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Abstract—This paper adopted the hybrid differential transform 

approach for studying heat transfer problems in a gold/chromium thin 

film with an ultra-short-pulsed laser beam projecting on the gold side. 

The physical system, formulated based on the hyperbolic two-step heat 

transfer model, covers three characteristics: (i) coupling effects 

between the electron/lattice systems, (ii) thermal wave propagation in 

metals, and (iii) radiation effects along the interface. The differential 

transform method is used to transfer the governing equations in the 

time domain into the spectrum equations, which is further discretized 

in the space domain by the finite difference method. The results, 

obtained through a recursive process, show that the electron 

temperature in the gold film can rise up to several thousand degrees 

before its electron/lattice systems reach equilibrium at only several 

hundred degrees. The electron and lattice temperatures in the 

chromium film are much lower than those in the gold film. 

 

Keywords—Differential transform, hyperbolic heat transfer, thin 

film, ultrashort-pulsed laser. 

I. INTRODUCTION 

LTRA short laser pulse has become a popular laser 

manufacturing technique to avoid the thermal damage due 

to the diffusion of laser energy in work pieces and to improve 

manufacturing quality [1]. The ultra-short pulsed laser will 

induce high temperature gradient, up to thousands of degrees in 

Kevin temperature, within a very short duration of time, 

ranging from sub-picoseconds to femtoseconds, during 

manufacturing processes. The traditional Fourier heat transfer 

model, which assumes the infinite speed of thermal waves, 

cannot be applied to analyze the heat transfer phenomena of 

engineering applications with high-power for a short-duration 

[2]. Cattaneo [3] and Vernotte [4] proposed the hyperbolic heat 

transfer model to account for the effects of thermal waves 

travelling at a finite speed.  

Because the heat capacity of the electron system is much 

smaller than that of the lattice system in metals, the high 

thermal unbalance will occur after the short duration of laser 

excitation. Energy flux between electron and lattice will 

continue after laser duration. Anisimov, Kapeliovich and 

Perelman [5] proposed the two-step model to model the energy 

absorption process in the laser manufacturing process, which 

assumes that laser energy is absorbed first by the electron 

system and then flows into the lattice system through the 

coupling thermal effects between the two systems and the rise 

of the lattice temperature follows. Qiu and Tien [6] integrated 
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the thermal wave effects into the two-step model of the electron 

system. Their work studied heat transfer mechanisms during 

ultrashort laser heating process from a microscopic point of 

view. Chen and Beraun [7] modified Qiu and Tien's model to 

include the thermal wave effects in the lattice system. Jiang and 

Tsai [8] are able to determine electron heat capacity, electron 

relaxation time, electron conductivity, reflectivity, and 

absorption coefficient using the full-run quantum treatment.  

Several numerical works have been done in studying laser 

heating of a single layer thin film based on the hyperbolic 

two-step model [7], [9], [10]. 

It is quite often that microelectronic devices are constructed 

with multilayer thin films. Refection and refraction of thermal 

waves may occur at the interface between dissimilar materials. 

Ho, Kuo and Jiaung [11] studied the propagation of an 

ultrashort pulsed energy across the solid interface of dissimilar 

material layers using the lattice Boltzmann method. Lor and 

Chu [12] considered the hyperbolic heat conduction problem in 

the film and substrate composites. Barron and Dai [13] studied 

the 3D parabolic heat transfer in a double-layered thin film 

using the hybrid finite-element- finite-difference method. 

Wang, Dai and Hewavitharana [14] further included the effects 

of thermal deformation in a double-layered thin film exposed to 

ultrashort pulsed lasers. The speed of thermal waves is 

considered infinite in the parabolic heat transfer model.  

