
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1943

Abstract—The distribution of a single global clock across a chip

has become the major design bottleneck for high performance VLSI

systems owing to the power dissipation, process variability and multi-

cycle cross-chip signaling. A Network-on-Chip (NoC) architecture

partitioned into several synchronous blocks has become a promising

approach for attaining fine-grain power management at the system

level. In a NoC architecture the communication between the blocks is

handled asynchronously. To interface these blocks on a chip

operating at different frequencies, an asynchronous FIFO interface is

inevitable. However, these asynchronous FIFOs are not required if

adjacent blocks belong to the same clock domain. In this paper, we

have designed and analyzed a 16-bit asynchronous micropipelined

FIFO of depth four, with the awareness of place and route on an

FPGA device. We have used a commercially available Spartan 3

device and designed a high speed implementation of the

asynchronous 4-phase micropipeline. The asynchronous FIFO

implemented on the FPGA device shows 76 Mb/s throughput and a

handshake cycle of 109 ns for write and 101.3 ns for read at the

simulation under the worst case operating conditions (voltage =

0.95V) on a working chip at the room temperature.

Keywords—Asynchronous, FIFO, FPGA, GALS, Network-on-

Chip (NoC), VHDL.

I. INTRODUCTION

HE asynchronous circuit design techniques are a

promising design alternative for resolving the design

issues such as circuit reliability problems caused by thermal

variation and voltage occurring in CMOS design technology

[1]. Generally, ASIC or full custom design techniques are

widely used for implementing asynchronous circuits.

Nowadays, the FPGA device is gaining popularity by being a

reconfigurable device. These reconfigurable devices have a

bright scope in the future IC market. Not much work is done

in the direction of implementing asynchronous circuits on

FPGA devices. For exploiting the benefits of asynchronous

circuits such as low power consumption, average case

performance, low electromagnetic interference and delay

insensitivity, it is important to implement them on these

reconfigurable devices. Implementing asynchronous circuits

on commercial FPGA is a rarity owing to the hardness of

timing control for the signal propagation delays. To implement

the asynchronous circuits on an FPGA device, there are two

directions of research: (a) The design of new FPGA

Mansi Jhamb is with the University School Of Information and

Communication Technology, GGSIPU, Sector-16C, Dwarka, New Delhi,

India (e-mail: mansi.jhamb@gmail.com)

Prof. R.K. Sharma and Prof. A.K. Gupta are with the Department of
Electronics and Communication Engineering, NIT Kurukshetra, India (e-mail:

mail2drrks@gmail.com, anilg699@rediffmail.com)

architecture for easy adaptation to asynchronous circuits, [2]-

[4] (b) Implementing the asynchronous circuits on presently

available FPGA devices [5]. Recently, in [6], an asynchronous

pipelined FIFO is extended to an asynchronous MIPS

processor using 65 nm Xilinx Virtex-5 devices for

implementation.

Asynchronous FIFO is a fundamental building block for

system-on-chip designs that employ Globally-Asynchronous-

Locally-Synchronous (GALS) [7], [8] paradigm. The work

presented in [9] shows the GALS on-chip network can be

constructed using a network node structure. In the network

node, the data packets are globally transferred using the

asynchronous handshaking protocol. Thus in order to buffer

the output or input data packets of the network node, an

efficient asynchronous FIFO is required. Till date, the

asynchronous FIFO designs are classified into the two

categories with respect to the movement of data. The first

class comprises of flow-through FIFOs [10], [11] based on the

micropipeline structure proposed in [10]. In this class before

hitting the output port, the data has to propagate across all the

data cells of the FIFO. This contributes to a high throughput

and poor latency. To avoid the movement of data within the

FIFOs, the second class of asynchronous FIFOs use token

passing, counter control logic [12] and common bus structure

[13], [14]. In this case the increased complexity of control

logic is the price paid for eliminating the latency incurred due

to the propagation of data in a flow through FIFO. The control

pipelines based on micropipeline structure are proposed in

[15]. These pipelines are used as control logic for the

asynchronous FIFO. An asynchronous arbiter and C-element

RTL structures are also used in proposed asynchronous FIFO

[15]. An asynchronous implementation of the ARM

microprocessor is designed in [16]. The work presented in

[16] assesses the effects of different design styles on the

micropipeline latch structures.

