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Abstract—Message Passing Interface is widely used for Parallel 

and Distributed Computing. MPICH and LAM are popular open 
source MPIs available to the parallel computing community also 
there are commercial MPIs, which performs better than MPICH etc. 
In this paper, we discuss a commercial Message Passing Interface, C-
MPI (C-DAC Message Passing Interface). C-MPI is an optimized 
MPI for CLUMPS. It is found to be faster and more robust compared 
to MPICH. We have compared performance of C-MPI and MPICH 
on Gigabit Ethernet network. 
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I. INTRODUCTION 
HE enormous advance in the field of PCs and high-speed 
networks have led to low-cost clusters of personal 

computers, that are able to provide the computing power 
equivalent to that of supercomputers. According to Moore 
Law, the processor speed doubles every 18 months [1]. 
Because of this, the point of bottleneck has been shifted from 
the compute nodes to the interconnection network. This has 
driven the focus to high-speed interconnection networks are 
available to overcome such problems. But there might be 
interoperability problems when clusters with incompatible 
SANs are to be connected to clusters of clusters [2].  

In that case, we need to have a method that will enable us to 
run our program across the cluster of nodes. Message passing 
mechanism among the processes helps to solve a particular 
problem in parallel environment [3]. But running distributed 
message-passing application in a heterogeneous environment 
is a challenge, as the applications have to deal with different 
numbers of communication interfaces, lower-level protocols, 
encoding schemes etc. for achieving the expected 
performance. 

Our idea is to provide the user with a parallel programming 
standard, MPI (Message Passing Interface) to solve their 
problems in a parallel environment. A panel of parallel 
programming industry leaders including representatives from 
the national laboratories, universities and key parallel system 
vendors define the Message Passing Interface.  

Rest of the paper is organized as follows. Section II 
provides a brief overview of C-MPI. Section III is the brief 
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overview of MPICH and Gigabit Ethernet. Section IV gives 
the description of the experimental environment. In Section V, 
experimental results have been discussed and compared to that 
of MPICH. Conclusion and Future Work are presented in 
Section VI. 

II. C-DAC MESSAGE PASSING INTERFACE (C-MPI) 
C-MPI is a high performance implementation of the MPI 

standard for a Cluster of Multiprocessors (CLUMPS). By 
adhering to the standard, C-MPI supports the execution of the 
multitude of MPI applications with enhanced performance on 
CLUMPS. C-MPI can work with both TCP/IP using Ethernet 
and VIA over PARAMNet-II. It also leverages on the fact that 
most of the high performance networks provides a substantial 
communication bandwidth. It helps in performing send and 
receives operation of messages in a simultaneous manner, 
consequently reducing the no of hops in the transmission path.  

In C-MPI different MPI collective communication calls 
have been optimized using efficient algorithms for CLUMPS 
architecture. The different C-MPI algorithms effectively use 
the shared memory communication on multiprocessor nodes 
to reduce the total computation time of the application. C-MPI 
provides the following advantages over public domain MPI 
[4]: 

• Supports multiple protocols.  
• It uses the network for remote communication while 

shared memory for local communication. 
• Collective communication routines have been 

optimized for CLUMPS to achieve minimized 
execution time. 

C-MPI is designed to achieve high performance and 
portability. It is layered over Abstract Device Interface (ADI) 
[5] to maintain portability. On C-DAC’s PARAM Padma [6], 
C-MPI employs both TCP/IP [7] and C-VIA in the underlying 
ADI layer. The C-MPI functions are implemented in terms of 
macros and functions. 

In Fig. 1, the upper layer does the communication of control 
information and the lower layer performs the transfer of data 
from one process address space to another. For achieving 
optimal performance characteristics, C-MPI can directly work 
over the SAN (System Area Network) in the user space using 
lightweight communication protocols. This results in decrease 
in communication time for MPI point-to-point communication 
protocols. The communication, at the lowest level, occurs in 
point-to-point manner as shown in the Fig. 1 below. Hence, 
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reduction in the communication time of the point-to-point 
communication calls leads to reduce communication time for 
the collective communication calls as well. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 C-MPI Control Flow 

III. MPICH AND GIGABIT ETHERNET 

A. MPICH 
MPICH is an open source, portable implementation of MPI 

standard which is a widely used parallel programming 
paradigm for distributed memory applications in parallel 
computing. MPICH [8] is available for different flavors of 
Unix (including Linux) and Microsoft Windows. It is a 
product of Argonne National Laboratory.   

