
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

823

A Hybrid Metaheuristic Framework for Evolving
the PROAFTN Classifier

Feras Al-Obeidat, Dept. of Computer Science, University of New Brunswick, Canada
Nabil Belacel, National Research Council, Canada

Juan A. Carretero, Dept. of Mechanical Engineering, University of New Brunswick, Canada
Prabhat Mahanti, Dept. of Computer Science, University of New Brunswick, Canada

Abstract—In this paper, a new learning algorithm based on a
hybrid metaheuristic integrating Differential Evolution (DE) and
Reduced Variable Neighborhood Search (RVNS) is introduced to train
the classification method PROAFTN. To apply PROAFTN, values of
several parameters need to be determined prior to classification. These
parameters include boundaries of intervals and relative weights for
each attribute. Based on these requirements, the hybrid approach,
named DEPRO-RVNS, is presented in this study. In some cases, the
major problem when applying DE to some classification problems
was the premature convergence of some individuals to local optima.
To eliminate this shortcoming and to improve the exploration and
exploitation capabilities of DE, such individuals were set to itera-
tively re-explored using RVNS. Based on the generated results on
both training and testing data, it is shown that the performance of
PROAFTN is significantly improved. Furthermore, the experimental
study shows that DEPRO-RVNS outperforms well-known machine
learning classifiers in a variety of problems.

Keywords—Knowledge Discovery, Differential Evolution, Re-
duced Variable Neighborhood Search, Multiple criteria classification,
PROAFTN, Supervised Learning.

I. INTRODUCTION

DATA mining, a well-known paradigm in the area of
knowledge discovery process, encompasses several tech-

niques from different areas such as databases, machine learn-
ing and artificial intelligence. Two main techniques are broadly
used in data mining to discover knowledge in data: su-
pervised and unsupervised [1]. In supervised learning, the
classification model is first established based on input of
labeled (categorized) examples, where each example consists
of vectors of features (attributes) and a class label. During
the learning process, the classification model is built based on
the available observations, and the induced model is evaluated
using unknown instances. Unsupervised learning techniques
are used to determine how the data are organized based
on their characterizations. These techniques are distinguished
from supervised learning in that the input is only made of
unlabeled examples [2].

Data classification is a widely used supervised learning
approach. It requires the development of a classification model
that identifies behaviors and characteristics of the available
objects to recommend the assignment of unknown objects
to predefined classes [3]. The goal of the classification is
to accurately assign the target class for each instance in
the dataset. For instance, in medical diagnoses, patients are
assigned to disease classes (positive or negative) according to
a set of symptoms. In this context, the classification model is

built on historical data and then the generated model is used
to classify unseen instances.

Multi-criteria decision analysis (MCDA) [4] is another field
that addresses the study of decision making [5] and classifica-
tion problems. MCDA techniques were originally developed
mainly in the fields of operations research, social psychol-
ogy, and business management. In recent years, the field of
MCDA has been attracting many researchers and decision-
makers from many areas, including health, data mining and
business [6]. The classification problem in MCDA consists of
the formulation of the decision problem in the form of class
prototypes that are used for assigning objects to classes. Each
prototype is described by a set of attributes and is considered
to be a good representative of its class [7].

This paper will focus on the MCDA classification method
PROAFTN, which belongs to the class of supervised learn-
ing algorithms. PROAFTN is a relatively new classifica-
tion method introduced in [8]. It has been applied to the
resolution of many real-world practical problems such as
medical diagnosis, asthma treatment, and e-Health [9], [10],
[11]. PROAFTN has several advantages; for example, it uses
the MCDA paradigm and therefore can be used to gain
more understanding about the problem domain. Furthermore,
PROAFTN has direct techniques that enable a Decision Maker
(DM) to adjust its parameters.

PROAFTN is based on the preference relational system
described by Roy [4]. Because of this, it employs a compar-
ison between the alternatives through the scores of different
attributes. So, it avoids resorting to distance measurements
such as the Euclidean distance. Moreover, it helps overcome
some difficulties encountered when data are expressed in
different units or have different orders of magnitude. The
aggregation on all criteria is on the results of the comparison
between objects to be assigned and the prototypes. However,
to apply PROAFTN, the values of several parameters need to
be determined prior to classification. These parameters include
the boundaries of intervals and the relative weights for each
attribute. This consists of the formulation of the decision
problem in the form of prototypes – representing each class –
to be used for assigning each object to the target class.

Recently, some related work introduced in [12] was done
to improve PROAFTN’s performance. There, the unsupervised
discretization algorithm k-means and a Genetic Algorithm are
used to obtain PROAFTN intervals from data. In this paper,
a new work is proposed based on Differential Evolution (DE)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

824

and Reduced Variable Neighborhood Search (RVNS) to obtain
PROAFTN parameters.

DE is a simple and efficient evolutionary algorithm pro-
posed by Storn and Price [13] that has proven very effective
over the last decade. The major properties of DE are its ability
to handle non-differentiable, nonlinear, real-valued parameters
which is the case in this work. DE has been applied in clas-
sification problems and partitional clustering [14]. Moreover,
DE has been used for training Neural Networks [15], [16]. As
demonstrated by most of the aforementioned applications, DE
gets better results in a faster and more efficient way compared
with other evolutionary population-based methods.

RVNS is a variation of the metaheuristic Variable Neigh-
borhood search (VNS) [17] [18]. VNS and RVNS have been
applied successfully in the domain of classification prob-
lems [19], [20], [21]. The main difference between DE and
RVNS is that the former is a population-based metaheuristic,
whereas the latter is a single-point based solution. Hence,
integrating the two approaches improves the exploration and
exploitation strategies.

