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Abstract—Modeling sediment transport processes by means of 

numerical approach often poses severe challenges. In this way, a 
number of techniques have been suggested to solve flow and 
sediment equations in decoupled, semi-coupled or fully coupled 
forms. Furthermore, in order to capture flow discontinuities, a 
number of techniques, like artificial viscosity and shock fitting, have 
been proposed for solving these equations which are mostly required 
careful calibration processes. In this research, a numerical scheme for 
solving shallow water and Exner equations in fully coupled form is 
presented. First-Order Centered scheme is applied for producing 
required numerical fluxes and the reconstruction process is carried 
out toward using Monotonic Upstream Scheme for Conservation 
Laws to achieve a high order scheme.  In order to satisfy C-property 
of the scheme in presence of bed topography, Surface Gradient 
Method is proposed. Combining the presented scheme with fourth 
order Runge-Kutta algorithm for time integration yields a competent 
numerical scheme. In addition, to handle non-prismatic channels 
problems, Cartesian Cut Cell Method is employed. A trained Multi-
Layer Perceptron Artificial Neural Network which is of Feed 
Forward Back Propagation (FFBP) type estimates sediment flow 
discharge in the model rather than usual empirical formulas. 
Hydrodynamic part of the model is tested for showing its capability 
in simulation of flow discontinuities, transcritical flows, 
wetting/drying conditions and non-prismatic channel flows. In this 
end, dam-break flow onto a locally non-prismatic converging-
diverging channel with initially dry bed conditions is modeled. The 
morphodynamic part of the model is verified simulating dam break 
on a dry movable bed and bed level variations in an alluvial junction. 
The results show that the model is capable in capturing the flow 
discontinuities, solving wetting/drying problems even in non-
prismatic channels and presenting proper results for movable bed 
situations. It can also be deducted that applying Artificial Neural 
Network, instead of common empirical formulas for estimating 
sediment flow discharge, leads to more accurate results. 
 

Keywords—Artificial neural network, morphodynamic model, 
sediment continuity equation, shallow water equations.  

I. INTRODUCTION 

ODELING of bedload sediment transport processes in 
alluvial channels is one of the major concerns in open 

channel hydraulics community. The two main approaches for 
this purpose include physical and numerical models. Despite 
of their advantages, the physical models usually consume 
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much time and cost, then applying numerical approaches is 
increasing rapidly, especially in presence of powerful 
computers.  

Most of the numerical models solve a combination of 
hydrodynamics and sediment continuity equations [1]-[6]. In 
two dimensional forms, the hydrodynamic part of the model is 
usually handled by the classical non-linear shallow-water 
equations (NLSW), while Exner equation governs the 
sediment continuity part.  

A large amount of work has been conducted in the last 
decades to develop numerical methods for solving NLSW. A 
challenging problem that should be resolved is how the flow 
discontinuity is captured. To this end, a number of techniques 
like artificial viscosity (particularly for finite difference 
methods) and shock fitting have been proposed. These 
techniques usually require ad-hoc terms which need to be 
carefully calibrated.  

Estimation of sediment transport discharge, as required by 
Exner equation, has been formulated through empirical 
relationships, each defined for specific experimental 
situations. Evidently, employing an empirical formula out of 
its domain of governance may lead to undesirable outcomes. 
However, during sediment transport processes, the problem 
situations may be altered. Consequently, an alternative 
technique with fewer amounts of limitations may present 
better results. 

In the context of numerical models, the combination of 
shallow water and Exner equations can be solved either in 
fully coupled, semi-coupled or uncoupled form. Previous 
studies show the efficiency of fully coupled approach in which 
NLSW and Exner equations are solved simultaneously [7].  

In this research, a numerical scheme for solving NLSW and 
Exner equations in fully coupled form is presented. The model 
employs Monotonic Upstream Scheme for Conservation Laws 
(MUSCL) for estimating flow variables in the cell interfaces 
and First-Order Centered (FORCE) scheme for producing 
required numerical fluxes. Surface Gradient Method (SGM) in 
combination with fourth order Runge-Kutta algorithm for time 
integration can guarantee to have a well-balance model. 
Furthermore, Cartesian Cut Cell Method (CCCM) makes it 
possible to apply this model for non-prismatic channels. A 
trained Multi-Layer Perceptron (MLP) Artificial Neural 
Network (ANN) which is of FFBP type is applied for 
estimating sediment flow rate in the model.  

