
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4002

Abstract—Message Passing Interface is widely used for Parallel

and Distributed Computing. MPICH and LAM are popular open
source MPIs available to the parallel computing community also
there are commercial MPIs, which performs better than MPICH etc.
In this paper, we discuss a commercial Message Passing Interface, C-
MPI (C-DAC Message Passing Interface). C-MPI is an optimized
MPI for CLUMPS. It is found to be faster and more robust compared
to MPICH. We have compared performance of C-MPI and MPICH
on Gigabit Ethernet network.

Keywords—C-MPI, C-VIA, HPC, MPICH, P-COMS, PMB

I. INTRODUCTION
HE enormous advance in the field of PCs and high-speed
networks have led to low-cost clusters of personal

computers, that are able to provide the computing power
equivalent to that of supercomputers. According to Moore
Law, the processor speed doubles every 18 months [1].
Because of this, the point of bottleneck has been shifted from
the compute nodes to the interconnection network. This has
driven the focus to high-speed interconnection networks are
available to overcome such problems. But there might be
interoperability problems when clusters with incompatible
SANs are to be connected to clusters of clusters [2].

In that case, we need to have a method that will enable us to
run our program across the cluster of nodes. Message passing
mechanism among the processes helps to solve a particular
problem in parallel environment [3]. But running distributed
message-passing application in a heterogeneous environment
is a challenge, as the applications have to deal with different
numbers of communication interfaces, lower-level protocols,
encoding schemes etc. for achieving the expected
performance.

Our idea is to provide the user with a parallel programming
standard, MPI (Message Passing Interface) to solve their
problems in a parallel environment. A panel of parallel
programming industry leaders including representatives from
the national laboratories, universities and key parallel system
vendors define the Message Passing Interface.

Rest of the paper is organized as follows. Section II
provides a brief overview of C-MPI. Section III is the brief

Manuscript received October 15, 2006
Authors are with Systems Software Development Group, Center for

Development of Advanced Computing, Knowledge Park, No. I Old Madras
Road, Byappanahalli, Bangalore-560038, India (e-mail: {prabud, vanamalav,
sanjeebd, rsridharan, prahladab, mohan}@cdacb.ernet.in).

overview of MPICH and Gigabit Ethernet. Section IV gives
the description of the experimental environment. In Section V,
experimental results have been discussed and compared to that
of MPICH. Conclusion and Future Work are presented in
Section VI.

II. C-DAC MESSAGE PASSING INTERFACE (C-MPI)
C-MPI is a high performance implementation of the MPI

standard for a Cluster of Multiprocessors (CLUMPS). By
adhering to the standard, C-MPI supports the execution of the
multitude of MPI applications with enhanced performance on
CLUMPS. C-MPI can work with both TCP/IP using Ethernet
and VIA over PARAMNet-II. It also leverages on the fact that
most of the high performance networks provides a substantial
communication bandwidth. It helps in performing send and
receives operation of messages in a simultaneous manner,
consequently reducing the no of hops in the transmission path.

In C-MPI different MPI collective communication calls
have been optimized using efficient algorithms for CLUMPS
architecture. The different C-MPI algorithms effectively use
the shared memory communication on multiprocessor nodes
to reduce the total computation time of the application. C-MPI
provides the following advantages over public domain MPI
[4]:

• Supports multiple protocols.
• It uses the network for remote communication while

shared memory for local communication.
• Collective communication routines have been

optimized for CLUMPS to achieve minimized
execution time.

C-MPI is designed to achieve high performance and
portability. It is layered over Abstract Device Interface (ADI)
[5] to maintain portability. On C-DAC’s PARAM Padma [6],
C-MPI employs both TCP/IP [7] and C-VIA in the underlying
ADI layer. The C-MPI functions are implemented in terms of
macros and functions.

In Fig. 1, the upper layer does the communication of control
information and the lower layer performs the transfer of data
from one process address space to another. For achieving
optimal performance characteristics, C-MPI can directly work
over the SAN (System Area Network) in the user space using
lightweight communication protocols. This results in decrease
in communication time for MPI point-to-point communication
protocols. The communication, at the lowest level, occurs in
point-to-point manner as shown in the Fig. 1 below. Hence,

A High Performance MPI for Parallel and
Distributed Computing

Prabu D., Vanamala V., Sanjeeb Kumar Deka, Sridharan R., Prahlada Rao B. B., and Mohanram N.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4003

reduction in the communication time of the point-to-point
communication calls leads to reduce communication time for
the collective communication calls as well.