Based on the aforementioned motivation and the structure
of PROAFTN, a new methodology based on a hybrid meta-
heuristic is proposed in this study for training the PROAFTN
method. In this context, a formulation of the optimization
problem is introduced first; then, the integrated DE and
RVNs are proposed for solving this optimization problem. The
proposed training technique utilizes DE and RVNS to train and
improve the performance of PROAFTN. During the learning
phase, DE and RVNS are utilized as an inductive approach
to infer the best PROAFTN parameters from the training
samples. The generated parameters are then used to compose
the prototypes, which represent the classification model that
will be used for assigning unknown samples. The target is to
find the prototypes that maximize the classification accuracy
on each dataset.

The performance of the proposed approach (henceforth
referred to as DEPRO-RVNS) is compared with well-known
classification algorithms selected from different learning per-
spectives, including: Logical/Symbolic techniques such as
Decision Tree (C4.5 [22]), Statistical learning algorithms,
(e.g., Naive Bayes (NB) [23]), Support Vector Machine
(SVM [24]), Perceptron-based techniques (e.g., Neural Net-
works (NN) [25]), Instance-based learning (e.g., k-nearest
neighbor (k-nn) [26]), and the rule-based classifiers such as
PART [1], [27]. The comparisons and evaluations are made
on 12 well-known datasets by using a stratified 10-fold cross-
validation [27].

The rest of the paper is organized as follows: in Sec-
tion II, the PROAFTN method, the DE algorithm and RVNS
are briefly presented. In Section III, the proposed approach
DEPRO-RVNS to learn PROAFTN is introduced. The de-
scription of the datasets, experimental results, and compar-
ative numerical studies are presented in Section IV. Finally,
conclusions are summarized in Section V.

II. OVERVIEW OF PROAFTN, DE AND RVNS
In this section the PROAFTN methodology and the DE and

RVNS algorithms are reviewed; the new learning algorithm

DEPRO-RVNS is introduced in Section III.

A. PROAFTN Method

The PROAFTN procedure belongs to the class of supervised
learning algorithms. Its functioning can be described as fol-
lows. From a set of n objects known as a training set, consider
a is an object which requires classification; assume this object
a is described by a set of m attributes {g1,g2, ...,gm} and let
{C1,C2, ...,Ck} be the set of k classes. The different steps of
the classification procedure follow.

1) Initialization: For each class Ch, h = 1,2, ...,k, a set of
Lh prototypes Bh

= {bh
1,b

h
2, ...,b

h
Lh
} are determined. For each

prototype bh
i and each attribute g j, an interval [S1

j(b
h
i), S2

j(b
h
i)]

and the preference thresholds d1
j (b

h
i) ≥ 0 and d2

j (b
h
i) ≥ 0 are

defined where S2
j(b

h
i) ≥ S1

j(b
h
i), with j = 1,2, ...,m and i =

1,2, ...,Lh.
Figure 1 depicts the representation of PROAFTN’s intervals.

To apply PROAFTN, the pessimistic interval [S1
jh,S

2
jh] and the

optimistic interval [q1
jh,q

2
jh] for each attribute in each class

need to be determined [21], where:

q1
jh = S1

jh −d1
jh (1a)

q2
jh = S2

jh +d2
jh (1b)

applied to:
q1

jh ≤ S1
jh (2a)

q2
jh ≥ S2

jh (2b)

Hence, S1
jh = S1

j(b
h
i), S2

jh = S2
j(b

h
i), q1

jh = q1
j(b

h
i), q2

jh = q2
j(b

h
i),

d1
jh = d1

j (b
h
i), and d2

jh = d2
j (b

h
i). The following subsections

explain the stages required to classify the object a to the class
Ch using PROAFTN.

2) Computing the fuzzy indifference relation I(a,bh
i): The

initial stage of the classification procedure is performed by
calculating the fuzzy indifference relation I(a,bh

i). The fuzzy
indifference relation is based on the concordance and non-
discordance principle [28], [21], which is identified by:

I(a,bh
i) =

(
m

∑
j=1

w jhCj(a,bh
i)

)
m

∏
j=1

(
1−D j(a,bh

i)
w jh

)
(3)

Cj(a, bh
i)

Indifference

Indifference

1

0

S2

jh q2

jhq1

jh

gjh(a)

d1

jh d2

jh

Strong

Weak

Indifference
No

Indifference

No

S1

jh

index between the object a and the prototype bh
i represented by intervals.

Fig. 1. Graphical representation of the partial indifference concordance

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

825

where w jh is the weight that measures the relative importance
of a relevant attribute g j of a specific class Ch:

w jh ∈ [0,1] and
m

∑
j=1

w jh = 1

Cj(a,bh
i), j = 1,2, ...,m, is the degree that measures the

closeness of the object a to the prototype bh
i according to

the attribute g j. The calculation of Cj(a,bh
i) is given by:

Cj(a,bh
i) = min{C1

j (a,bh
i),C

2
j (a,bh

i)}, (4)

where

C1
j (a,bh

i) =

d1
j (b

h
i)−min{S1

j(b
h
i)−g j(a),d1

j (b
h
i)}

d1
j (b

h
i)−min{S1

j(b
h
i)−g j(a),0}

and

C2
j (a,bh

i) =

d2
j (b

h
i)−min{g j(a)−S2

j(b
h
i),d

2
j (b

h
i)}

d2
j (b

h
i)−min{g j(a)−S2

j(b
h
i),0}

while D j(a,bh
i) is the degree that measures how far the object

a is from the prototype bh
i according to the attribute g j. Two

veto thresholds, v1
j(b

h
i) and v2

j(b
h
i), are used to define these

values, where object a is considered perfectly different from
the prototype bh

i based on the value of attribute g j. Generally,
the determination of veto thresholds through inductive learning
is risky. These values need to be obtained by an expert familiar
with the problem. For more details about veto thresholds
see [8]. However, in cases where these values cannot be
attained from such expert, the effect of the veto thresholds
is eliminated by setting them to infinity. Therefore, only the
concordance principle is used, and Eq. (3) is summarized by:

I(a,bh
i) =

m

∑
j=1

w jhCj(a,bh
i) (5)

To sum up, three comparative procedures between object a
and prototype bh

i according to attribute value g j are performed
(Fig. 1):

• case 1 (strong indifference):
Cj(a,bh

i) = 1 ⇔ g j(a) ∈ [S1
jh,S

2
jh];

(i.e., S1
jh ≤ g j(a) ≤ S2

jh)
• case 2 (no indifference):

Cj(a,bh
i) = 0 ⇔ g j(a) ≤ q1

jh, or g j(a) ≥ q2
jh

• case 3 (weak indifference):
The value of Cj(a,bh

i) ∈ (0,1) is calculated based on
Eq. (4). (i.e., g j(a) ∈ [q1

jh,S
1
jh] or g j(a) ∈ [S2

jh,q
2
jh])

3) Evaluation of the membership degree δ (a,Ch
): The

membership degree between object a and class Ch is calculated
based on the indifference degree between a and its nearest
neighbor in Bh. The following formula identifies the nearest
neighbor:

δ (a,Ch
) = max{I(a,bh

1), I(a,bh
2), ..., I(a,bh

Lh
)} (6)

4) Assignment of an object to the class: The last step is to
assign object a to the right class Ch. The evaluation required
to find the right class is performed by applying the following
decision rule:

a ∈Ch ⇔ δ (a,Ch
) = max{δ (a,Ci

)/i ∈ {1, ...,k}} (7)

B. Differential Evolution (DE) Algorithm

DE is a population-based evolutionary algorithm. The evo-
lution strategy of DE is similar to some extent to other widely
used evolutionary algorithms. For instance, DE uses operators
such as crossover, mutation and selection that are used by
“Genetic algorithms” (GAs). The major difference between the
GAs and DE is the way they seek to improve the solutions.
GAs, for instance, use crossover to exploit the search space,
while DE uses mutation operation as a search mechanism and
selection operation to direct the search to the most promising
regions of the search space. The DE algorithm also uses a
crossover operation that takes child vector parameters from
one parent more often than it does from others based on fitness.
This recombination operator efficiently updates information,
enabling the exploration of more promising regions in the
solution space [29], [13]. The general procedure of the DE
algorithm is presented in Algorithm 1.

Algorithm 1 Differential Evolution Steps
Initialization
Evolution
repeat

Mutation
Recombination
Evaluation
Selection

until (termination criteria are met)

DE’s working mechanism can be described as follows. At
the beginning, a population of Npop solution vectors x, each
consisting of D parameters, is randomly initialized. Then,
this population is iteratively improved by applying mutation,
crossover and selection operators. The DE algorithm termi-
nates when stopping criteria are met.

Assume the optimal solution x∗ is sought. Here, x∗ is
represented by a vector of D parameters where its components
are denoted by x∗τ , where τ = 1,2, ...,D. When starting the
optimization, each element τ of individual i in the population
(i.e., i = 1, ...,Npop) is randomly initialized within the boundary
constraints as follows:

xiτ = lτ +(uτ − lτ)randτ ,

where lτ and uτ are lower and upper bounds for each element.
randτ is a random number generator between 0 and 1.

Following the initialization phase, the objective function
value (a.k.a. fitness) of each individual is calculated and the
evolutionary process is started. Typically, the DE algorithm
makes Ngen iterations, where Ngen is used as one of potentially
many stopping conditions. At each iteration and for each
individual xi, the following three steps are performed:

1) Random selection of three individuals: The selected in-
dividuals are identified by indices r1,r2, and r3, (where
r1,r2,r3 ∈ [1, ...,Npop]) must be different from each
other, and also different from the current individual
i (i.e., r1 �= r2 �= r3 �= i). The first of the selected
individuals is defined as the target vector xr1 and the
other two individuals are xr2 and xr3 .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

826

2) Creation of the trial vector vi: The trial individual vec-
tor is generated based on the mutation and crossover
operations:

a) Mutation: the mutant parameter is generated by

vi = xr1 +F(xr2 −xr3) (8)

where F is the scaling factor used to control
the differential variation (a.k.a. mutation factor).
Generally, F ∈ [0,2] is a real constant factor pro-
portional to the diversity of a population [13].

b) Crossover (recombination): The elements from the
parent vector, xi, are combined with those from the
trial vector vi to produce the offspring, xn

iτ , where
n stands for the new generated individual x:

xn
iτ =

{
viτ , if (randτ < κ) or (ρ = τ)

xiτ , otherwise.
τ = 1, ...,D ; i = 1, ...,Npop

and randτ is a random number generator and randτ
∈ [0,1]. κ is the crossover parameter set by the
user, and κ ∈ [0,1]. ρ is a randomly selected index,
where ρ ∈ [1,2, ...,D]. The condition ρ = τ enables
at least one of the parameters of the offspring to
be different from the parent.

3) Selection of the best individual: The last stage is to se-
lect the best individual, i.e., the one that provides the
best fitness value. In this case, the best between the
new generated individual xn

i and the current individual
xi is selected. Also, the new member of the population is
compared to the best individual found so far from Npop.
If it is better, the best individual’s index is updated. The
selection procedure is described by:

if (f (xn
i) ≥ f (xi)) then

xi ← xn
i , fi ← f (xi)

and if (f (xi) ≥ f (x∗)) x∗ ← xi

C. Reduced Variable Neighborhood Search (RVNS)

RVNS is a variation of the metaheuristic Variable Neigh-
borhood Search (VNS) [17], [18]. The basic idea of the VNS
algorithm is to search solution space with a systematic change
of neighborhood. In RVNS, two procedures are used: shake
and move. Starting from the initial solution (the position of
prematurely converged individuals) x, the algorithm selects a
random solutions x́ from first neighborhood. If the generated
x́ is better than x, it replaces x and the algorithm starts all over
again with the same neighborhood. Otherwise, the algorithm
continues with the next neighborhood structure. The pseudo-
code of RVNS is given in Algorithm 2.