The hydrodynamic part of the model is verified thorough 
several examples such as transcritical flow over a bump with 
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and without shock, subcritical flow over a bump and dam-
break on a dry bed channel with varying width. Then, the fully 
coupled model is employed for simulation of dune movement, 
dam break on a dry movable bed and bed level variations in an 
alluvial junction.  

II. GOVERNING EQUATIONS 

Hydrodynamic part of the model is based on NLSW 
equations. The conservative form of NLSW equations is 
written as: 
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In these equations, t denotes time, x is the longitudinal 

distance, y is the span-wise distance,  is the water density, h

is the water depth, bz  is the bottom elevation, U is the depth-

averaged velocity along x-direction, V is the depth-averaged 
velocity along y-direction, and g is the gravitational 

acceleration. bx , by are the friction stresses which are 

included using the Manning’s resistance law: 
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in which, nManning denotes the Manning’s friction coefficient. 

xx , xy , yy  and   yx  are the Reynolds Shear Stresses 

which are defined as follows: 
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where ff  is the effective turbulence kinematic viscosity. 

Smagorinsky presented the following relationship for ff  

[8]: 
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x  is the cell size in x direction, y  is the cell size in y 

direction and  is a dimensionless coefficient which is 
suggested about 0.1 for shallow water conditions. (1) to (3) 
can be written either in the following form: 
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where the vector of conserved flow variables, U , the flux 
vectors, ( )F U  and G(U) , and the source term vector, ( )S U , 

are defined, respectively, as: 
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The sediment transport processes part of the model is 

presented through applying Exner equation: 
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where sxq  and syq  are the total bed load sediment transport 

discharge in x and y directions, respectively, and m is the bed 
material porosity.  

For fully coupled morphodynamic model, flow variables, 
the flux vectors and the source term vector, are defined as: 
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III. MODEL IMPLEMENTATION  

Due to some special aspects of the governing equations, 
several considerations should be taken into account to achieve 
numerical solutions. In the first step, the hydrodynamic part is 
regarded to obtain efficient numerical model for flow, and 
then, the results are generalized for fully coupled form of the 
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equations.  
Several characteristics of conservative form of the NLSW 

equations such as nonlinearity and hyperbolicity, often give 
rise to discontinuous solutions such as bores and hydraulic 
jumps. The integral representation of governing PDEs is 
preferred under such circumstances, because smoothness of 
solution is not a necessary requirement by this formulation. 

The system of (9) can be rewritten as: 
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Finite volume method in the cell-centered form is 

formulated for the equation, by integrating over a typical finite 
area of Ai. Then, the integral form of the equation is: 
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Employing divergence theorem for the second integral term 

of (14), it can be replaced by: 
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Гi is boundary of the i th finite area Ai, and n is the outward 

unit vector normal to the boundary. Equation (15) can be 
approximated through using midpoint quadrature rule: 
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in which i denotes i th computational cell, j indicates j th edge 
of the cell, m is the number of edges, Ui and Si are the 
averaged quantities at center of the cell, ГΔ  ij is the length of 
the j th edge of the i th cell and E* is numerical flux through 
the edge which will be calculated using FORCE scheme. 
Through a few mathematical manipulations, for a rectangular 
computational cell with length and width of Δx and Δy, (16) 
can be discretized in the difference form as: 
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where t  is time step, subscripts ,i j refers to ,i j -th cell 

center and superscript n and 1n   refer to current (known) 
and next (unknown) time levels, respectively. (1/ 2),i jF , 

(1/2),i jF , , (1/2)i j G  and , (1/2)i j G  are numerical fluxes at cell 

interfaces (1 / 2),i j , (1 / 2),i j , , (1 / 2)i j   and 

, (1 / 2)i j  , respectively.  