Fig. 1 C-MPI Control Flow

III. MPICH AND GIGABIT ETHERNET

A. MPICH
MPICH is an open source, portable implementation of MPI

standard which is a widely used parallel programming
paradigm for distributed memory applications in parallel
computing. MPICH [8] is available for different flavors of
Unix (including Linux) and Microsoft Windows. It is a
product of Argonne National Laboratory.

MPICH supports one-side communication, dynamic
processes, intercommunicator collective operations, and
expanded MPI-IO functionality. Moreover, it can work over
clusters consisting of both single-processor and SMP nodes.
MPICH implementations are not thread safe. Its architecture is
driven by two principles. Firstly, intention to increase the
amount of code can be shared. Most of the code in the MPICH
implementation such as MPI opaque object, including data
types, groups, attributes and even communicators, are
platform independent. Secondly, intention to provide a
structure that makes it to be ported on to a new system quickly
by replacing parts of shared code by platform specific code.
This is achieved with a lower layer interface in ADI called
Channel Interface. MPICH uses TCP/UDP socket interfaces to

communicate messages between nodes. Because of this, there
have been great efforts in reducing the overhead incurred in
processing the TCP/IP stacks. To overcome this problem
MPICH is now enabled to support VIA (Virtual Interface
Architecture). VIA has defined different mechanisms that
enable bypassing layers of protocol stacks and avoid
intermediate copies of data during sending and receiving of
messages. This allows significant increase in communication
performance and decrease in processor utilization by the
communication subsystem.

B. Gigabit Ethernet
Gigabit Ethernet [9] also known as the IEEE Standard

802.3z is the latest Ethernet technology. It is a Media Access
Control (MAC) and physical layer technology. This
transmission technology is based on the Ethernet frame format
and protocols used in local area network. It offers a bandwidth
of One Gigabit per second. To achieve this bandwidth,
Gigabit Ethernet uses a modified version of the ANSI X3T11
Fiber Channel standard physical layer. It supports both half-
duplex and full-duplex mode of transmission.

While operating in the full-duplex mode, Gigabit Ethernet
uses buffers to store incoming and outgoing data frames until
the MAC has time to pass them higher up the protocol stack.
During heavy traffic, the buffers might fill up with data faster
than the MAC can process them. When such situation arises, it
is up to the MAC layer to prevent the upper layers from
sending until some part of the buffer becomes free. Otherwise,
there will be loss of data frames due to insufficient buffer
space. When the receive buffers approach their maximum
capacity, a high watermark interrupts the MAC control of the
receiving node and sends a signal to the sender to suspend the
sending process for a specified amount of time until the buffer
can catch up. The sender resumes transmission after the time
interval is past or it receives a new packet from the receiver
with a time interval of zero. The function of the high
watermark is to ensure that enough buffer remains to give the
MAC time to inform the sender to suspend the transmission of
data before the buffer overflows. Similarly, there exists a low
watermark to notify the MAC control that there is enough
space in the buffer to restart the flow of incoming data.

In the half-duplex mode, Gigabit Ethernet uses the
enhanced CSMA/CD (Carrier Sense Multiple Access with
Collision Detection) access method. In this technique, the
channel can either transmit or receive at a time. When there is
a collision between two frames, the MAC layer stops
transmitting and retransmit the frame once the transmission
medium is clear. But if a collision occurs after the packet is
sent, then the packet is lost because the MAC layer has
already discarded the frame and started to prepare for the next
frame for transmission. CSMA/CD protocol is sensitive to
frame length. That is why Gigabit Ethernet’s performance is
degraded when it operates in the half-duplex mode.

User Task (C-MPI Application)

 API

Protocol Module

PARAMNet-II/VIPL
Library

Collective
Communication

Point-to-point Communication

C-VIA TCP/IP Shared
Memory

Ethernet

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4004

IV. DESCRIPTION OF THE EXPERIMENTAL
ENVIRONMENT

The experimental environment comprises of two entities-
Test bed and Benchmark. They are briefly described in the
following sub-sections.