When dealing with the hyperbolic heat transfer problem 

numerically, it often encounters nonphysical numerical 

oscillation near the thermal wave front. Many numerical 

procedures have been proposed to eliminate those difficulties 

such as MacCormack’s predictor-corrector scheme [15], flux 

differencing scheme [16], [17], and the total variation 

diminishing (TVD) scheme [18], [19]. The differential 

transform method, which is a function transformation 

technique based on Taylor’s series, is developed mainly to 

solve initial value problems [20]. Recently, the differential 

transform method has successfully been applied to many 

engineering problems. Peng and Chen [21] use the differential 

transform method to the energy transfer induced by laser 

irradiation in the solid with an energy source modeled based 

upon Beer's law. Chiba [22] analyzes the one-dimensional 

steady temperature field and thermal stresses in an annular disk 

of variable thickness with a temperature-dependent heat 

transfer coefficient. The present study intends to integrate the 

differential transformation method with the finite difference 

method to solve heat transfer problems in a double-layered thin 

film exposed to an ultrashort pulsed laser based on the double 

hyperbolic two-step model. The differential transform method 

is used to transfer the governing equations in the time domain 
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into the spectrum equations, which is further discretized in the 

space domain by the finite difference method. The distribution 

of the electron and lattice temperatures is solved.  
 

 

Fig. 1 Physical system of a double-layered thin film exposed to an 

ultrashort-pulsed laser 

 

 

Fig. 2 The hyperbolic two-step heat transfer model of laser heating 

II.  MATHEMATICAL MODEL 

Consider a double-layered thin film exposed to an ultrashort 

-pulsed laser as shown in Fig. 1. The upper layer is made of 

chromium and the bottom layer is made of gold. 

Thermo-physical properties of gold and chromium are listed in 

Table I. Both layers have a thickness of 0.1µm and a length of 

10µm. An ultrashort pulsed laser is applied at the gold side at 

the center point from below. When an ultrashort pulsed laser 

interacts with a metal thin film, the laser energy is first 

absorbed by free electrons and then transfers to the lattice 

system. The energy also propagates away at a finite speed from 

the interaction location through the thermal diffusion in the 

electron system and lattice system. The process is characterized 

as the hyperbolic two-step heat transfer model as shown in Fig. 

2. Assume that the major laser energy transfers across the 

gold/chromium interface mainly through the thermal radiation 

due to the temperature difference between the gold/chromium 

electron temperatures. No energy flows across the interface 

between the gold/chromium lattice systems. The complete 

physical system covers three characteristics: (i) coupling 

effects between the electron/lattice systems, (ii) thermal wave 

propagation in metals, and (iii) radiation effects along the 

interface. Let superscript (m) be the material code, m =1 refers 

to the gold layer and m=2 refers to the chromium layer. 

Subscripts e and l refer to the electron system and the lattice 

system respectively. The Gaussian laser heat source function 

and governing equations, accounting for laser energy 

absorption, thermal coupling between electron/lattice, and 

thermal waves, are given as [14] 
 

TABLE I 
THERMOPHYSICAL PROPERTIES 

Parameters Gold Chromium 

Ce0 2.1×10-14 J/µm3K 5.8×10-14 J/µm3K 

Cl 2.5×10-12 J/µm3K 3.3×10-12 J/µm3K 

G 2.6×1010 W/µm3K 42×1010 W/µm3K 

k0 315×10-6 W/µmK 94×10-6 W/µmK 

kl 315×10-6 W/µmK 94×10-6 W/µmK 

ρ 19300×10-18 kg/µm3 7190×10-18 kg/µm3 

τe 0.04ps 0.04ps 

τl 0.8ps 0.8ps 

 

Gaussian laser heat source: 
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Electron energy equations: 
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Lattice energy equations: 
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Here, t is the time, S is the energy absorption rate, J is the 

laser fluence, R is the surface reflectivity, tp is the laser pulse 

duration, ys is the optical penetration depth, rs is the spatial 

profile parameter, and x0 is the laser acting position. T is the 

temperature, k is the thermal conductivity, G is the 

electron-lattice coupling factor, C is the heat capacity, τ is the 

relaxation times. q
x
 and q

y
 are the  heat fluxes in the x and y 

directions respectively. It is assumed that the electron heat 

capacity varies linearly with the electron temperature for both 

gold and chromium, Ce=Ce0(Te/T0), and the electron thermal 

conductivity depends on both the electron and lattice 

temperature, ke=k0(Te/Tl), where Ce0, k0, T0 are the reference 

values of electron heat capacity, electron thermal conductivity 

and temperature, respectively. The nonlinear interfacial 

radiation condition is given as [23] 
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Here, κB = 5.669×10
-8