Following integration form of the flow governing equations, 
an extrapolating method is required to prepare proper 
variables to compute the interface fluxes. For this purpose, the 
FORCE Scheme can be used. This scheme was first 
introduced by [9] and found to be robust in applications and 
simple to implement. The FORCE flux actually holds by 
simple averaging of the Lax–Friedrichs (LF) and two-step 
Lax–Wendroff (LW) fluxes. As shown by [9], the FORCE 
scheme is an optimal scheme through the family of three-point 
schemes that can be written as the convex average of the LF 
and LW fluxes [10].  

 

FORCE LF LW
(1/ 2), (1/ 2), (1/ 2),

FORCE LF LW
, (1/ 2) , (1/2) , (1/ 2)

1
( )

2
1

( )
2

i j i j i j

i j i j i j

  

  

 

 

F F F

G G G

                (18) 

 

where LF
(1/2),i jF  and LF

, (1/2)i j G  are the Lax-Friedrichs fluxes and 
LW

(1/2),i jF  and LW
, (1/2)i j G  are the Richtmyer, or two-step Lax-

Wendroff fluxes. 
Going after the above procedure without several 

considerations, the numerical scheme may experience 
difficulties in solving discontinuous flows, and high frequency 
oscillations can appear in the numerical solution. A usual 
remission under such conditions is the use of an artificial 
viscosity term or shock fitting techniques to suppress steep 
gradients. These terms are case-based and require ad-hoc 
terms, thereafter should be adjusted by a careful calibration or 
a trial and error procedure.  

Shock-capturing numerical method is a robust way that 
reproduces proper results for a problem with discontinuities 
within the computational domain. MUSCL is a well-known 
methodology for spatial discretization of NLSW equations. 
Based on MUSCL method, a non-linear limiter is employed to 
produce a piecewise linear reconstruction within each 
computational cell. The data reconstruction technique provides 
the conservative variables at cell interfaces as a linear 
extrapolation from the stored cell center data which are known 
either by the solution of previous time step or by the initial 
condition. Using a usual piecewise linear reconstruction for 
the second component of the vector of conservative variables, 
i.e., unit width discharge hu, yields: 
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Hereafter, the superscripts “−” and “+” indicate evaluation 

on, respectively, the left and right hand sides of the interface 
indicated by the associated subscript. The limited slopes in 
(19) can be written as: 

 

( , ) ( , )( )i j i jhu                                   (20) 
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In this equation, ,i j  is the slope limiter. Toro listed 

different slope limiters which can be used to provide a suitable 
choice of gradient in each computational cell, thus, giving an 
oscillation-free solution in the vicinity of shocks [9]. The 
Minmod limiter is an example: 
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The above procedure can be used for other components of 

the vector of conservative variables. 
Up to this step, a numerical scheme is presented that is 

capable of solving the hydrodynamic governing equations in 
the presence of flow discontinuity. However, this efficient 
performance is held only for horizontal, frictionless bottoms.  
To overcome this problem, there are several different methods 
for incorporating source term into finite volume schemes. One 
of them is SGM. SGM appears to be a simple technique for 
the treatment of source term in NLSW equations. This 
approach was developed by [11] and found to be no more 
complicated than traditional methods for the homogeneous 
terms.   

In this technique, the free surface elevation η, is chosen as 
the basis of data reconstruction, and the source term is 
discretized with a centered scheme. First, the reconstructed 
values of free surface elevation are obtained by the same 
method as used for unit width discharge, and then the 
corresponding values of water depth are calculated as:  
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where ( (1/2), )b i jz   and ( , (1/2))b i jz   are the bed elevations at 

the cell interfaces (1 / 2),i j  and , (1 / 2)i j  , respectively. 

This reconstruction scheme fully retains the conservative 
property of the governing equations and reduces interpolation 
errors considerably. 

It has been demonstrated that FORCE- MUSCL scheme 
satisfies the C-property when combined with SGM [12]. It 
means that starting from the stationary state conditions at an 
arbitrary time level, flow variables remains constant for all 
time levels. This property allows simulation of flows over 
irregular beds and becomes important when modeling small 
deviations from the steady state condition.  

Subsequent to proper spatial discretization, (17) should be 
integrated along time axis. Optimal fourth-order Runge-Kutta 
method can be employed which is a popular time-stepping 
scheme for hyperbolic conservation laws.  