A. Specification of the Test Bed
The experimental evaluation for performance of C-MPI is

done on PARAM Padma at CTSF [10], C-DAC Knowledge
Park I, Bangalore, India. The table below is the specification
of PARAM Padma that currently has a peak performance of
nearly one Teraflop. The performance testing of C-MPI for
comparison with the public domain MPI, MPICH is done on 8
and 32 4-way nodes running AIX-5.1 operating system.

TABLE I

DESCRIPTION OF PARAM PADMA

Specification Compute
node File servers

Configuration

62 nos. of 4
way SMP and

one node. of 32
way SMP

6 no. of 4 way
SMP

No. of processors 248(Power 4
@1GHz)

24(UltraSparc-IV
@900MHz)

Aggregate memory 0.5 Terabytes 96 Gigabytes

Internal storage 4.5 Terabytes 0.4 Terabytes

Operating system AIX/LINUX Solaris

Peak computing
power for 62 AIX

nodes
992 GF (~1 TF) --

File system -- QFS

Fig. 2 Picture of C-DAC's Tera-Scale Supercomputing Facility

(CTSF)

B. Overview of the Benchmarks used
For comparing the performance of C-MPI to that of

MPICH, we have used the following benchmarks:
• HPL (High Performance Linpack)
• PMB (Pallas MPI Benchmark)
• P-COMS (PARAM Communication Overhead

Measurement Suites)
1. HPL
HPL [11] benchmark is a numerically intensive test. It is a

popular benchmark suite to evaluate the performance of Super
Computers and Clusters and involves solving a system of

dense linear system in double precision (64 bits) arithmetic
linear equations. Using HPL benchmark tests the
PARAMPadma cluster efficiency.

2. PMB
PMB (Pallas MPI Benchmark)[12] is complex benchmark

used for measuring MPI performance. It comprises of a
concise set of benchmarks targeted at evaluating most
important MPI functions. The different benchmarks under
PMB are PingPong, PingPing, Sendrecv, Exchange,
Allreduce, Reduce, Reduce_scatter, Allgather, Allgatherv,
Alltoall, Bcast and Barrier.

3. P-COMS
P-COMS [13] comprises of a set of MPI benchmarks used

for measuring communication overheads on large message
passing clusters (such as PARAM 10000, PARAM Padma).
The benchmarks have been implemented using MPI (Message
Passing Interface) standard. The different benchmarks under
P-COMS are all, all1, ptp, advptp, cc, ccomp, gppong,
roundtrip, allgring, oneway and circularshift. The
benchmarks measure the overhead time of different MPI
library calls for Point-to-Point Communication, Collective
Communication and Collective Communication and
Computation etc. for message sizes ranging from 0 bytes to 10
Megabytes.

V. EXPERIMENTAL RESULTS
Table II depicts the results of running HPL benchmark on

32 4-way nodes for C-MPI and MPICH. The sustained
performance for C-MPI is found to be 274.5 Gigaflops against
the calculated peak performance of 512 Gigaflops. However,
it is 255.9 Gigaflops for MPICH. The results listed in the table
below show that C-MPI clearly outperforms MPICH.

TABLE II

TABULAR FORM FOR PERFORMANCE OF HPL BENCHMARK
Matrix Size/
Block Size

C-MPI
(Sustained/Peak

Performance)

MPICH
(Sustained/Peak
Performance)

1280/200 0.9653 Gflops/
512 Gflops

0.2663 Gflops/
512 Gflops

155086/200 274.5 Gflops/
512 Gflops

236.8 Gflops/
512 Gflops

160528/200 273.1 Gflops/
512 Gflops

255.9 Gflops/
512 Gflops

165794/200 265.1 Gflops/
512 Gflops

245.6 Gflops/
512 Gflops

From Table II we have seen that C-MPI sustained

performance is 53.61% of peak performance while for
MPICH it is 49.98% of the peak value. This means C-MPI
performance is better than MPICH by 7.27%. Moreover, for
small problem size (1280/200) also C-MPI is 362.49% faster
than the other. Hence, C-MPI is better between the two as it is
evident from the result as shown is Fig. 3.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4005

Performance of HPL on PARAM Padma
Block Size Nb=200

0

50

100

150

200

250

300

1280 155086 160528 165794

Problem Size (N)

Pe
rf

or
m

an
ce

 (G
flo

ps
)

C-MPI

MPICH

Fig. 3 Performance comparison of C-MPI and MPICH for HPL

Benchmark

 In Table III, output of PMB (Pallas MPI Benchmark) is

depicted. The latency is obtained using Pingpong benchmark
across two AIX nodes.