This work implements an asynchronous FIFO belonging to

the class of flow-through FIFO. Though the FIFO architecture

implemented in this work is meant for network-on-chip (NoC)

applications, it may be employed as a general purpose

asynchronous FIFO. The FIFO design presented in this work

has an additional advantage of being constructed at Register

Transfer Level using commercially adopted VHSIC-HDL.

This leads to an easy integration with different synchronous

modules for construction of a commercial asynchronous-

synchronous mixed design for e.g., Globally Asynchronous

Locally Synchronous NoC. In this paper, the asynchronous

FIFO is designed with the following key features:

A High Level Implementation of a High Performance

Data Transfer Interface for NoC
Mansi Jhamb, R. K. Sharma, A. K. Gupta

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1944

• The preceding and the succeeding modules on either side

of the FIFO can put and get the data using their own

respective clocks across simple synchronous interfaces,

leading to an easy NoC integration.

• The design can be synthesized employing standard cell

based flow.

• Full/Empty conditions are detected and handled in a very

simple manner.

The rest of the paper is organized as follows. In Section II,

the detailed design of asynchronous FIFO is presented.

Section III describes the implementation of the asynchronous

FIFO design. Section IV deals with the performance

evaluation of eight-stage, 16-bit wide asynchronous pipelined

FIFO. Finally, the conclusions are drawn in Section V.

II. THE DESIGN OF ASYNCHRONOUS FIFO

A. The Design of Asynchronous Interface

The asynchronous interface facilitates the data movement

from one module to another module using the concept of

handshaking as shown in Fig. 1.

Fig. 1 Muller pipeline using C- Elements (a) Structure (b) 4- Phase

Bundled Data Handshaking Protocol

The process of Handshaking is explained as following

steps:

• Initially all four handshake signals are low.

• The block A sends out data and in the meantime sets

req_A high.

• Now, ack_A will go high since req_B is low. The positive

edge of ack_A acts as the clock signal for data register.

Thus, data_A is latched to the stage register.

• The ack_A signal acts as the input to the next C-element.

When ack_A is made high, it pulls req_B high.

• When req_A becomes low, ack_A will also become low.

• When the ack_B signal from next stage is asserted high,

the second C-element conveys that next stage has read the

output data of the register. This causes the req_B to go

low.

• Finally, corresponding to req_B going low, the block B

pulls the ack_B signal low.

The implemented asynchronous FIFO design is based on

four-phase handshaking protocol. The design can support

dual-rail protocol and bundled-data (on changing the interface

descriptions). The block diagram of the implemented

asynchronous FIFO based on 4 phase bundled-data

handshaking protocol is shown in Fig. 2. The block diagram is

functionally segregated into data processing section and

control logic section. The control section comprises of control

pipelines based on the concept of micro pipeline. In the

control pipeline, every stage controls read/write operations of

data section. The phenomenon of pushing the data into the

asynchronous FIFO is as following:

• Once the data to be sent (Data_in (15:0)) is ready, the

sender asserts the request signal (Rin)

• The FIFO will set the acknowledge signal (Ain) after the

successful reception of the data

• Subsequently, the sender resets the Rin signal in response

to Ain signal

• Once the Rin signal is reset, the FIFO resets the Ain

signal.

The phenomenon of popping the data is same as the process

of push despite the fact that the FIFO supplies the data and

receiver receives it.

Fig. 2 A 4 Phase micropipelined FIFO structure

B. FIFO Characteristics

The top structural architecture of the implemented

asynchronous micropipelined FIFO is shown in Fig. 3.

Fig. 3 Micropipelined FIFO: interfacing signals

The parameters characterizing the implemented FIFO are

summarized in Table I.

TABLE I
FIFO CHARACTERISTICS

Parameter name Description

RST Resets the FIFO

RIN Input request to the FIFO from the sender which inputs data
to the FIFO

AIN Input acknowledgement sent by the FIFO to the sender

after receiving data from it
DIN (15:0) 16 bit data input to the FIFO

DOUT (15:0) 16 bit data output from the FIFO

ROUT Output request from the FIFO to the receiver which
receives data from the FIFO

AOUT Output Acknowledge sent by the receiver to the FIFO after

it has received data from it
FULL Sets when FIFO is full

EMPTY Sets when FIFO is empty

OVERFLOW Sets when there is an input request while the FIFO is full

UNDERFLOW Sets when there is an output acknowledge while the FIFO is

empty

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1945

C. FIFO Architecture

Fig. 4 shows the architecture of asynchronous pipelined

FIFO implemented in this work with the bold and regular lines

symbolizing the data bus and control signals respectively. The

architecture is segregated into individual blocks, each

performing a dedicated task, coordinated by the C elements.