MPICH supports one-side communication, dynamic 
processes, intercommunicator collective operations, and 
expanded MPI-IO functionality. Moreover, it can work over 
clusters consisting of both single-processor and SMP nodes. 
MPICH implementations are not thread safe. Its architecture is 
driven by two principles. Firstly, intention to increase the 
amount of code can be shared. Most of the code in the MPICH 
implementation such as MPI opaque object, including data 
types, groups, attributes and even communicators, are 
platform independent. Secondly, intention to provide a 
structure that makes it to be ported on to a new system quickly 
by replacing parts of shared code by platform specific code. 
This is achieved with a lower layer interface in ADI called 
Channel Interface. MPICH uses TCP/UDP socket interfaces to 

communicate messages between nodes. Because of this, there 
have been great efforts in reducing the overhead incurred in 
processing the TCP/IP stacks. To overcome this problem 
MPICH is now enabled to support VIA (Virtual Interface 
Architecture). VIA has defined different mechanisms that 
enable bypassing layers of protocol stacks and avoid 
intermediate copies of data during sending and receiving of 
messages. This allows significant increase in communication 
performance and decrease in processor utilization by the 
communication subsystem. 

B. Gigabit Ethernet 
Gigabit Ethernet [9] also known as the IEEE Standard 

802.3z is the latest Ethernet technology. It is a Media Access 
Control (MAC) and physical layer technology. This 
transmission technology is based on the Ethernet frame format 
and protocols used in local area network. It offers a bandwidth 
of One Gigabit per second. To achieve this bandwidth, 
Gigabit Ethernet uses a modified version of the ANSI X3T11 
Fiber Channel standard physical layer. It supports both half-
duplex and full-duplex mode of transmission.  

While operating in the full-duplex mode, Gigabit Ethernet 
uses buffers to store incoming and outgoing data frames until 
the MAC has time to pass them higher up the protocol stack. 
During heavy traffic, the buffers might fill up with data faster 
than the MAC can process them. When such situation arises, it 
is up to the MAC layer to prevent the upper layers from 
sending until some part of the buffer becomes free. Otherwise, 
there will be loss of data frames due to insufficient buffer 
space. When the receive buffers approach their maximum 
capacity, a high watermark interrupts the MAC control of the 
receiving node and sends a signal to the sender to suspend the 
sending process for a specified amount of time until the buffer 
can catch up. The sender resumes transmission after the time 
interval is past or it receives a new packet from the receiver 
with a time interval of zero. The function of the high 
watermark is to ensure that enough buffer remains to give the 
MAC time to inform the sender to suspend the transmission of 
data before the buffer overflows. Similarly, there exists a low 
watermark to notify the MAC control that there is enough 
space in the buffer to restart the flow of incoming data. 

In the half-duplex mode, Gigabit Ethernet uses the 
enhanced CSMA/CD (Carrier Sense Multiple Access with 
Collision Detection) access method. In this technique, the 
channel can either transmit or receive at a time. When there is 
a collision between two frames, the MAC layer stops 
transmitting and retransmit the frame once the transmission 
medium is clear. But if a collision occurs after the packet is 
sent, then the packet is lost because the MAC layer has 
already discarded the frame and started to prepare for the next 
frame for transmission. CSMA/CD protocol is sensitive to 
frame length. That is why Gigabit Ethernet’s performance is 
degraded when it operates in the half-duplex mode.    

 

User Task (C-MPI Application) 

                          API 

Protocol Module 

PARAMNet-II/VIPL 
Library 

Collective 
Communication 

Point-to-point Communication 

C-VIA TCP/IP Shared 
Memory 

Ethernet 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4004

 

 

IV. DESCRIPTION OF THE EXPERIMENTAL 
ENVIRONMENT 

The experimental environment comprises of two entities- 
Test bed and Benchmark. They are briefly described in the 
following sub-sections. 

A.  Specification of the Test Bed 
The experimental evaluation for performance of C-MPI is 

done on PARAM Padma at CTSF [10], C-DAC Knowledge 
Park I, Bangalore, India. The table below is the specification 
of PARAM Padma that currently has a peak performance of 
nearly one Teraflop. The performance testing of C-MPI for 
comparison with the public domain MPI, MPICH is done on 8 
and 32 4-way nodes running AIX-5.1 operating system. 

 
TABLE I 

DESCRIPTION OF   PARAM PADMA 

Specification Compute 
node File servers 

Configuration 

62 nos. of 4 
way SMP and 

one node. of  32 
way SMP 

6 no. of 4 way 
SMP 

No. of  processors 248(Power 4 
@1GHz) 

24(UltraSparc-IV 
@900MHz) 

Aggregate memory 0.5 Terabytes 96 Gigabytes 

Internal storage 4.5 Terabytes 0.4 Terabytes 

Operating system AIX/LINUX Solaris 

Peak computing 
power for 62 AIX 

nodes 
992 GF (~1 TF) -- 

File system -- QFS 

 

 
Fig. 2 Picture of C-DAC's Tera-Scale Supercomputing Facility 

(CTSF) 

B.  Overview of the Benchmarks used 
For comparing the performance of C-MPI to that of 

MPICH, we have used the following benchmarks: 
• HPL (High Performance Linpack) 
• PMB (Pallas MPI Benchmark) 
• P-COMS (PARAM Communication Overhead 

Measurement Suites) 
1. HPL 
HPL [11] benchmark is a numerically intensive test. It is a 

popular benchmark suite to evaluate the performance of Super 
Computers and Clusters and involves solving a system of 

dense linear system in double precision (64 bits) arithmetic 
linear equations. Using HPL benchmark tests the 
PARAMPadma cluster efficiency. 

