create next TVs

arrivals with respect to the inter-arrival time between TVs.

The third part (from line 16 to line 28) represents the classical

scheme of resource allocation. A TV arriving at the inspection

station is inserted in the associated queue. When a resource

unit is free, it is allocated to a waiting TV with respect to the

queue priority. An inspection delay associated to this TV is

sampled, and the TV will hold the resource unit seized until

the associated delay is elapsed. The resource unit is then

released and can be allocated to other waiting TVs. Line 28

serves to decide if the TV just inspected is to be routed to the

adjustment station or to exit the system.

The fourth part (from line 29 to line 39) models the adjustor

resource allocation scheme. A TV arriving at the adjustment

station is inserted in the associated queue. When the adjustor

resource is free, it is allocated to a waiting TV with respect to

the queue priority. An adjustment delay associated to this TV

is sampled, and the TV will hold the adjustor resource seized

until the associated delay is elapsed. The adjustor resource is

then released and the TV is sent back to the inspection station.

To run a JAPROSIM simulation model, we need another

class which constitutes a starting point for any Java program.

This class contains the main() method for standalone programs

or the init() method for browser-based applets. It is where

simulation model would be initialized, and the scheduler

started. In our example, this class is called TVInspection. The

source code is as follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

288

Fig. 6 Source code of the TVInspection class

C. Running the Simulation Model

When running the simulation model, the JAPROSIM

window is first displayed. It consists of an experimentation

frame where simulation parameters are to be set. Parameters

like the number of replications, the simulation duration, the

RNG used must be specified here by the user. A button

Run/Stop allows user to start simulation, stop and resume it at

any time during execution. Two other buttons are used for

presentation of simulation results and trace execution.

Fig. 7 JAPROSIM experimentation frame

At the end of each simulation run, the simulation results can

be viewed in a textual form or in a graphical one.

Fig. 8 Textual Simulation results

As we can see, the textual simulation results are expressed

as statistical quantities which resume resources and queues

utilization during a run. On the other hand, the graphical form

uses plots, bar charts or pie charts. For example, Fig. 9 shows

the utilization of the two resources used in the simulation

model during each replication.

Fig. 9 graphical Simulation results

D. Automatic Statistics Collection

The first thing we can observe in the source code of the two

classes used in the JAPROSIM simulation model, is that no

class of the statistics package is explicitly used. In addition, no

Java constructs are clearly used to do so. This is the key

feature of JAPROSIM that all well known and useful

performance measures are implicitly and automatically

handled. The user doesn’t worry about how many, or what

kind of statistical variables to use, nor where to place and

update them. Explicit statistical variable handling by the user

may lead to undetectable programming errors and pitfalls. It

could ruin simulation programs since the accuracy of

simulation results is crucial. This is why JAPROSIM is said to

be easy and safe to use for all users, including those who

aren’t qualified Java programmers.

This mechanism is embedded in the library. The

SimProcess class declares a protected static entitiesList which

is a Java HashMap to collect the residence time of each

simulation entity class (a Java class that extends the

JAPROSIM Entity class). The key for the HashMap is the

class name and values are DoubleStatVar. In the Entity

constructor, each time a new entity class is created, the above

HashMap is updated. In the run() method of the Entity Class

and after the call to the body() method, the residence time is

updated using the simulation time and the arrivalTime

attributes.

Each Queue object possesses a statistical variable to hold

waiting time in it. This variable is updated trough

insert()/remove() methods. The number of entities in a queue

is handled by a length time-dependent statistical variable. The

resource availability is also a time-dependant variable. It is

used to compute resource utilization. The Queue class has a

static Java Vector to register all queues used in the simulation

model. In the same way, the Resource class also has an

analogous list to keep track of all used resources. Those lists

have a package visibility; hence they could be accessed by all

the simulation processes. They are updated each time a new

resource or queue instance is created.

Nevertheless, the user is free to use JAPROSIM statistics

package classes in his simulation code. It is clear that in

practice, there may be complex systems or situations that need

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

289

specific statistics not covered by JAPROSIM.

VI. CONCLUSION

In this paper we have presented the JAPROSIM library for

developing object-oriented simulations. It is written in Java

and was deliberately kept simple, easy to use and extensible.

The example presented reveals many advantages of the object-

orientation of JAPROSIM and the process interaction

worldview adopted. The relationship between the simulation

model and the real system is more obvious and therefore

easier to teach and to understand. The java source code of the

simulation model is easy to understand and users can learn far

more than if they have to experiment with sophisticated

commercial simulation packages in which important details of

the simulation implementation are hidden and thus never

understood. Today, JAPROSIM is a fully functional library

which has been tested thoroughly. It could be used even for

academic purposes as it is yet in our universities or for

industrial purposes. Being a consistent kernel for general

purpose discrete event simulation, it provides also a basis for

building application-specific environments. JAPROSIM is

distributed since several years as an Open Source project

(http://sourceforge.net/projects/japrosim/). The source code is

available freely along with some documentation. Future

improvements will focus on increasing the JAPROSIM

performances, integrating a graphical model building facility,

providing animations of simulation models and using xml

standards for web-based simulation.