 W/µm
3
K

2 
is Boltzman's constant. The 

electron temperature and lattice temperature may be 

discontinuous across the gold/chromium interface. Assume that 

the electron/lattice system of the double-layered thin film is at 

equilibrium at T0 and there is no energy flux across the surfaces 

boundary in a very short of time duration. The initial conditions 

and the boundary conditions are  
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III. NUMERICAL DIFFERENTIAL TRANSFORM PROCEDURES 

The definition and operation of the differential transform 

method used in the present study are outlined briefly. Assuming 

that f(t) is an analytic function, the differential transform of f(t) 

at t=0 is defined based on the Taylor's expansion series as  
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H is the time span. F(k) is the spectrum function  of f(t) in the 

spectrum domain. The inverse differential transform procedure 

is defined as the infinite sum. However, practically, the original 

function f(t) is usually approximated by the n-th partial sum of 

power series as  
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Usually, the capital letter represents the differential 

transforms of the functions denoted by the corresponding 

lowercase letters, i.e., F(k)  is the spectrum function of f(k). Let  

h(t)=f(t)g(t), z(t)=f(t)/g(t), then the spectrum functions of h(t) 

and z(t) are defined as 
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The numerical procedures for applying the hybrid 

differential transform / finite difference method to solve present 

heat transfer problem include three major steps: (i) The 

governing equations, initial conditions and boundary 

conditions in the time domain are transformed into the 

spectrum equations, which are given in the recursive formulae, 

in the spectrum domain. (ii) The resulting spectrum equations 

are discretized by the finite difference method. (iii) The starting 

spectrum functions, n=1, are determined by the initial 

conditions. The successive spectrum functions, n>1, are further 

calculated from the recursive formulae and the associated 

boundary conditions. (iv) The original function is calculated by 

the finite partial sum of the spectrum function in the inverse 

transform procedure.  

To avoid confusion, if the original functions are given in the 

capitalized form, their spectrum functions are expressed by 

adding ῀ on the top of the original capital letters in the 

following paragraphs.  After applying the differential transform 

to the governing equations in (2) and (3) with respect to the 

time, the resulting spectrum equations in the recursive form are  

Recursive electron energy spectrum equations:  

 

( )

( ) ( )

( )

( ) kmy

e

km

em

e

kmy

e

m

e

kmx

e

km

em

e

kmx

e

m

e

k

l

lkm

e

lm

e

e

m

ekkm

l

km

e

kmy

e

kmx

ekm

e

m

e

e

m

e

Q
y

T
kQ

H

k

Q
x

T
kQ

H

k

TT
H

k

T

C
STTG

y

Q

x

Q
TT

H

k

T

C

)(
)(

)(1)()(

)(
)(

)(1)()(

1

0

1)()(

0

)(

0)()(

)()(
1)(0)(

0

)(

0

~
1

~
1

~~1~~~
 

~~1

−
∂

∂
−=

+

−
∂

∂
−=

+

+
−+−−

∂
−

∂
∂

−=
+

+

+

−

=

+−

+

∑

τ

τ

        (10) 

 

Recursive lattice energy spectrum equations: 
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The interfacial radiation condition is rewritten as  
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The initial and boundary condition along the four edges are 

rewritten as 
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Equations (10)-(13) are further discretized by the traditional 

finite difference method, which is described here. The spectrum 

functions for all k>1 are calculated sequentially from the 

recursive equations and the boundary conditions, once the 

starting spectrum functions, k=1, are directly given by the 

initial conditions. Usually, the time span H is assigned to be one 

time increment ∆t , which should carefully selected based on 

numerical accuracy and computation time. The numerical 

procedure is repeatedly calculated at each time step, in which 

the starting spectrum functions at each time step are replaced by 

the spectrum functions at the end of the previous time step.  
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IV. NUMERICAL EXAMPLES 

In the following numerical study, the laser heat source in (1) 

has the following manufacturing parameters: R=0.93, tp=0.1ps, 

ys=15.3×10
-3

µm, rs=1µm, initial temperature T0=300K and the 

laser fluence J is set at three different levels, J=500, 1000, and 

2000J/m
2
. After several convergent tests, the time span is set to 

be H=0.001ps and the space domain is divided into 100×100 

grid nodes. Fig. 3 shows the electron/lattice temperatures right 

at the laser acting location at x=5µm and y=0µm on the gold 

surface. The laser heat source reaches its maximum at t=0.2ps. 