Equation (17) shows a dynamic system which can be 
simulated by the following ordinary differential equation: 
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The fourth order Runge-Kutta algorithm (RK-4) integrates 

(17) [13]. 
Since RK-4 is an explicit time integrating algorithm then 

Courant-Friedrichs-Lewy (CFL) criterion, which is defined as 
follows, should handle the time steps size: 
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in which Cn is the Courant number.  

Proposing a numerical solution for flow equations, now the 
Exner equation should be solved properly. As implied, fully 
coupled, semi-coupled and uncoupled forms are three kinds of 
approaches in numerical implementation of morphodynamic 
equations. Efficiency of fully coupled form in which NLSW 
and Exner equations are solved simultaneously, is confirmed 
in previous researches. Therefore, in this research, the 
explained numerical scheme is generalized for solving the 
system of (12). In this end, the main question is how to 
approximate bed load sediment discharge. Several empirical 
equations are proposed, however, they are defined for specific 
experimental situations. In this research, a trained MLP ANN 
which is of FFBP type is applied for estimating sediment 
discharge. The ANN consists of an input and output layers 
which are related through a hidden layer with 22 neurons. For 
training the ANN, 1002 data are used. Furthermore, 500 data 
are employed for testing. These data are gathered from 842 
flume experiments and 660 field data [14]. The input data 
include flow discharge, channel width, flow depth, water 
surface slope, sediment particle size mean diameter and 
specific gravity of sediment particles and the output is bed 
load. Some of the statistics features of input and output data 
are listed in Table I. 
 

TABLE I  
STATISTICS FEATURES OF INPUT AND OUTPUT DATA OF ANN 

Data Max. Min Ave. 

Flow Discharge (m3/s) 575 0.001 73.6 

Channel Width (m) 245.5 0.149 41.2 

Flow Depth (m) 4.3 0.01 0.93 

Water Surface Slope 0.0234 0.000037 0.0024 
Sediment Particle Size Mean Diameter 

(mm) 
28.5 0.01 2.38 

Specific Gravity of Sediment Particles 4.22 1.25 2.64 

Bed load (kg/m3) 9.8 2e-6 1.08 

IV. RESULTS AND DISCUSSIONS 

Following the numerical model construction, it should be 
verified through several proper problems. This verification for 
hydrodynamic part involves dam-break on a dry bed channel 
with varying width. Then, the fully coupled morphodynamic 
model is employed for simulation of bed variations in an 

( , ) max(0,min( , ))a b a b 
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alluvial junction and bed form modeling.  

A. Hydrodynamic Module Verification 

Dam-break flow onto a locally non-prismatic converging-
diverging channel with initially dry bed conditions is modeled 
for showing the capability of the model to simulate flow 
discontinuities, transcritical flows, wetting/drying conditions 
and non-prismatic channel flows. 

Several investigators have employed this test to verify their 
scheme capabilities in modeling real fluid flows [15]-[17].  

Due to non-prismatic shape of the channel a proper way for 
modeling the boundary should be presented. Mapping 
techniques and unstructured meshes are usual methods that 
may be proposed for this purpose. However, it should be 
denoted that in spite of vitalities of mapping techniques, the 
governing equations may need to be transformed from the 
physical domain to the other imaginary computational domain, 
which sometimes needs a huge amount of mathematical 
calculations. Furthermore, if the entire computational domain 
is spatially discretized by applying unstructured meshes, then 
SGM may lead to undesirable results [18]. Accordingly, in this 
research, CCCM is suggested as an efficient technique for 
considering non-prismatic boundary conditions.  

The CCCM has been developed by Centre of Mathematical 
Modeling and Flow Analysis Manchester Metropolitan 
University, to define grids in computational domains to solve 
the NLSW equations [19]. In CCCM, background Cartesian 
meshes are cut by several boundary curves, thus there is no 
conventional mesh generation which is required. In this 
method, the intersection points of boundary curves and 
background Cartesian meshes should be determined in the first 
step. Details have been explained in [19] and [20]. Toward 
this process, three kinds of cells may be reproduced: flow 
cells, cut cells and solid cells. The solid cells are indeed out of 
the computational domains. Also, the flow cells are treated in 
a straightforward manner that explained before. However, the 
cut cells are required to be taken into account for several 
remarks in reconstruction and numerical flux calculation 
processes.  

