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Abstract—The distribution of a single global clock across a chip 

has become the major design bottleneck for high performance VLSI 

systems owing to the power dissipation, process variability and multi-

cycle cross-chip signaling. A Network-on-Chip (NoC) architecture 

partitioned into several synchronous blocks has become a promising 

approach for attaining fine-grain power management at the system 

level. In a NoC architecture the communication between the blocks is 

handled asynchronously. To interface these blocks on a chip 

operating at different frequencies, an asynchronous FIFO interface is 

inevitable. However, these asynchronous FIFOs are not required if 

adjacent blocks belong to the same clock domain. In this paper, we 

have designed and analyzed a 16-bit asynchronous micropipelined 

FIFO of depth four, with the awareness of place and route on an 

FPGA device. We have used a commercially available Spartan 3 

device and designed a high speed implementation of the 

asynchronous 4-phase micropipeline. The asynchronous FIFO 

implemented on the FPGA device shows 76 Mb/s throughput and a 

handshake cycle of 109 ns for write and 101.3 ns for read at the 

simulation under the worst case operating conditions (voltage = 

0.95V) on a working chip at the room temperature. 

 

Keywords—Asynchronous, FIFO, FPGA, GALS, Network-on-

Chip (NoC), VHDL. 

I. INTRODUCTION 

HE asynchronous circuit design techniques are a 

promising design alternative for resolving the design 

issues such as circuit reliability problems caused by thermal 

variation and voltage occurring in CMOS design technology 

[1]. Generally, ASIC or full custom design techniques are 

widely used for implementing asynchronous circuits. 

Nowadays, the FPGA device is gaining popularity by being a 

reconfigurable device. These reconfigurable devices have a 

bright scope in the future IC market. Not much work is done 

in the direction of implementing asynchronous circuits on 

FPGA devices. For exploiting the benefits of asynchronous 

circuits such as low power consumption, average case 

performance, low electromagnetic interference and delay 

insensitivity, it is important to implement them on these 

reconfigurable devices. Implementing asynchronous circuits 

on commercial FPGA is a rarity owing to the hardness of 

timing control for the signal propagation delays. To implement 

the asynchronous circuits on an FPGA device, there are two 

directions of research: (a) The design of new FPGA 
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architecture for easy adaptation to asynchronous circuits, [2]-

[4] (b) Implementing the asynchronous circuits on presently 

available FPGA devices [5]. Recently, in [6], an asynchronous 

pipelined FIFO is extended to an asynchronous MIPS 

processor using 65 nm Xilinx Virtex-5 devices for 

implementation.  

Asynchronous FIFO is a fundamental building block for 

system-on-chip designs that employ Globally-Asynchronous-

Locally-Synchronous (GALS) [7], [8] paradigm. The work 

presented in [9] shows the GALS on-chip network can be 

constructed using a network node structure. In the network 

node, the data packets are globally transferred using the 

asynchronous handshaking protocol. Thus in order to buffer 

the output or input data packets of the network node, an 

efficient asynchronous FIFO is required. Till date, the 

asynchronous FIFO designs are classified into the two 

categories with respect to the movement of data. The first 

class comprises of flow-through FIFOs [10], [11] based on the 

micropipeline structure proposed in [10]. In this class before 

hitting the output port, the data has to propagate across all the 

data cells of the FIFO. This contributes to a high throughput 

and poor latency. To avoid the movement of data within the 

FIFOs, the second class of asynchronous FIFOs use token 

passing, counter control logic [12] and common bus structure 

[13], [14]. In this case the increased complexity of control 

logic is the price paid for eliminating the latency incurred due 

to the propagation of data in a flow through FIFO. The control 

pipelines based on micropipeline structure are proposed in 

[15]. These pipelines are used as control logic for the 

asynchronous FIFO. An asynchronous arbiter and C-element 

RTL structures are also used in proposed asynchronous FIFO 

[15]. An asynchronous implementation of the ARM 

microprocessor is designed in [16]. The work presented in 

[16] assesses the effects of different design styles on the 

micropipeline latch structures. 

This work implements an asynchronous FIFO belonging to 

the class of flow-through FIFO. Though the FIFO architecture 

implemented in this work is meant for network-on-chip (NoC) 

applications, it may be employed as a general purpose 

asynchronous FIFO. The FIFO design presented in this work 

has an additional advantage of being constructed at Register 

Transfer Level using commercially adopted VHSIC-HDL. 

This leads to an easy integration with different synchronous 

modules for construction of a commercial asynchronous-

synchronous mixed design for e.g., Globally Asynchronous 

Locally Synchronous NoC. In this paper, the asynchronous 

FIFO is designed with the following key features: 
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• The preceding and the succeeding modules on either side 

of the FIFO can put and get the data using their own 

respective clocks across simple synchronous interfaces, 

leading to an easy NoC integration.  