III. PROBLEM FORMULATION

In most cases DE may not be able to explore the search
space thoroughly. To improve the exploration process, RVNS
is used to force individuals to jump to another solution and
continue the search using the past experience. In this work,
DE is employed in exploring the search space to find good

Algorithm 2 RVNS-PROCEDURE
Require:

- Define neighborhood structures Nk for k = 1,2, ...,kmax,
that will be used in the search
- Get the initial solution x
- Choose stopping condition
repeat

k ← 1
while k < kkmax do

Shaking:
Generate a point x′ at random from the kth
neighborhood of x (x′ ∈ Nk(x))

Move or not:
if x′ is better than the incumbent x then

x ← x′
k ← 1

else
set k ← k +1

end if
end while

until stopping condition is met

neighborhoods, whereas the exploitation is achieved by RVNS,
which is regarded as a local search method for intensive search
of the neighborhoods of the best solution generated by DE in
each iteration.

As discussed earlier, to apply PROAFTN, the intervals [S1
jh,

S2
jh] and [q1

jh,q
2
jh] satisfy the constraints in Eq. (2) and the

weights w jh are required to be obtained for each attribute g j
belonging to each class Ch. In this study, the induction of
weights is based on the calculation of entropy and information
gain [27]. An entropy measure of a set of objects is calculated
as follows:

Entropy = −
C

∑
i=1

(Pi) log2 (Pi) (9)

where Pi is the proportion of instances in the dataset that take
the ith value of the target attribute, and C represents the number
of classes.

To simplify the constraints in Eq. (2), the variable substitu-
tion based on Eq. (1) is used. As a result, parameters d1

jh and
d2

jh are used instead of q1
jh and q2

jh, respectively. Therefore,
the optimization problem, which is based on maximizing
classification accuracy to provide the optimal parameters, is
defined here,

P : Maximize f (S1
jh,S

2
jh,d

1
jh,d

2
jh,w jh,n) (10)

Subject to: S1
jh ≤ S2

jh;d1
jh,d

2
jh ≥ 0

m

∑
j=1

w jh = 1

0 ≤ w jh ≤ 1

where f depends on the classification accuracy and n rep-
resents the set of training objects/samples to be assigned to
different classes. The procedure for calculating the fitness
function f (S1

jh,S
2
jh,d

1
jh,d

2
jh,w jh,n) is described in Table I.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

827

P

For all a ∈ n:

Step 1: - Obtain the weights w jh (Eq. 9)

- Compute the fuzzy indifference relation I(a,bh
i) (Eq. (5))

- Evaluate the membership degree δ (a,Ch
) (Eq. (6))

- Assign the object to the class (Eq. (7))

Step 2: - Compare the value of the new class with the true class Ch

- Calculate the classification accuracy (i.e. the fitness value):

f =

number of correctly classified objects
n

n

C1 C2 Ck

Classes

g
1

g
2

gm

Attributes

S1

Parameters

d1

S2 d2

Dataset

D

b1

1

Prototypes

b1

2
b1

Lh

In this study, DE and RVNS are utilized to solve the
optimization problem described in Eq. (10). The problem
dimension D (i.e., the number of search parameters in the
optimization problem) is proportional to the number of classes
k, prototypes Lh and attributes m in the problem. Figure 2
describes graphically the problem’s dimensionality. Because
of this hierarchal structure, the creation of the trial vector
is different from the typical one used in DE described in
Section II-B. The mutation and crossover steps to update the
elements of the trial individual vi are performed as follows:

viτ jbh =

{
xr1τ jbh +F(xr2τ jbh − xr3τ jbh), if (randτ < κ or ρ = τ)

xi jlhτ , otherwise.
(11)

i,r1,r2,r3 ∈ [1, ...,Npop], i �= r1 �= r2 �= r3;

h = 1, ...,k; b = 1, ...,Lh; j = 1, ...,m; τ = 1, ...,D

where, as described in Section II-B, F is the mutation factor
∈ [0,2] and κ is the crossover factor. This modified operation
(i.e., Eq. (11)) forces the mutation and crossover process to
be applied on each element τ selected randomly for each set
of 4 parameters S1

jh,S
2
jh,d

1
jh and d2

jh in vi for all j = 1,2, ...,m,

Algorithm 3 Creation of the trial individual vi

Require:
Number of classes k, number of prototypes Lh and number
of attributes m
Problem dimension: D = dim(x)

Control parameters: F,κ
Boundary constraints for D parameters: l,u
The values: r1,r2,r3
Update the contents of vi:
for h = 1 to k do

for b = 1 to Lh do
for j = 1 to m do

Select randomly one parameter τ ∈ D
Update viτ jbh elements (Eq. (11))
Repair parameters violating constraints:
if (viτ jbh /∈ [liτ jbh,uiτ jbh]) then

viτ jbh ← rand[liτ jbh,uiτ jbh]

end if
end for

end for
end for
return vi

b = 1,2, ...,Lh and h = 1,2, ...,k. Algorithm 3 illustrates the
required steps to create the trial individual vi.

Using RVNS as a local search algorithm, the following
equations are considered to update the boundary for the
previous solution x (i.e., the solution provided by DE). In
each iteration inside RVNS, the boundaries for each parameter
(S1

jh,S
2
jh,d

1
jh,d

2
jh) are updated. The lower boundary is identified

as:
lτ jh = xτ jh − (k/kmax)xτ jh (12)

where lτ jh represents the lower boundary for each element
τ ∈ D. k/kmax is the dimension or range of the search space.
xτ jh is the initial or previous solution provided by DE, which
contains the parameters (S1

jh,S
2
jh,d

1
jh,d

2
jh) before update.

uτ jh = xτ jh +(k/kmax)xτ jh (13)

where uτ jh are the elements of u which represents the upper
boundary. The shaking phase to generate randomly x́ is given
by:

x́τ jh = lτ jh +(uτ jh − lτ jh).rand[0,1) (14)

The steps which explain the utilization of RVNS to learn
PROAFTN are illustrated in Algorithm 4.