 
2. PMB 
PMB (Pallas MPI Benchmark)[12] is complex benchmark 

used for measuring MPI performance. It comprises of a 
concise set of benchmarks targeted at evaluating most 
important MPI functions. The different benchmarks under 
PMB are PingPong, PingPing, Sendrecv, Exchange, 
Allreduce, Reduce, Reduce_scatter, Allgather, Allgatherv, 
Alltoall, Bcast and Barrier. 

 
3. P-COMS 
P-COMS [13] comprises of a set of MPI benchmarks used 

for measuring communication overheads on large message 
passing clusters (such as PARAM 10000, PARAM Padma). 
The benchmarks have been implemented using MPI (Message 
Passing Interface) standard. The different benchmarks under 
P-COMS are all, all1, ptp, advptp, cc, ccomp, gppong, 
roundtrip, allgring, oneway and circularshift.  The 
benchmarks measure the overhead time of different MPI 
library calls for Point-to-Point Communication, Collective 
Communication and Collective Communication and 
Computation etc. for message sizes ranging from 0 bytes to 10 
Megabytes. 

V. EXPERIMENTAL RESULTS 
Table II depicts the results of running HPL benchmark on 

32 4-way nodes for C-MPI and MPICH. The sustained 
performance for C-MPI is found to be 274.5 Gigaflops against 
the calculated peak performance of 512 Gigaflops. However, 
it is 255.9 Gigaflops for MPICH. The results listed in the table 
below show that C-MPI clearly outperforms MPICH. 

    
TABLE II 

TABULAR FORM FOR PERFORMANCE OF HPL BENCHMARK 
Matrix Size/ 
Block Size 

C-MPI 
(Sustained/Peak 

Performance) 

MPICH 
(Sustained/Peak 
Performance) 

1280/200 0.9653 Gflops/ 
512 Gflops 

0.2663 Gflops/ 
512 Gflops 

155086/200 274.5 Gflops/ 
512 Gflops 

236.8 Gflops/ 
512 Gflops 

160528/200 273.1 Gflops/ 
512 Gflops 

255.9 Gflops/ 
512 Gflops 

165794/200 265.1 Gflops/ 
512 Gflops 

245.6 Gflops/ 
512 Gflops 

 
From Table II we have seen that C-MPI sustained 

performance is 53.61% of peak performance while for 
MPICH it is 49.98% of the peak value. This means C-MPI 
performance is better than MPICH by  7.27%. Moreover, for 
small problem size (1280/200) also C-MPI is 362.49% faster 
than the other. Hence, C-MPI is better between the two as it is 
evident from the result as shown is Fig. 3. 
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Performance of HPL on PARAM Padma
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Fig. 3 Performance comparison of C-MPI and MPICH for HPL 

Benchmark 
 
 In Table III, output of PMB (Pallas MPI Benchmark) is 

depicted. The latency is obtained using Pingpong benchmark 
across two AIX nodes. 

 
TABLE III 

LATENCY FOR C-MPI AND MPICH 
MPI Type Latency (Microseconds) 

C-MPI 24.38 
MPICH 26.18 

 
Table IV, below shows the performance of the two MPIs 

for P-COMS Benchmark. 
 

TABLE IV 
 LATENCY & BANDWIDTH FOR C-MPI AND MPICH FOR P-COMS  

Communication 
Overhead Parameter 

 
C-MPI 

 
MPICH 

Latency 27.39μs 
 

25.22μs 

Bandwidth 114.69Mbps 
 

106.13Mbps 

 
Performance test using HPL and Pallas Benchmarks clearly 

reveals that C-MPI performs better than that of MPICH. From 
Table IV, we have seen that the bandwidth provided by C-
MPI is much higher than MPICH. However, it lags behind in 
latency by a very small margin.    

VI.   CONCLUSIONS AND FUTURE WORK 
The result shows that C-MPI provides better performance 

compared to that of the public domain MPI, MPICH over 
Gigabit Ethernet. The experimental result of HPC 
benchmarking shows that the optimized commercial C-MPI 
performs even better than MPICH. C-MPI is proved to be 
more powerful, encouraging and more robust than MPICH for 
the user community of high performance computing and 
communication. 

Currently, C-MPI is enabled only for clusters. Work is in 
progress for Grid Enabled MPI [14]. 
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