• The design can be synthesized employing standard cell 

based flow. 

• Full/Empty conditions are detected and handled in a very 

simple manner. 

The rest of the paper is organized as follows. In Section II, 

the detailed design of asynchronous FIFO is presented. 

Section III describes the implementation of the asynchronous 

FIFO design. Section IV deals with the performance 

evaluation of eight-stage, 16-bit wide asynchronous pipelined 

FIFO. Finally, the conclusions are drawn in Section V. 

II. THE DESIGN OF ASYNCHRONOUS FIFO 

A. The Design of Asynchronous Interface 

The asynchronous interface facilitates the data movement 

from one module to another module using the concept of 

handshaking as shown in Fig. 1. 

 

 

Fig. 1 Muller pipeline using C- Elements (a) Structure (b) 4- Phase 

Bundled Data Handshaking Protocol 

 

The process of Handshaking is explained as following 

steps: 

• Initially all four handshake signals are low.  

• The block A sends out data and in the meantime sets 

req_A high. 

• Now, ack_A will go high since req_B is low. The positive 

edge of ack_A acts as the clock signal for data register. 

Thus, data_A is latched to the stage register. 

• The ack_A signal acts as the input to the next C-element. 

When ack_A is made high, it pulls req_B high. 

• When req_A becomes low, ack_A will also become low. 

• When the ack_B signal from next stage is asserted high, 

the second C-element conveys that next stage has read the 

output data of the register. This causes the req_B to go 

low.  

• Finally, corresponding to req_B going low, the block B 

pulls the ack_B signal low. 

The implemented asynchronous FIFO design is based on 

four-phase handshaking protocol. The design can support 

dual-rail protocol and bundled-data (on changing the interface 

descriptions). The block diagram of the implemented 

asynchronous FIFO based on 4 phase bundled-data 

handshaking protocol is shown in Fig. 2. The block diagram is 

functionally segregated into data processing section and 

control logic section. The control section comprises of control 

pipelines based on the concept of micro pipeline. In the 

control pipeline, every stage controls read/write operations of 

data section. The phenomenon of pushing the data into the 

asynchronous FIFO is as following: 

• Once the data to be sent (Data_in (15:0)) is ready, the 

sender asserts the request signal (Rin)  

• The FIFO will set the acknowledge signal (Ain) after the 

successful reception of the data 

• Subsequently, the sender resets the Rin signal in response 

to Ain signal  

• Once the Rin signal is reset, the FIFO resets the Ain 

signal. 

The phenomenon of popping the data is same as the process 

of push despite the fact that the FIFO supplies the data and 

receiver receives it. 

 

 

Fig. 2 A 4 Phase micropipelined FIFO structure 

B. FIFO Characteristics 

The top structural architecture of the implemented 

asynchronous micropipelined FIFO is shown in Fig. 3. 

 

 

Fig. 3 Micropipelined FIFO: interfacing signals 

 

The parameters characterizing the implemented FIFO are 

summarized in Table I. 
 

TABLE I 
FIFO CHARACTERISTICS 

Parameter name Description 

RST Resets the FIFO 

RIN Input request to the FIFO from the sender which inputs data 
to the FIFO 

AIN Input acknowledgement sent by the FIFO to the sender 

after receiving data from it 
DIN (15:0) 16 bit data input to the FIFO 

DOUT (15:0) 16 bit data output from the FIFO 

ROUT Output request from the FIFO to the receiver which 
receives data from the FIFO 

AOUT Output Acknowledge sent by the receiver to the FIFO after 

it has received data from it 
FULL Sets when FIFO is full 

EMPTY Sets when FIFO is empty 

OVERFLOW Sets when there is an input request while the FIFO is full 

UNDERFLOW Sets when there is an output acknowledge while the FIFO is 

empty 
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C. FIFO Architecture 

Fig. 4 shows the architecture of asynchronous pipelined 

FIFO implemented in this work with the bold and regular lines 

symbolizing the data bus and control signals respectively. The 

architecture is segregated into individual blocks, each 

performing a dedicated task, coordinated by the C elements. 

These blocks send signals to the handshake controller 

indicating their state i.e. request, acknowledge. The 

architecture is based on 4-phase micropipeline circuit. The 

latch capture signal ‘Capture’ of a single-phase transparent 

latch is directly driven by the C-elements. The completion is 

detected by the signal ‘Cap_done’.  Initially, the latch stages 

exhibit transparency and control signals are asserted low. 