The complete procedure, which illustrates the flow of the
classification procedure of the proposed DEPRO-RVNS is
presented in Algorithm 5. After the initialization of all in-
dividuals x, the optimization is then implemented iteratively.
At each iteration, a new fitness value (classification accuracy)
for each individual according to Eq. (10) is calculated. An
individual is replaced by its corresponding trial individual
if the latter has better fitness. Furthermore, to enhance the
search strategy and to get a better solution, the best solution
found so far in each iteration by DE is submitted to RVNS
for further exploration and exploitation. After completing the

TABLE I
ROCEDURE TO CALCULATE OBJECTIVE FUNCTION f

Fig. 2. DEPRO-RVNS Dimension.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

828

Algorithm 4 The RVNS based local search for PROAFTN
Require:

Get DE premature-solution as initial solution x which
contains S1

jh,S
2
jh,d

1
jh,d

2
jh

Calculate the objective function f (x) of the optimization
problem in Eq. (10)
stopping condition k is set to 4
repeat

k ← 1
Shaking:
while k < kkmax do

for each parameter (S1
jh,S

2
jh,d

1
jh,d

2
jh) ∈ x do

- Update the boundary for each parameter τ ∈ D
according to (Eq. (12)) and Eq. (13)

- Generate randomly a new position x́ from kth
neighborhood for τth parameter ∈Nk(τ) Eq. (14)

end for
Submit x́ to calculate the new fitness value (f)́

according to Eq. (10))
Move or not:
if f (́x́) is better than the incumbent f (x) then

x ← x́
k ← 1

else
set k ← k +1

end if
end while

until stopping condition is met
return the best generated point x́ to DE to continue the
search

optimization stage, the optimal parameters x∗ and the testing
data are submitted to PROAFTN to perform classification. The
classification procedure based on testing data is carried out
using equations (5) to (7).

IV. APPLICATION AND ANALYSIS OF DEPRO-RVNS

The proposed DEPRO-RVNS algorithm (Algorithm 5) is
implemented in Java and applied to 12 popular datasets:
Breast Cancer Wisconsin Original (Bcancer); 9 attributes out
of 10 are used, Transfusion Service Center (Blood), Heart
Disease (Heart), Hepatitis, Haberman’s Survival (HM), Iris,
Liver Disorders (Liver), Mammographic Mass (MM), Pima
Indians Diabetes (Pima), Statlog Australian Credit Approval
(STAust), Teaching Assistant Evaluation (TA), and Wine. The
datasets are in the public domain and are available at the
University of California at Irvine (UCI) Machine Learning
Repository database [30]. The details of the dataset description
and dimensionally are presented in Table II. The dimension-
ality D = dim(x) describes the number of elements of each
individual required by DEPRO-RVNS. Considering two pro-
totypes for each class, and four parameters for each attribute
S1,S2,d1,d2 are needed, the number of components of D for
each problem is 2×4×k×m, where k and m are the number
of classes and attributes, respectively.

Algorithm 5 DEPRO-RVNS Algorithm
Require:

Training data NT , testing data NS
Number of classes k, number of attributes m
Problem dimension: D = dim(x)

Control parameters: Npop,F,κ
Stopping condition Ngen; number of generation or iteration
Boundary constraints for D parameters: l,u
Initialization:
Initialize population Npop ← rand ∈ [l,u]

Evaluate the objective function f (x) (Eq. (10))
Start the optimization:
for gen = 1 to Ngen do

for i = 1 to Npop do
- Choose randomly r1,r2,r3 ∈ [1, ...,Npop] where:

r1 �= r2 �= r3 �= i
- Create the trial individual vi (Algorithm 3)
- Evaluate the objective function f (vi) (Eq. (10))
- Select the best solution x
Apply local search (RVNS:)

Find better solution by using RVNS:
(i.e., x′ = LocalSearch(x)) (Algorithm 4)

if (f ′(x′) > f (x)) then
x = x′

end if
end for

end for
Classification of unknown data:
Submit the best solution x∗ and testing data (NS) to
PROAFTN for evaluation

D

Dataset Instances Attributes Classes D = dim(x)

1 BCancer 699 9 2 144

2 Blood 748 4 2 64

3 Heart 270 13 2 208

4 Hepatitis 155 19 2 304

5 HM 306 3 2 48

6 Iris 150 4 3 96

7 Liver 345 6 2 96

8 MM 961 5 2 80

9 Pima 768 8 2 128

10 STAust 690 14 2 224

11 TA 151 5 3 120

12 Wine 178 13 3 312

A. Parameters Settings

To apply DEPRO-RVNS, the following factors are consid-
ered before applying the optimization:

• The bounds for S1
jh and S2

jh vary between μ jh − 6σ jh
and μ jh + 6σ jh, where μ jh and σ jh represent mean and
standard deviation for each attribute in each class, respec-
tively;

• The bounds for d1
jh and d2

jh vary in the range [0,6σ jh].

TABLE II
ATASET DESCRIPTION

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

829

These regions are defined before starting the training stage.
During the optimization phase, the parameters S1

jh,S
2
jh,d

1
jh,d

2
jh

evolve within the aforementioned boundary constraints. The
parameters are selected so that the classification accuracy is
maximized.

Also, the following technical factors are considered for
implementing DEPRO-RVNS:

• Setting the best values for κ and F varies from one
application to another. However, based on the overall
experimental results, it was noticed that setting κ = 0.90
and F = 0.50 was a suitable choice for all datasets.

• The size of the population is fixed at Npop = 80;
• The maximum iteration number is fixed at Ngen = 500.