The electron temperature rises rapidly to about 6700K for 

J=2000J/m
2 

because the laser energy is absorbed by free 

electrons first and drops gradually to about 1800K at t=20ps. At 

the same time, the lattice temperature gradually increases to 

about 900K by absorbing heat flux from the electrons. Even 

after the laser pulse is removed, the lattice temperature is on the 

rise because the higher electron temperature.  When J reduces 

to J=500J/m
2
, the maximum electron temperature reduces to 

about 3500K and the electron/lattice systems almost reach the 

equilibrium temperature at about 400K. Fig. 4 shows the 

electron/lattice temperatures at x=5µm and y=0.1µm in the 

chromium film. The heat energy has to transfer across the 

interface by radiation, which is more significant at high 

temperature. The electron/lattice temperatures are much lower 

than in the gold film. The maximum electron temperature is 

about 349K for J=2000J/m
2
. Very small lattice temperature rise 

is observed in the chromium film, about 2K even with 

J=2000J/m
2
. The electron/lattice systems also reach the 

equilibrium state at about t=1.2ps, which is much faster than in 

the gold film. Since the thermal waves take time to travel from 

the gold surface to the interface, the maximum electron 

temperature occurs slightly later at t=0.27ps.  

The distribution of the electron/lattice temperatures are 

demonstrated by the case with J=1000J/m
2
. Figs. 5 and 6 show 

the electron temperature and the lattice temperature in the 

x-direction on the gold surface (y=0µm) respectively. Figs. 7 

and 8 show the electron temperature and the lattice temperature 

of the chromium film in the x-direction at the interface 

(y=0.1µm) respectively. The major region under the effects of 

laser heating is within 3µm<x<7µm. The temperature outside 

the region shows no significant increase. Since the laser source 

is at its maximum strength at t=0.2ps, the electron temperature 

drops from largest values at t=0.2ps to smaller values at t=20ps. 

On the contrary, the lattice temperature increases from the 

initial temperature. The trend is quite consistent on the gold 

surface and along the chromium interface except that there is a 

great temperature difference between them.  

 

 

Fig. 3 Gold's temperatures at x=5µm,y=0µm 

 

 

Fig. 4 Chromium's temperatures at x=5µm,y=0.1µm 

 

 

Fig. 5 Gold's electron temperature at y=0µm (J=100J/m2K) 

 

 

Fig. 6 Gold's lattice temperature at y=0.1µm (J=100J/m2K) 

 

 

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

time (ps)

te
m
p
e
ra
tu
re
 (
o
K
)

�

 

 

Electron Temperature (J=500)

Electron temperature (J=1000)

Electron temperature (J=2000) 

Lattice temperature (J=500)

Lattice temperature (J=1000)

Lattice temperature (J=2000)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
300

310

320

330

340

350

time (ps)

te
m
p
e
ra
tu
re
 (
o
K
)

 

 

Electron temperature (J=500)

Electron temperature (J=1000)

Electron temperature (J=2000)

Lattice temperature (J=500)

Lattice temperature (J=1000)

Lattice temperature (J=2000)

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

x-coordinate (µm)

te
m
p
e
ra
tu
re
 (
o
K
)

 

 

0.2ps

0.5ps

1ps

10ps

20ps

0 1 2 3 4 5 6 7 8 9 10
300

400

500

600

x-coordinate(µm)

te
m
p
ra
tu
re
 (
o
K
)

 

 

0.2ps

0.5ps

1ps

10ps

20ps



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:11, 2013

2148

 

 

 

Fig. 7 Chromium's electron temperature at y=0.1µm (J=100J/m2K) 

 

 

Fig. 8 Chromium's lattice temperature at y=0.1µm (J=100J/m2K) 

 