According to Fig. 1 and (16), m (number of cell sides) may 
be changed from 3 to 5. It means that a cut cell may have an 
irregular shape other than single rectangular shape. Then, 
FORCE-MUSCL scheme should be adapted for the new 
computational cell shapes.  

 

 

Fig. 1 Different kinds of meshes reproduced toward using CCCM 
[19] 

 
It should be mentioned that the numerical flux, E*, in (16) 

should be recalculated for the new shaped cut cells. As 
proposed by [9], the numerical FORCE flux for an irregular 
unstructured cell is: 
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      (26) 
 
U  and U  are the values of reconstructed flow variables in 

the left and right side of a cell edge. Furthermore, S  and 

S  are the surrounding area about the cell edge, and 0S  is 
the edge length.  

Now, the efficient numerical model is produced for solving 
the problem. Fig. 2 shows the channel configuration in which 
there is a gate 6.1 m from upstream of the channel and 0.5 m 
wide. The channel constriction begins 7.9 m downstream of 
the gate, and then, the channel width reduces to 0.1 m by 
transition walls which makes 45° angle with the main channel 
walls. The constriction is 1 m long and 0.1 m wide. After the 
constriction, channel returns to its original width with 
diverging transition walls.  

The initial channel depth before the gate is 0.3 m and 
constant Manning coefficient equal to 0.01 is used for all parts 
of the channel. Reflective boundary condition is set for the 
upstream, and transmissive boundary condition is used for the 
downstream. The depth history for 10 seconds after dam-break 
has been measured using four gages in laboratory [19]. The 
gages are installed at the channel centerline (Fig. 2). 

 

 

Fig. 2 Experimental layout of dam-break on a dry bed channel with 
varying width test 

 
For imposing dry bed as the initial condition for the channel 

bed, few considerations should be taken into account. 
Following [21], a local minimum water depth hmin is defined in 
the scheme. To have a well posed problem, this threshold 
depth should be initially assigned to all physically dry cells, 
i.e. the cells located above the undisturbed water surface. 
During the computation, if the water depth h in a 
computational cell is below the threshold depth, then it will be 
set to hmin, the momentum (hu and hv) will be set to zero, and 
the cell is considered “dry”, otherwise the cell is considered 
“wet”. Moreover, the above procedure should be implemented 
in the reconstruction process. In this problem, hmin=0.003 was 
adopted.  

Fig. 3 shows simulation results and the corresponding 
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laboratory measurements. Less than 1 s after the dam-break, 
the water wave reaches to gage 1 (Fig. 3 (a)). Rarefaction 
wave propagates downstream of the gate and the water depth 
drops rapidly for about 4 seconds. After that, the water depth 
drops with relatively slow rate. The shock front of the wave 
arrives at gage 2 after about 3 s and links to relatively low 
positive slope line which shows slow increasing in water depth 
(Fig. 3 (b)). Reaching reflected shock waves from the 

constriction to gage 2, at t=8 s, the other wave front appears 
(Fig. 3 (b)). The model results for gage 3 show only one shock 
front (Fig. 3 (c)) because the constriction reflected waves 
propagate upstream-wise. Fig. 3 (d) shows the water depth 
history for gage 4 which is located after the constriction. In all 
of the figures, the computed results obtained in this research 
are compared with those held by [17] that are calculated 
through using the 2D numerical scheme presented by [22].  

 

   

(a)                                                                                    (b) 
 

  

(c)                                                                                (d) 

Fig. 3 Numerical results and experimental measurements for dam-break on a dry bed channel with varying width 
 
As it can be seen in Figs. 3 (a)-(d), the model can track the 

trend of laboratory results very well. There are only few 
inconsistencies between the model results and measured data 
in gages 1 and 3 which also exist in some other reported finite 
volume models [15], [16]. These disagreements are 
attributable to different causes such as hydrostatic pressure 
assumption in shallow water equations that is insufficient for 
this problem with highly 3D features. 