B. Results and Analysis
The experimentation work is performed in two stages. First,

to test the performance and the robustness of DEPRO-RVNS,
10 independent runs are executed over each dataset. Second,
to compare the performance of DEPRO-RVNS against other
well-known machine learning classifiers, similar experimental
work is performed on the same dataset using Weka (the open
source platform described in [27]).

Since the proposed learning approach is based on meta-
heuristics, further investigation of the robustness of the method
is examined. In this context, Table III lists the results for the
performance of DEPRO-RVNS on both training and testing
sets as applied to all datasets in each independent run. By
observing the standard deviation values, it is possible to see
that DEPRO-RVNS provides good and stable results on all
datasets. The classification accuracy on the training and testing
datasets is stable since they are situated around their average
(small standard deviation for both classifiers and databases).
Columns 2, 3 and 4 represent best, mean, and standard devia-
tion of the solutions obtained in 10 independent executions of
DEPRO-RVNS on the training data, whereas columns 5 to 7
represent the same quantities but as the algorithm is applied to
the testing data. By observing these results one can see that, in
all 10 independent runs, the classification accuracy obtained
by each dataset did not deviate by more than 0.94 % on the
training dataset and 1.79 % on the testing dataset. Furthermore,
DEPRO-RVNS was able to provide excellent results in terms
of classification accuracy on both training and testing.

To evaluate the performance of DEPRO-RVNS versus other
classifiers, further experimental work is conducted with six
machine learning techniques. These algorithms are chosen
from different machine learning theories; they are: 1) Tree
induction C4.5 (J48) [22], 2) statistical modelling, Naive
Bayes (NB) [23], 3) Support Vector machines (SVM), SMO
[31], 4) Neural Network (NN), multilayer perceptron (MLP)
[32], 5) instance-based learning, IBk with k=3 [33], and 6)
rule learning, PART [34]. The open source platform Weka [27]
is used with its default settings to run these algorithms. Fur-
thermore, to evaluate the advantages of using RVNS, similar
experimental work to that presented in Table III was performed
using DE and PROAFTN (i.e., DEPRO alone without using
RVNS).

Table IV documents the results of the classification accuracy
obtained by DEPRO, DEPRO-RVNS and other algorithms

STATISTICAL EVALUATIONS OF DEPRO-RVNS (IN %) IN TERMS OF THE
BEST SOLUTION FOUND, MEAN, AND STANDARD DEVIATION OF 10

Dataset
Training Data Testing Data

Best Min Mean Std Dev Best Min Mean Std Dev

Bcancer 98.06 98.01 98.05 0.03 97.71 96.00 97.05 0.30

Blood 82.13 81.71 81.94 0.13 81.52 78.48 79.61 0.95

Heart 89.22 88.31 88.67 0.29 85.56 82.00 83.81 1.29

Hepatitis 92.90 92.54 92.70 0.12 86.67 83.63 85.37 1.14

HM 80.79 79.01 79.58 0.70 77.18 73.61 76.10 1.09

Iris 99.85 99.04 99.36 0.33 97.23 96.00 96.66 0.34

Liver 80.07 77.59 78.70 0.94 72.94 68.22 70.99 1.79

MM 85.14 84.18 84.60 0.43 84.84 83.00 84.77 0.64

Pima 81.60 79.45 80.20 0.87 80.52 75.32 77.23 1.44

STAust 89.55 88.53 89.03 0.36 86.96 85.36 86.04 0.48

TA 68.43 66.00 66.98 0.73 63.09 59.90 62.72 1.67

Wine 100.00 99.93 99.99 0.03 97.59 95.50 97.10 0.72

based on testing dataset. The best results achieved on each
application are marked in bold. The average results of 10 runs
for DEPRO-RVNS presented in Table III are considered in this
comparisons. The same procedure adopted for DEPRO-RVNS
is also applied for DEPRO. It is noticed that DEPRO-RVNS
gives better results than using DEPRO alone. DEPRO-RVNS
gives better results on 10 out of 12 datasets, which means
the utilization of RVNS with DE fairly consistently improved
the performance of PROAFTN method. Furthermore, it was
noticed that when using RVNS inside DE, the best solution
could be reached with a smaller number of iterations. For
instance, some datasets such as Iris, breast cancer (Bcancer) or
Wine, etc. the best solution could be obtained in 20 iterations
only. Based on these conclusions, DEPRO-RVNS is adopted
in the next phase of this study to be compared with other
classifiers.

Based on Demšar’s recommendation [35], the Friedman
test is used in this work to evaluate whether there is a
difference in the performance between DEPRO-RVNS and
other classifiers. Provided that the Friedman test indicates
statistically significant difference on 12 datasets and the seven
classifiers including DEPRO-RVNS, other advanced tests such
as Bonferroni-Dunn’s, Hochberg’s, Hommel’s, and Nemenyi’s
procedures described in [35] and in [36] are used to determine
which classifier(s) performs best. More particularly, these tests
are used to test whether the difference between DEPRO-RVNS
versus other classifiers is meaningful. Based on the classifica-
tion accuracy results obtained by each classifier presented in
Table IV, the algorithms ranking results using Friedman test
are shown in Table V.

Friedman’s and Iman-Davenport’s statistics are respectively:

• Chi-square χ2 = 25.8304 with 6 degrees of freedom,
• F-distribution F = 6.1541 with k−1 and (k-1)(N-1), that

is 6 and 66 degrees of freedom.