Assertion of signal Din leads to the generation of a request on 

pipeline input and signal Rin is asserted high. After 

initialization, the C gate of the first stage is primed and 

therefore the capture signal ‘Capture’ goes high. Once the 

latch completion occurs, ‘Capture’ is asserted high and sent to 

the C element of the subsequent stage and also sent back to the 

sender through ‘Ain’. This indicates the completion of the 

latching of the data. Now, the data can be removed and a reset 

phase can be initiated by resetting ‘Rin’. The subsequent stage 

will also latch similarly, forwarding the latch completion 

signal to consecutive stage C element [16]. This will 

correspond to Rin being reset, setting the transparency in the 

first latch and on completion, Ain is reset. This completes the 

4-phase handshaking. 

Though FIFO design is simple 4-phase micropipeline 

circuit based on Sutherland’s strategy [10], this circuit has the 

following limitation; a latch can only be occupied if the 

subsequent adjacent latch is transparent.  The micropipeline 

backlogs occur if the data is injected to the pipeline at higher 

rate than the rate of data removal.  This implies that only every 

other pipeline stage can be occupied, resulting in halving the 

depth of pipeline [16]. The FIFO is full when alternate latches 

hold data. Therefore, when capture signals to the alternate 

latches and inversion of the capture signals of the remaining 

latches give ‘1’ as the output when passed through a multiple 

AND gate, it means that the FIFO is full.  

Since propagation delay of the latch is greater than that of 

the Muller C elements, a delay has to be introduced in the path 

of the request signals in order to ensure proper 

synchronization between data and request signals. This delay 

is implemented using buffers having propagation delay 

comparable to that of the latches. This is because Muller C 

elements have negligible delay. 

In order to guarantee the control and to synchronize the 

execution order of individual modules, the implemented FIFO 

architecture is interpreted using a five-state Mealy Finite State 

Machine, as shown in Fig. 5. The functions of each of the five 

states i.e. empty, partially filled, full, overflow and underflow 

is described in Table II.  
 

Fig. 4 Micropipelined FIFO architecture 
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Fig. 5 FIFO state diagram 
 

TABLE II 
DIVERSE STATES OF IMPLEMENTED DESIGN 

State Task Performed 

EMPTY Initial state of the FIFO having no data 

PARTIALLY 

FILLED 

When number of writes is greater than number of reads, 

FIFO is partially filled with data 
FULL Since the design is of asynchronous FIFO with four words 

depth, it is considered full when filled with four data 

packets  

UNDERFLOW When there is a read request to an empty FIFO, underflow 
occurs 

OVERFLOW When there is a write request to a full FIFO, overflow 

occurs 

III. IMPLEMENTATION OF THE DESIGN 

In this paper, we design and analyze a simple asynchronous 

16-bit micropipelined FIFO of depth four with the awareness 

of place and route (PAR) on FPGA device in order to show 

the feasibility of high-speed implementation of asynchronous 

circuits. We use Xilinx Spartan 3 devices to design and 

implement the FIFO with layout adjustments to fulfill the 

timing constraints which are mandatory for the correct 

operations of the circuits. Firstly, to verify the functionality of 

the asynchronous pipelined FIFO, the gate-level simulation of 

the eight-stage, 16-bit wide pipeline is as shown in Fig. 6. The 

Figs. 6 (a) and (b) show the status of the asynchronous 

pipelined FIFO indicating the empty/full conditions. 

The top-down approach reported in this work is presented 

in Fig. 7. In this approach, the prime concern is the 

specification and design functionality. The process flow starts 

with the system level modeling of implemented architecture. 

The implemented model is analyzed and values of the test 

vector are utilized in Timing and RTL simulation. Very High 

Speed Integrated Circuits Hardware Description Language 

(VHDL) is employed for circuit design at RTL level. Special 

consideration is given in the design of the constituent modules 

of the FIFO using the concept of handshaking because we 

want to have a completely parameterized code for our design. 

Once the correct functionality is ensured through RTL 

simulation, the logic synthesis is performed. At this level, 

Xilinx generates a schematic which is independent of 

technology and optimizes the circuit to the FPGA specific 

library chosen (Spartan 3, XC3S200- 5FT256). 

 
(a) 

 

 
(b) 

Fig. 6 Gate-level simulation results for a 8-stage asynchronous 

pipelined FIFO: (a) Depicting EMPTY condition (b) Depicting FULL 

condition 

 

This is the stage at which specific design requirements; area 

and timing constraints are to be defined. Subsequently, the 

Xilinx ISE (Xilinx 9.1i) place and route (PAR) tool accepts 

input netlist file (.edf) generated by XST in the synthesis 

process. After that, the translation program translates the input 

netlist along with the design constraints onto a Xilinx database 

file.  