B. Dam-Break on a Dry Movable Bed 

The interaction of mobile initially flat bed and a surge 
developed by a dam break is investigated in this example. The 
experimental setup was designed by [23]. The laboratory tests 

were carried out in a 2.5-m length flume. The initial water 
depth before the simulated dam was 10 cm, and the flume bed 
was covered with PVC pellets with relative density of 1.54 
and mean size diameter of 3.5 mm. The dam was opened 
suddenly. 

Fig. 4 shows the time history of the bed evolution at a point 
which is located 25 cm before the dam. Dividing time by 

0 0t H g , and bed elevation by initial water depth before 

the dam H0, the nondimensionalized time and bed height axes 
are defined. In this figure, the results of the numerical scheme 
in cooperating with ANN and those obtained through applying 
four well-known empirical formulas, in order to estimate 
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sediment discharge, are compared with the experimental 
measurements. In spite of existence of a flow shock and 
wetting/drying conditions, a reasonable tracking of the 
experimental measurements can be seen. All of the curves in 
the figure can capture the initial flushing and subsequently 
aggradation. However, a relatively better performance of ANN 
rather than the empirical formulas is evident. Furthermore, 
Fig. 5 depicts the time history of changes in the water surface. 
More accurate results of ANN can be deducted from this 
figure too. 

 

 

Fig. 4 Time history of the bed evolution 
 

 

Fig. 5 Time history of changes in the water surface 

C. Bed Variations in an Alluvial Junction 

A main channel and some tributaries are a usual 
configuration in a natural channel. Hydrodynamics of 
intersection of the main channel and tributaries which is called 
a junction is very complicated, especially when movable bed 
situations are considered. A scheme capability in modeling bi-
directional flows can be verified by simulating the flow at a 
channel junction. Ghobadian and Shafai Bajestan set up 
several experiments on 90° open channel junctions [24]. The 

main and the tributary flumes took several width and 
discharge ratios in their experiments. Among these tests, a 
case in which the flow rate and channel width were Q=0.16 
m3/s and w=0.35 m for the main channel and Q=0.04 m3/s and 
w=0.25 m for the tributary channels, respectively, was 
selected for verifying the numerical model. The initial flow 
depth in both channels is 12.75 cm, the sandy movable bed 
thickness is 11 cm, and the bed material mean diameter size is 
1.05 mm.  

Fig. 6 shows the results of the numerical scheme for bed 
evolutions by applying the trained ANN for estimating 
sediment discharge. The simulated patterns are tracking those 
which were described by [24]. In order to reach a quantitative 
comparison, the results of the numerical scheme using ANN 
for estimating maximum height of aggradation and minimum 
depth of degradation is compared with those collaborating 
specified empirical formulas. It can be seen that employing 
ANN leads to more accurate results in comparison with those 
which are achieved through using the empirical formulas. 
Overall, a proper agreement between the results of the 
numerical model and experimental measurements in an 
alluvial junction can be deducted.  

 

 

Fig. 6 The numerical model results for bed elevation changes in the 
alluvial channel junction 

V. CONCLUSIONS 

In this research, a numerical morphodynamic model is 
introduced which solves NLSW and Exner equations in fully 
coupled form. A combination of FORCE and MUSCL is held 
to achieve a high order accuracy scheme for spatial 
discritization of the computational domain, and SGM is used 
as a simple technique to treat the source term and satisfy C-
property without using any ad-hock terms. Combining fourth 
order Runge-Kutta for time integration and CCCM for holding 
mesh generation in non-prismatic channel problems with the 
mentioned scheme produces an expert numerical model. 
Furthermore, a trained MLP ANN which is of FFBP type 
estimates sediment flow discharge in the model rather than 
usual empirical formulas.  

Dam-break on a dry bed channel with varying width is an 
example that demonstrates the capability of the hydrodynamic 
part of the model in capturing the flow discontinuities, 
simulating transcritical flows and solving wetting/drying 
problems even in non-prismatic channels. Moreover, dam 
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break on a dry movable bed and bed level variations in an 
alluvial junction are used as several verifying problems for the 
fully coupled morphodynamic part of the model. The results 
show that the model is capable of presenting proper results for 
movable bed situations. It can also be deducted that applying 
ANN, instead of common empirical formulas for estimating 
flow discharge, leads to more accurate results. 
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