INDEPENDENT RUNS

TABLE III

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

830

EXPERIMENTAL RESULTS BASED ON CLASSIFICATION ACCURACY (IN %)
TO MEASURE THE PERFORMANCE OF THE DIFFERENT CLASSIFIER

COMPARED WITH

Algorithm C4.5 NB SVM NN k-nn PART DEPRO DEPRO-

Dataset J48 SMO MLP Ibk, k=3 RVNS

1 BCancer 94.56 95.99 96.70 95.56 97.00 94.28 96.97 97.05

2 Blood 77.81 75.40 76.20 78.74 74.60 78.07 79.59 79.61

3 Heart 76.60 83.70 84.10 78.10 78.89 73.33 83.74 83.81

4 Hepatitis 80.00 85.81 83.87 81.94 84.52 82.58 84.17 85.37

5 HM 71.90 74.83 73.52 72.87 70.26 72.55 80.36 76.10

6 Iris 96.00 96.00 96.00 97.33 95.33 94.00 96.47 96.66

7 Liver 68.7 56.52 58.26 71.59 61.74 63.77 71.01 70.99

8 MM 82.10 78.35 79.24 82.10 77.21 82.21 84.33 84.77

9 Pima 71.48 75.78 77.08 75.39 73.44 73.05 75.37 77.23

10 STAust 85.22 77.25 85.51 84.93 83.62 83.62 85.62 86.04

11 TA 59.6 52.98 54.3 54.3 50.33 58.28 61.80 62.72

12 Wine 91.55 97.4 99.35 97.4 95.45 92.86 96.87 97.10

AVERAGE RANKINGS OF THE ALGORITHMS

Algorithm Ranking
RVNS-DEPRO 1.5833

SVM 3.375
NN 3.5417
NB 4.2917

C4.5 4.875
PART 5.0417
3-NN 5.2917

k is the number of classifiers and N is the number of datasets.
The critical value of F(6,66) for α = 0.05 is 2.24; this
indicates that the performance of the algorithms is signifi-
cantly different. Table VI summarizes the hypothesis ordered
by their p-value and the adjustment of α’s by Bonferroni-
Dunn’s, Hochberg’s, Hommel’s, and Nemenyi’s statistical pro-
cedures [35], [36]. The difference between DEPRO-RVNS
notified by R0 and other classifiers Ri. The standard error

between two classifiers is SE =

√
k(k+1)

6N . The p-values are
documented in the last column. p-values identify the proba-
bility of difference in performance among the classifiers over
the datasets. According to this analysis, Nemenyi’s proce-

PSOPRO VERSUS OTHER CLASSIFIERS FOR α = 0.05

i algorithms z = (R0 −Ri)/SE p
1 SVM 2.0316 0.0423
2 NN 2.2205 0.0264
3 NB 3.0709 0.0021
4 C4.5 3.7324 1.8966E-4
5 PART 3.9214 8.8043E-5
6 3-NN 4.2049 2.6125E-5

dure rejects those hypotheses that have a p-value ≤ 0.0023.
Bonferroni-Dunn’s procedure rejects those hypotheses that
have a p-value ≤ 0.0083. Hochberg’s procedure rejects those
hypotheses that have a p-value ≤ 0.05. Hommel’s procedure

rejects all hypotheses. Based on these outcomes, the pairwise
comparisons between DEPRO-RVNS and other classifiers are
drawn as follows:

1) DEPRO-RVNS performs strongly better than 3-NN,
PART, C4.5, and NB.

2) DEPRO-RVNS performs better than NN and SVM.
Regarding the execution time of DEPRO-RVNS, it was

noticed that, as expected, the execution time is dependent
mainly on the problem size (i.e, the number of training
datasets and the number of attributes) and the number of
PROAFTN parameters (D) involved in the training process.
Even though, the number of iterations is set to 500 in this
study, DEPRO-RVNS was able to get the presented results
in much less iterations number with a very good speed. It
is noticed that the execution time of DEPRO-RVNS was
compared favorably with the execution time of NN most of the
cases. The remaining algorithms 3-NN, C4.5, NB, PART and
SVM, respectively were relatively faster than DEPRO-RVNS.

V. CONCLUSIONS

In this paper, a new methodology based on the metaheuristic
algorithms DE and RVNS is proposed for training the MCDA
classification method PROAFTN. The proposed technique
for solving classification problems is named DEPRO-RVNS.
During the learning stage, DE and RVNS are utilized to induce
the classification model for PROAFTN by inferring the best
parameters from data with high classification accuracy.

The performance of DEPRO-RVNS applied to 12 classifi-
cation dataset demonstrates that DEPRO-RVNS outperforms
the well-known classification methods PART, 3-nn, C4.5, NB,
SVM, and NN. PROAFTN requires some parameters and uses
fuzzy approach to assign objects to classes. As a result there is
richer information, more flexibility, and therefore an improved
chance of assigning objects to the preferred classes. In this
study, using the metaheuristics DE and RVNS to obtain these
parameters proved to be a successful approach for training
PROAFTN and thus greatly improving its performance.

In conclusion, it was observed that DEPRO-RVNS signif-
icantly improved the performance of the PROAFTN method.
Hence, the utilization of hybrid algorithm seems to be a
promising and efficient approach for learning other classifica-
tion methods from different paradigms. Likewise, PROAFTN
is a relatively new classification method that merits further
investigation in the area of data mining and knowledge dis-
covery.

ACKNOWLEDGMENT

We gratefully acknowledge the support from NSERC’s
Discovery Award (RGPIN293261-05) granted to Dr. Nabil
Belacel.

REFERENCES

[1] D. Dutton and G. Conroy, “A review of machine learning,” The Knowl-
edge Engineering Review, vol. 12:4, pp. 341–367, 1996.

[2] D. Larose, Discovering Knowledge in Data: An Introduction to Data
Mining. John Wiley & Sons, 2005.

[3] E. Alpaydin, “Introduction to machine learning (adaptive computation
and machine learning),” MIT Press, 2004.

TABLE IV

DEPRO-RVNS

TABLE V

TABLE VI

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

831

[4] B. Roy, “Multicriteria methodology for decision aiding,” Kluwer Aca-
demic, 1996.

[5] N. E. Fenton and W. Wang, “Risk and confidence analysis for fuzzy
multicriteria decision making,” Knowledge-Based Systems, vol. 19, no. 6,
pp. 430–437, 2006.