 

 

Fig. 7 The design flow 
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After the successful run of the translation program, the 

mapping of the logical design onto a Xilinx FPGA device is 

performed by the MAP program. Once the mapped design is 

accepted by the PAR program, the output for the bitstream 

generator (BitGen) is produced.  PAR hence places and routes 

the FPGA. On the reception of the placed and routed design, a 

bitstream (.bit) is generated according the configuration of 

Xilinx device. Before the FPGA file is programmed, a timing 

simulation is carried out to ensure that the design meets the 

correct functionality and timing constraints.  

IV. THE PERFORMANCE EVALUATION 

The asynchronous FIFO is implemented using VHDL. The 

event driven simulation tool Xilinx ISE 9.1i is employed for 

gate level simulation of the asynchronous FIFO presented in 

this work. The time elapsed between the leading edge of the 

‘Rin’ signal and the lagging edge of ‘Aout’ signal contributes 

to the total latency of asynchronous FIFO. It can be calculated 

by the summation of handshake cycles of read and write 

requests. This latency is directly proportional to the FIFO size 

because the data propagates through the FIFO. The timing 

characterization for the designed asynchronous FIFO is 

illustrated in Table III.  
 

TABLE III 

TIMING CHARACTERIZATION FOR ASYNCHRONOUS FIFO 

 Ack_Rise 

Latency* 

(ns) 

Req_Hold 

 Time# (ns) 
Ack_Fall 

Latency+ 

(ns) 

Handshake 
Cycle (ns) 

Write Request 11.6 88.3 9.1 109.0 

Read Request 1.5 77.0 22.8 101.3 

* Time between rising edges of request and acknowledge signals [15] 

# Time between leading edge of acknowledge signal and lagging edge of 
request signal [15] 

+ Time between falling edges of request and acknowledge signals [15] 

 

It is to be considered that the environment determines the 

parameter ‘Req_Hold’ (request hold time) not the FIFO. As 

per the latencies given in Table III, the implemented 

asynchronous FIFO is capable of executing 4.75 million 16-bit 

data read-after-write operations per second. In theory this 

equals to a throughput of 76 Mb/s.  

Once the design is synthesized, the Xilinx ISE translates 

maps and routes the asynchronous FIFO to the FPGA device. 

The FPGA utilization produced by the ISE is shown in Table 

IV.  

In an FPGA device, it is difficult to control timing delay 

among circuit/gate components. To satisfy the timing 

constraints, special design constraints need to be given to 

synthesis and PAR optimization processes. Xilinx synthesis 

and PAR tools support useful constraints like RLOC, LOC 

and P-block for controlling the layout design [17]. Such a user 

defined placement increases the speed of the circuits and 

makes the use of die resources more efficient. RLOC and LOC 

are the placement constraints specifying the relative and 

absolute positions of cells. Xilinx Plan Ahead supports P-

block constraint and it also allows to constraint circuit 

modules to a particular area of FPGA device. In order to check 

the interconnect wire routing, an FPGA editor is used. We 

have extracted all the delays from our design using ISE 

Timing Analysis Tool and then only its worst cycle time is 

statically analyzed.  
 

TABLE IV 

FPGA UTILIZATION FOR THE IMPLEMENTED ASYNCHRONOUS FIFO 

Logic Utilization Used  Available Utilization 

No. of Slice Latches 112 3840 2% 

No. of 4 input LUTs 13 3840 1% 

Logic Distribution    

Number of occupied Slices 73 1920 3% 

Number of Slices containing only related 
logic 

73 73 100% 

Number of Slices containing unrelated 
logic 

0 73 0% 

Total number of 4 input LUTs 13 3840 1% 

Number of bonded IOBs 41 173 23% 

IOB Latches 34   

Number of GCLKs 2 8 25% 

Total equivalent gate count for design 820   

Additional JTAG gate count for IOBs 1968   

V. CONCLUSION 

In the asynchronous paradigm, the design of an 

asynchronous micropipelined FIFO is of great importance 

since it demonstrates the timing overhead existing in system-

on-chips. In this work, we have designed and analyzed a 16-

bit asynchronous micropipelined FIFO of depth four, with the 

awareness of place and route on an FPGA device. We have 

used a commercially available Spartan 3 device and designed 

a high speed implementation of the asynchronous 4-phase 

micropipeline. The asynchronous FIFO implemented on the 

FPGA device shows 76 Mb/s throughput and a handshake 

cycle of 109 ns for write and 101.3 ns for read at the 

simulation under the worst case operating conditions (voltage 

= 0.95V) on a working chip at the room temperature. 
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