These blocks send signals to the handshake controller

indicating their state i.e. request, acknowledge. The

architecture is based on 4-phase micropipeline circuit. The

latch capture signal ‘Capture’ of a single-phase transparent

latch is directly driven by the C-elements. The completion is

detected by the signal ‘Cap_done’. Initially, the latch stages

exhibit transparency and control signals are asserted low.

Assertion of signal Din leads to the generation of a request on

pipeline input and signal Rin is asserted high. After

initialization, the C gate of the first stage is primed and

therefore the capture signal ‘Capture’ goes high. Once the

latch completion occurs, ‘Capture’ is asserted high and sent to

the C element of the subsequent stage and also sent back to the

sender through ‘Ain’. This indicates the completion of the

latching of the data. Now, the data can be removed and a reset

phase can be initiated by resetting ‘Rin’. The subsequent stage

will also latch similarly, forwarding the latch completion

signal to consecutive stage C element [16]. This will

correspond to Rin being reset, setting the transparency in the

first latch and on completion, Ain is reset. This completes the

4-phase handshaking.

Though FIFO design is simple 4-phase micropipeline

circuit based on Sutherland’s strategy [10], this circuit has the

following limitation; a latch can only be occupied if the

subsequent adjacent latch is transparent. The micropipeline

backlogs occur if the data is injected to the pipeline at higher

rate than the rate of data removal. This implies that only every

other pipeline stage can be occupied, resulting in halving the

depth of pipeline [16]. The FIFO is full when alternate latches

hold data. Therefore, when capture signals to the alternate

latches and inversion of the capture signals of the remaining

latches give ‘1’ as the output when passed through a multiple

AND gate, it means that the FIFO is full.

Since propagation delay of the latch is greater than that of

the Muller C elements, a delay has to be introduced in the path

of the request signals in order to ensure proper

synchronization between data and request signals. This delay

is implemented using buffers having propagation delay

comparable to that of the latches. This is because Muller C

elements have negligible delay.

In order to guarantee the control and to synchronize the

execution order of individual modules, the implemented FIFO

architecture is interpreted using a five-state Mealy Finite State

Machine, as shown in Fig. 5. The functions of each of the five

states i.e. empty, partially filled, full, overflow and underflow

is described in Table II.

Fig. 4 Micropipelined FIFO architecture

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1946

Fig. 5 FIFO state diagram

TABLE II
DIVERSE STATES OF IMPLEMENTED DESIGN

State Task Performed

EMPTY Initial state of the FIFO having no data

PARTIALLY

FILLED

When number of writes is greater than number of reads,

FIFO is partially filled with data
FULL Since the design is of asynchronous FIFO with four words

depth, it is considered full when filled with four data

packets

UNDERFLOW When there is a read request to an empty FIFO, underflow
occurs

OVERFLOW When there is a write request to a full FIFO, overflow

occurs

III. IMPLEMENTATION OF THE DESIGN

In this paper, we design and analyze a simple asynchronous

16-bit micropipelined FIFO of depth four with the awareness

of place and route (PAR) on FPGA device in order to show

the feasibility of high-speed implementation of asynchronous

circuits. We use Xilinx Spartan 3 devices to design and

implement the FIFO with layout adjustments to fulfill the

timing constraints which are mandatory for the correct

operations of the circuits. Firstly, to verify the functionality of

the asynchronous pipelined FIFO, the gate-level simulation of

the eight-stage, 16-bit wide pipeline is as shown in Fig. 6. The

Figs. 6 (a) and (b) show the status of the asynchronous

pipelined FIFO indicating the empty/full conditions.

The top-down approach reported in this work is presented

in Fig. 7. In this approach, the prime concern is the

specification and design functionality. The process flow starts

with the system level modeling of implemented architecture.