[6] C. Zopounidis and M. Doumpos, “Multicriteria classification and sorting
methods: A literature review,” European Journal of Operational Re-
search, vol. 138, no. 2, pp. 229–246, 2002.

[7] K. Jabeur and A. Guitouni, “A generalized framework for
concordance/discordance-based multi-criteria classification methods,”
in Information Fusion, 2007 10th International Conference on, July
2007, pp. 1–8.

[8] N. Belacel, “Multicriteria assignment method PROAFTN: methodology
and medical application,” European Journal of Operational Research,
vol. 125, no. 1, pp. 175–183, 2000.

[9] N. Belacel and M. Boulassel, “Multicriteria fuzzy assignment method:
A useful tool to assist medical diagnosis,” Artificial Intelligence in
Medicine, vol. 21, no. 1-3, pp. 201–207, 2001.

[10] N. Belacel, P. Vincke, M. Scheiff, and M. Boulassel, “Acute leukemia
diagnosis aid using multicriteria fuzzy assignment methodology,” Com-
puter Methods and Programs in Biomedicine, vol. 64, no. 2, pp. 145–
151, 2001.

[11] N. Belacel, Q. Wang, and R. Richard, “Web-integration of PROAFTN
methodology for acute leukemia diagnosis,” Telemedicine Journal and
e-Health, vol. 11, no. 6, pp. 652–659, 2005.

[12] F. Al-Obeidat, N. Belacel, P. Mahanti, and J. A. Carretero, “Discretiza-
tion techniques and genetic algorithm for learning the classification
method proaftn,” in Eighth International Conference On Machine Learn-
ing and Applications. Los Alamitos, CA, USA: IEEE Computer Society,
2009, pp. 685–688.

[13] R. Storn and K. Price, “Differential evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, December 1997.

[14] S. Paterlini and T. Krink, “Differential evolution and particle swarm
optimisation in partitional clustering,” Comput. Stat. Data Anal, vol. 50,
pp. 1220–1247, 2006.

[15] B. Subudhi and D. Jena, “Differential evolution and levenberg marquardt
trained neural network scheme for nonlinear system identification,”
Neural Process. Lett., vol. 27, no. 3, pp. 285–296, 2008.

[16] M. Tayel and A. H. Yassin, “An introduced neural network-differential
evolution model for small signal modeling of phemts,” International
Conference on Electronic Computer Technology, vol. 0, pp. 499–506,
2009.

[17] P. Hansen and N. Mladenovic, “Variable neighborhood search for the
p-median,” Location Science, vol. 5, pp. 207–226, 1997.

[18] P. Hansen and N. Mladenovic, “Variable neighborhood search: Principles
and applications,” European Journal of Operational Research, no. 130,
pp. 449–467, 2001.

[19] Proceedings of the International Joint Conference on Neural Networks,
IJCNN 2008, part of the IEEE World Congress on Computational
Intelligence, WCCI 2008, Hong Kong, China, June 1-6, 2008. IEEE,
2008.

[20] C.-Y. Tsai and C.-C. Chiu, “A vns-based hierarchical clustering method,”
in CIMMACS’06: Proceedings of the 5th WSEAS International Con-
ference on Computational Intelligence, Man-Machine Systems and Cy-
bernetics. Stevens Point, Wisconsin, USA: World Scientific and
Engineering Academy and Society (WSEAS), 2006, pp. 268–275.

[21] N. Belacel, H. Raval, and A. Punnen, “Learning multicriteria fuzzy
classification method PROAFTN from data,” Computers and Operations
Research, vol. 34, no. 7, pp. 1885–1898, 2007.

[22] J. R. Quinlan, “Improved use of continuous attributes in c4.5,” Journal
of Artificial Intelligence Research, vol. 4, pp. 77–90, 1996.

[23] G. Cooper and E. Herskovits, “A bayesian method for the induction of
probabilistic networks from data,” Machine Learning, vol. 9, no. 4, pp.
309–347, 1992.

[24] C. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 1–47,
1998.

[25] G. Castellano, A. Fanelli, and M. Pelillo, “An iterative pruning algo-
rithm for feedforward neural networks,” IEEE Transactions on Neural
Networks, vol. 8, no. 3, pp. 519–531, 1997.

[26] B. Twala, “Multiple classifier application to credit risk assessment,”
Expert Systems with Applications, vol. In Press, Uncorrected Proof, pp. –
, 2009.

[27] H. Witten, Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Series in Data Management Systems, 2005.

[28] N. Belacel, “Multicriteria classification methods: Methodology and
medical applications,” Ph.D. dissertation, Free University of Brussels,
Belgium, 1999.

[29] J. Kacprzyk, Advances in Differential Evolution. Springer, 2008.
[30] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[31] S. Pang, D. Kim, and S. Bang, “Face membership authentication

using SVM classification tree generated by membership-based lle data
partition,” IEEE Transactions on Neural Networks, vol. 16, no. 2, pp.
436–446, 2005.

[32] Y. Shirvany, M. Hayati, and R. Moradian, “Multilayer perceptron
neural networks with novel unsupervised training method for numerical
solution of the partial differential equations,” Appl. Soft Comput., vol. 9,
no. 1, pp. 20–29, 2009.

[33] D. Aha, “Lazy learning,” Dordrecht: Kluwer Academic Publishers, 1997.
[34] D. K. Subramanian, V. S. Ananthanarayana, and M. Narasimha Murty,

“Knowledge-based association rule mining using and-or taxonomies,”
Knowledge-Based Systems, vol. 16, no. 1, pp. 37–45, 2003.

[35] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research., vol. 7, pp. 1–30, 2006.

[36] S. Garcia and F. Herrera, “An extension on ”statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons,” Journal
of Machine Learning Research, vol. 9, pp. 2677–2694, 2009.