REFERENCES

[1] J. H. Kevin, R. A. Kilgore: “Silk: A Java-Based Process Simulation

Language”, In Proceedings of the 1997 Winter Simulation Conference,

ed. S. Andradóttir, K. Healy, D. Withers, and B. Nelson, pp. 475-482,
Institute of Electrical and Electronics Engineers, Piscataway, New

Jersey, December 1997.

[2] H. Schwetman, “Object-Oriented simulation modeling with
C++/CSIM17”, In Proceedings of the 1995 Winter Simulation

Conference, ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D.

Goldsman, pp. 529-533, Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey, December 1995.

[3] J. A. Joines, S. D. Roberts: “Design of object oriented simulations in

C++”, In Proceedings of the 1996 Winter Simulation Conference, ed. J.
Charnes, D. Morrice, D. Brunner, and J. Swain, pp. 65-72, Institute of

Electrical and Electronics Engineers, Piscataway, New Jersey,

December 1996.
[4] J. M. Garrido, “Object-oriented Discrete Event Simulation with Java”.

Kluwer/Plenum, NY, September 2001.

[5] J. A. Miller, Y. Ge, and J. Tao, “Component Based Simulation
Environments: JSIM as a Case Study Using Java Beans”, In Proceedings

of the 1998 Winter Simulation Conference, ed. D. J. Medeiros, E. F.

Watson, J. S. Carson and M. S. Manivannan, pp. 373-381, Institute of
Electrical and Electronics Engineers, Piscataway, New Jersey,
December 1998.

[6] P. L’Ecuyer, L. Melian, and J. Vaucher, “SSJ: A framework for
stochastic simulation in Java”, In Proceedings of the 2002 Winter

Simulation Conference, ed. E. Yücesan, C.-H. Chen, J. L. Snowdon, and

J. M. Charnes, Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey, pp. 234–242, December 2002.

[7] R. A. Kilgore, “Silk, Java and Object-Oriented simulation”, Proceedings
of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R.

Barton, K. Kang, and P. A. Fishwick, pp. 246-252, Institute of Electrical

and Electronics Engineers, Piscataway, New Jersey, December 2000.
[8] M. C. Little, “The JavaSim User's Manual”, Department of Computing

Science, University of Newcastle upon Tyne, 1999.

[9] F. Howell and R. McNab, "simjava: a discrete event simulation package

for Java with applications in computer systems modelling", First
International Conference on Web-based Modelling and Simulation, San

Diego CA, Society for Computer Simulation, January 1998.

[10] K. Helsgaun, “Discrete Event Simulation in Java”, DATALOGISK
SKRIFTER (writings on computer science), Roskilde University, 2000.

[11] B. Page, T. Lechler and S. Claassen, “Objektorientierte Simulation in

Java mitdem Framework DESMO-J” (“Object-Oriented Simulation in
Java with the Framework DESMO-J”, in German). Libri Book on

Demand, Hamburg, 2000. University of Hamburg, Faculty of

Informatics.
[12] A. Buss, “Component Based Simulation Modeling with SimKit”,

Proceedings of the 2002 Winter Simulation Conference, ed. E. Yücesan,

C.-H. Chen, J. L. Snowdon, and J. M. Charnes, Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey, pp. 243-249, December

2002.

[13] P. L’ecuyer, “Uniform Random Number Generator”, In Proceedings of
the 1998 Winter Simulation Conference, ed. D. J. Medeiros, E. F.

Watson, J. S. Carson, and M. S. Manivannan, pp. 97-104, Institute of

Electrical and Electronics Engineers, Piscataway, New Jersey,
December 1998.

[14] P. L’ecuyer, F. Panneton, “Fast Random Number Generators Based on

Linear Recurrences Modulo 2: Overview and Comparison”, In
Proceedings of the 2005 Winter Simulation Conference, ed. M. E. Kuhl,

N. M. Steiger, F. B. Armstrong, and J. A. Joines, pp. 110-119, Institute

of Electrical and Electronics Engineers, Piscataway, New Jersey,
December 2005.

[15] P. L’ecuyer, “Good parameters and implementations for combined
multiple recursive random number generators”. Operations Research,

vol. 47(1), pp 159–164, 1999.

[16] C. D. Pegden, R. E. Shannon, and R. P. Sadowski, Introduction to
Simulation Using SIMAN. New York McGraw-Hill Inc., 1990.

B. Belattar is a professor at the University of Batna since 1992. He has also

taught at the University of Constantine from 1982 to 1985. He received his BS
degree in Computer science from the University of Constantine in 1981 and

his MS and PhD degrees from the University Claude Bernard of Lyon

(French) respectively in 1986 and 1991. His research interests include
simulation, databases, semantic web and AI.

A. Bourouis received his BS degree in Computer science from the University
of Constantine in 1999 and his MS degree from the University of Batna in
2003 where he is preparing a PhD degree. He is a lecturer at the University of

Oum el Bouaghi since 2003. His research interests include Artificial
intelligence, performance evaluation, parallel and distributed simulation.