The implemented model is analyzed and values of the test

vector are utilized in Timing and RTL simulation. Very High

Speed Integrated Circuits Hardware Description Language

(VHDL) is employed for circuit design at RTL level. Special

consideration is given in the design of the constituent modules

of the FIFO using the concept of handshaking because we

want to have a completely parameterized code for our design.

Once the correct functionality is ensured through RTL

simulation, the logic synthesis is performed. At this level,

Xilinx generates a schematic which is independent of

technology and optimizes the circuit to the FPGA specific

library chosen (Spartan 3, XC3S200- 5FT256).

(a)

(b)

Fig. 6 Gate-level simulation results for a 8-stage asynchronous

pipelined FIFO: (a) Depicting EMPTY condition (b) Depicting FULL

condition

This is the stage at which specific design requirements; area

and timing constraints are to be defined. Subsequently, the

Xilinx ISE (Xilinx 9.1i) place and route (PAR) tool accepts

input netlist file (.edf) generated by XST in the synthesis

process. After that, the translation program translates the input

netlist along with the design constraints onto a Xilinx database

file.

Fig. 7 The design flow

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1947

After the successful run of the translation program, the

mapping of the logical design onto a Xilinx FPGA device is

performed by the MAP program. Once the mapped design is

accepted by the PAR program, the output for the bitstream

generator (BitGen) is produced. PAR hence places and routes

the FPGA. On the reception of the placed and routed design, a

bitstream (.bit) is generated according the configuration of

Xilinx device. Before the FPGA file is programmed, a timing

simulation is carried out to ensure that the design meets the

correct functionality and timing constraints.

IV. THE PERFORMANCE EVALUATION

The asynchronous FIFO is implemented using VHDL. The

event driven simulation tool Xilinx ISE 9.1i is employed for

gate level simulation of the asynchronous FIFO presented in

this work. The time elapsed between the leading edge of the

‘Rin’ signal and the lagging edge of ‘Aout’ signal contributes

to the total latency of asynchronous FIFO. It can be calculated

by the summation of handshake cycles of read and write

requests. This latency is directly proportional to the FIFO size

because the data propagates through the FIFO. The timing

characterization for the designed asynchronous FIFO is

illustrated in Table III.

TABLE III

TIMING CHARACTERIZATION FOR ASYNCHRONOUS FIFO

 Ack_Rise

Latency*

(ns)

Req_Hold

 Time# (ns)
Ack_Fall

Latency+

(ns)

Handshake
Cycle (ns)

Write Request 11.6 88.3 9.1 109.0

Read Request 1.5 77.0 22.8 101.3

* Time between rising edges of request and acknowledge signals [15]

Time between leading edge of acknowledge signal and lagging edge of
request signal [15]

+ Time between falling edges of request and acknowledge signals [15]

It is to be considered that the environment determines the

parameter ‘Req_Hold’ (request hold time) not the FIFO. As

per the latencies given in Table III, the implemented

asynchronous FIFO is capable of executing 4.75 million 16-bit

data read-after-write operations per second. In theory this

equals to a throughput of 76 Mb/s.

Once the design is synthesized, the Xilinx ISE translates

maps and routes the asynchronous FIFO to the FPGA device.

The FPGA utilization produced by the ISE is shown in Table

IV.

In an FPGA device, it is difficult to control timing delay

among circuit/gate components. To satisfy the timing

constraints, special design constraints need to be given to

synthesis and PAR optimization processes. Xilinx synthesis

and PAR tools support useful constraints like RLOC, LOC

and P-block for controlling the layout design [17]. Such a user

defined placement increases the speed of the circuits and

makes the use of die resources more efficient. RLOC and LOC

are the placement constraints specifying the relative and

absolute positions of cells. Xilinx Plan Ahead supports P-

block constraint and it also allows to constraint circuit

modules to a particular area of FPGA device. In order to check

the interconnect wire routing, an FPGA editor is used. We

have extracted all the delays from our design using ISE

Timing Analysis Tool and then only its worst cycle time is

statically analyzed.