Figs. 9 and 10 show the electron/lattice temperatures through 

the thickness at x=5µm at t=0.2,0.5,1,10,20ps. The phenomena 

caused by thermal waves are obviously observed in the gold 

film. At t=0.2ps, the electron temperature reaches its maximum 

on the gold surface at about 4100K. It drops to about 900K at 

t=20ps.  However, at the interface of the gold side, the electron 

temperature remains low at about 400K at t=0.2ps since the 

laser energy takes time to propagate toward the interface. The 

electron temperature at the interface increases to about 2900K 

at t=1ps while the electron temperature decreases on the gold 

surface. After t=10ps, the electron temperature through the 

thickness in the gold film drops uniformly to about 900K at 

t=20ps. At t=0.2ps, the lattice temperature on the gold surface 

is slightly higher than at the gold interface. As the laser heat 

source decreases and the thermal waves propagate toward the 

interface, the gold’s lattice temperature at the interface 

becomes higher than that on the gold surface. It is noted that at 

t=10ps, the gold’s lattice temperature at the interface is about 

100K higher than on the surface. At t=20ps, it increases up to 

1200K, which is higher than the gold’s electron temperature at 

the interface. It is due to the reflection of the thermal waves at 

the interface since there is no energy flux across the interface in 

the lattice system. The laser energy flows across the interface 

only through the electron system. The thermal damage may 

take place at the interface because the thermal reflection wave. 

The temperature difference between the gold layer and 

chromium layer is significant; the electron/lattice temperature 

near the interfacial region is closely examined further.   

Figs. 11-16 examine the electron/lattice temperature through 

the thickness in the region near the interface (0.08µm<y< 

0.12µm) with different laser fluence levels at different time 

(t=0.2, 0.5, 1ps).  At t=0.2ps, the temperature differences in the 

electron temperature at the interface are very small, about 250K 

for J=2000J/m
2
K as shown in Fig. 11. There is a very small 

amount of energy flux across the interface by radiation. Though 

the temperature increase in the lattice system at the interface is 

very small at t=0.2ps (less than 0.2
 
K), it is noted that in Fig. 12 

the chromium’s lattice temperature is higher than the gold’s 

lattice temperature at the interface. Because the temperature 

difference between the electron/lattice system is rather small at 

this moment for both gold and chromium, the larger coupling 

coefficient G of chromium means that the energy is more easily 

to transfer from the electron system into the lattice system. At 

the later time, the temperature difference between the electron 

/lattice system in the gold film becomes much higher than in the 

chromium film as shown in Figs. 13 and 14. The energy 

flowing into in the lattice system of the gold film increases 

because of the large temperature difference. It causes the higher 

lattice temperature in the gold film. Figs. 15 and 16 show that 

the electron temperature difference between gold and 

chromium increases from about 1700K for J=500J/m
2
K to 

3900K for J=2000J/m
2
K at t=1ps. However, the maximum 

lattice temperature differences are below 25K for all J values. 

The results also indicate that the chromium film is only slightly 

affected under the laser heating process in the present study. 

 

 

Fig. 9 Electron temperature through thickness at x=5µm (J=100J/m2K) 

 

 

Fig. 10 Lattice temperature through thickness at x=5µm (J=100J/m2K) 

 

 

Fig. 11 Electron temperature through thickness at x=5µm, t=0.2ps 
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Fig. 12 Lattice temperature through thickness at x=5µm, t=0.2ps 

 

 

Fig. 13 Electron temperature through thickness at x=5µm, t=0.5ps 

 

 

Fig. 14 Lattice temperature through thickness at x=5µm, t=0.5ps 

 

 

Fig. 15 Electron temperature through thickness at x=5µm, t=1ps 

 

 

Fig. 16 Lattice temperature through thickness at x=5µm, t=1ps 

V.  CONCLUSION 

A hybrid differential transform method can be used to solve 

the hyperbolic two-step heat transfer problems in laser heating 

of a double-layered thin film. It is efficient and can be easily 

implemented. The results show the lattice temperature may 

increase dramatically due to the reflection of thermal at the 

interface. The interfacial conditions have a significant effect on 

the present case and should be examined carefully. 
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