TABLE III

LATENCY FOR C-MPI AND MPICH
MPI Type Latency (Microseconds)

C-MPI 24.38
MPICH 26.18

Table IV, below shows the performance of the two MPIs

for P-COMS Benchmark.

TABLE IV
 LATENCY & BANDWIDTH FOR C-MPI AND MPICH FOR P-COMS

Communication
Overhead Parameter

C-MPI

MPICH

Latency 27.39μs

25.22μs

Bandwidth 114.69Mbps

106.13Mbps

Performance test using HPL and Pallas Benchmarks clearly

reveals that C-MPI performs better than that of MPICH. From
Table IV, we have seen that the bandwidth provided by C-
MPI is much higher than MPICH. However, it lags behind in
latency by a very small margin.

VI. CONCLUSIONS AND FUTURE WORK
The result shows that C-MPI provides better performance

compared to that of the public domain MPI, MPICH over
Gigabit Ethernet. The experimental result of HPC
benchmarking shows that the optimized commercial C-MPI
performs even better than MPICH. C-MPI is proved to be
more powerful, encouraging and more robust than MPICH for
the user community of high performance computing and
communication.

Currently, C-MPI is enabled only for clusters. Work is in
progress for Grid Enabled MPI [14].

REFERENCES
[1] Carlo Kopp, “Moore’s Law and it’s Implication for Information

Warfare,” The 3rd International Association of Old Crows (AOC)
Electronic Warfare Conference Proceedings, Zurich, May 20-25, 2000.
http://www.ausairpower.net/moore-iw.pdf

[2] Daniel Balkanski, Mario Trams, Wolfgang Rehm, “ Communication
Middleware System for Heterogeneous Clusters: A Comparative Study,”
Proceedings of the IEEE International Conference on Cluster Computing
(CLUSTER-03)
http://ieeexplore.ieee.org/iel5/8878/28041/01253359.pdf

[3] J. Silcock, A. Goscinski, “ Message Passing, Remote Procedure Calls
and Distributed Shared Memory as Communication Paradigm for
Distributed System,” Technical Report, School of Computing and
Mathematics, Deakin University, Geelong, Australia.
http://www.deakin.edu.au/scitech/sit/dsapp/archive/techreport/TR-C95-
20.pdf

[4] W. Gropp, E. Lusk, N. Doss and A. Skjellum, “A high-performance,
portable, implementation of the MPI Message Passing Interface
Standard,” Parallel Computing, 22:789-828,1996.
http://www.globus.org/alliance/publications/papers/paper1.pdf

[5] William Gropp, Ewing Lusk “ MPICH Abstract Device Interface,
Version 3.3,” MCSD, Argonne National Laboratory, December 2001
http://www.cse.ohio-state.edu/~panda/788/papers/ 3c_adi3man.pdf

[6] PARAM Padma Center for Development of Advanced Computing (C-
DAC), Pune, India. Available at http://www.cdac.in

[7] TCP/IP. Available at http://www.ietf.org/rfc/rfc1180.txt
[8] Cornell Center for Materials Research Computing Facility. Available at

http://monod.cornell.edu/docs/instructions/compilers/mpich.html
[9] Gigabit Ethernet Alliance, Gigabit Ethernet Overview. (1997) Available

at http://www.gigabit-ethernet.org/
[10] Center for Development of Advanced Computing (C-DAC), Pune, India.

CTSF. Available at www.cdac.in/html/ctsf/
[11] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, “HPL- A Portable

Implementation of The High-Performance Linpack Benchmark for
Distributed-Memory Computers,” Innovative Computing Laboratory,
University of Tennessee, January 2004.
http://www.netlib.org/benchmark/hpl/

[12] Pallas MPI Benchmark (PMB), Intel,
http://www.pallas.com/e/products/index.htm

[13] PARAM- Communication Overhead Measurement Suites (P-OMS),
Center for Development of Advanced Computing, Pune, India.
http://www.cdac.in/html/betatest/hpc.asp

[14] C-DAC, GARUDA INDIA, The National Grid Computing Initiative.
Available at http://www.garudaindia.in/tech_research.asp