TABLE IV

FPGA UTILIZATION FOR THE IMPLEMENTED ASYNCHRONOUS FIFO

Logic Utilization Used Available Utilization

No. of Slice Latches 112 3840 2%

No. of 4 input LUTs 13 3840 1%

Logic Distribution

Number of occupied Slices 73 1920 3%

Number of Slices containing only related
logic

73 73 100%

Number of Slices containing unrelated
logic

0 73 0%

Total number of 4 input LUTs 13 3840 1%

Number of bonded IOBs 41 173 23%

IOB Latches 34

Number of GCLKs 2 8 25%

Total equivalent gate count for design 820

Additional JTAG gate count for IOBs 1968

V. CONCLUSION

In the asynchronous paradigm, the design of an

asynchronous micropipelined FIFO is of great importance

since it demonstrates the timing overhead existing in system-

on-chips. In this work, we have designed and analyzed a 16-

bit asynchronous micropipelined FIFO of depth four, with the

awareness of place and route on an FPGA device. We have

used a commercially available Spartan 3 device and designed

a high speed implementation of the asynchronous 4-phase

micropipeline. The asynchronous FIFO implemented on the

FPGA device shows 76 Mb/s throughput and a handshake

cycle of 109 ns for write and 101.3 ns for read at the

simulation under the worst case operating conditions (voltage

= 0.95V) on a working chip at the room temperature.

REFERENCES

[1] Semiconductor Industry Association, International Technology

Roadmap for Semiconductor, 2009.
[2] Hauck S., Burns S., Borriello G., Ebeling C. An FPGA for implementing

asynchronous circuits. IEEE Design and Test of Computers 11 1994; 3:

60-69.
[3] Royal A, Cheung PYK 2003, Globally asynchronous locally

synchronous FPGA architectures, 13th International Conference on

Field-Programmable Logic and Applications (FPL 2003), SPRINGER-
VERLAG BERLIN, Berlin, Pages:355-364, ISSN:0302-9743

[4] LaFrieda, C., Hill, B., Manohar, R.: An Asynchronous FPGA with Two-

Phase Enable-ScaledRouting. In: Proc. Of IEEE International
Symposium on Asynchronous Circuits and Systems; May 2010.

[5] Brunvand, E., Michell, M., Smith, K. A comparison of self-timed design

using FPGA, CMOS,and GaAs technologies. In: Proc. of International
Conf. Computer Design; October1992: pp. 76-80.

[6] Seung-JoonLee, Deok-Young Lee, Young-WoongKo, Jeong-Gun Lee.

Asynchronous Circuit Design on an FPGA: MIPS Processor Case Study.
Communications in Computer and Information Science 2012; vol. 310;

Springer.

[7] Chelsea, T., and Nowick, S. (2004), ‘Robust Interfaces for Mixed
Timing Systems’, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 12, 857-873.

[8] Teehan, P., Greenstreet, M., and Lemieux, G. A Survey and Taxonomy
of GALS Design Styles. IEEE Design and Test of Computers 2007; 24:

pp. 418-428.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1948

[9] X. Wang, D.Sigüenza-Tortosa, T. Ahonen, and J. Nurmi. Asynchronous

Node Design for Network-On- Chip. Proceedings of 2005 International

Symposium on Signal Circuits and System; July 2005.
[10] I.E. Sutherland. Micropipelines. Communication of the ACM; June

1989vol. 32; no. 6: pp 720-738.

[11] Brunvand, “Low latency self-timed flow-through FIFOs”, Proceedings
of Sixteenth Conference on Advanced Research in VLSI, pp.76 – 90,

March 1995.

[12] A.V. Yakovlev, A.M. Koelmans, and L. Lavagno. High-Level Modeling
and Design of Asynchronous Interface Logic. IEEE Design and Test of

Computers; Spring 1995.

[13] T. Chelcea, and S.M. Nowick. Low-latency asynchronous FIFO's using
token rings. Proceedings of SixthInternational Symposium on Advanced

Research in AsynchronousCircuits and Systems; April 2000: pp. 210 –

220.
[14] K.K. Yi. The Design of a Self–Timed Low Power FIFO Using a Word–

Slice Structure. M.Phil, University of Manchester, September 1998.

[15] Xin Wang, Jari Nurmi. A RTL Asynchronous FIFO Design Using
Modified Micropipeline. The10th Biennial Baltic Electronic Conference

(BEC 2006), Estonia; October 2006.

[16] P.day, J.V. Woods. Investigation into Micropipeline Latch Design
Styles. IEEE Transaction on VLSI Sytems ,Vol. 3; 1995.

[17] Xilinx, ISE Design Software Manuals and Help. Sept, 2010

