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A Hamiltonian Decomposition of 5-star
Walter Hussak and Heiko Schröder

Abstract—Star graphs are Cayley graphs of symmetric groups of
permutations, with transpositions as the generating sets. A star graph
is a preferred interconnection network topology to a hypercube for
its ability to connect a greater number of nodes with lower degree.
However, an attractive property of the hypercube is that it has a
Hamiltonian decomposition, i.e. its edges can be partitioned into
disjoint Hamiltonian cycles, and therefore a simple routing can be
found in the case of an edge failure. The existence of Hamiltonian
cycles in Cayley graphs has been known for some time. So far,
there are no published results on the much stronger condition of
the existence of Hamiltonian decompositions. In this paper, we give
a construction of a Hamiltonian decomposition of the star graph
5-star of degree 4, by defining an automorphism for 5-star and a
Hamiltonian cycle which is edge-disjoint with its image under the
automorphism.

Keywords—interconnection networks; paths and cycles; graphs and
groups.

I. INTRODUCTION

NETWORKED computer systems have basic requirements
such as fast communication and fault tolerance, which

are met by an appropriate choice of interconnection topology.
The star graph has been proposed as an interconnection
network topology that is better than the hypercube for its
ability to connect a greater number of nodes with lower degree
[1]. On the other hand, an attractive property of the hypercube
is that its edges can be partitioned into disjoint Hamiltonian
cycles [2]. The presence of edge-disjoint Hamiltonian cycles
is desirable for interconnection networks for various reasons.
Fault tolerance is easier to achieve as a simple routing can be
found in the case of an edge failure. Efficiency can also be
improved. An example is the case of all-to-all broadcasting in
multiport systems, where a node can send to or receive from
all its neighbours in unit time, as messages can be broken
down into smaller messages and sent along edge-disjoint
Hamiltonian cycles. Edge-disjoint Hamiltonian cycles have
been investigated in various interconnection topologies, for
example in deBruijn networks [3] and tori [4]. They have also
been studied in star graphs and lower bounds for the number
of pairwise edge-disjoint Hamiltonian cycles have been given
in [5]. However, there has been no significant progress on the
optimum case of edge-disjoint cycles, where all the edges in
the network topology are partitioned into Hamiltonian cycles,
beyond the case of the hypercube.

Star graphs are Cayley graphs of symmetric groups of
permutations of finitely many elements and certain restricted
sets of transpositions as the generating sets. Properties such as
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the existence of Hamiltonian paths and cycles [6], Hamilto-
nian laceability [7] and indeed Hamiltonian decomposability
[8], [9] have been considered for various classes of Cayley
graphs. To date, it is known that a Cayley graph over a
symmetric group and any generating set of transpositions
has a Hamiltonian cycle [10]. Thus, this early result demon-
strates that star graphs of any degree have a Hamiltonian
cycle. To our knowledge, there are no published results on
Hamiltonian decompositions of star graphs. The Hamiltonian
decompositions of Cayley graphs of degree 4 in [8] concern
Cayley graphs over abelian groups. In this paper, we give an
a construction of a Hamiltonian decomposition of star graph
5-star of degree 4, by defining a graph automorphism on 5-
star and a Hamiltonian cycle that has an edge-disjoint image
under the automorphism. As 5-star is of degree 4, this gives
a Hamiltonian decomposition.

II. PRELIMINARIES

We give the basic definitions of star graphs, Hamiltonian
cycles and automorphisms.

Definition 1: The n-star graph Stn is the simple undirected
regular graph of degree n-1 whose vertices V (Stn) are se-
quences of n elements {a1, . . . , an}
V (Stn) = {aρ(1) . . . aρ(n) : ρ is a permutation of {1, . . . , n}}
and whose edges E(Stn) correspond to swapping the positions
of the first element with one of the other n-1 elements, i.e.
e ∈ E(Stn) is of the form:

e = (aρ(1) . . . aρ(i−1)aρ(i)aρ(i+1) . . . aρ(n),

aρ(i) . . . aρ(i−1)aρ(1)aρ(i+1) . . . aρ(n)) (1)

We define the distance between two distinct elements to be:

δ(ai, aj) = min{|i− j|, n− |i− j|}
Clearly δ(ai, aj) = δ(aj , ai). The length of the edge e above,
λ(e), is defined to be δ(aρ(1), aρ(i)).

Definition 2: A Hamiltonian cycle in Stn is a pair of
sequences (v, e) of vertices v = v1 . . . vn!+1 and edges e =
e1 . . . en! such that:
(i) ei = (vi, vi+1) ∈ E(Stn) (1 ≤ i ≤ n!),

(ii) {v1, . . . , vn!+1} = V (Stn),
(iii) v1 = vn!+1.
Thus, a Hamiltonian cycle follows a path along edges visiting
each vertex exactly once before returning to the first vertex. A
Hamiltonian decomposition of St2k+1 where k ≥ 1 consists
of k Hamiltonian cycles that are edge-disjoint, i.e. no two
Hamiltonian cycles have a common edge.
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Definition 3: Let (V,E) be a graph, where V is a set of
vertices and E ⊆ V × V a set of edges. Then, a mapping
Φ : V → V is an automorphism iff:
(i) Φ is bijective

(ii) for all v1, v2 ∈ V ,
(v1, v2) ∈ E implies (Φ(v1),Φ(v2)) ∈ E

III. AN AUTOMORPHISM

The following lemma gives a basic class of graph automor-
phisms preserving Hamiltonian cycles.

Lemma 4: Let φ : {a1, . . . , an} → {a1, . . . , an} be a
bijection. Then:
(i) Φ : V (Stn) → V (Stn), given by Φ(aρ(1) . . . aρ(n)) =

φ(aρ(1)) . . . φ(aρ(n)), is an automorphism of the graph
Stn

(ii) if v=v1 . . . vn!+1, e=(v1, v2) . . . (vn!, vn!+1) and (v, e)
is a Hamiltonian cycle in Stn, then ΦH(v, e) =
(Φ(v1)...Φ(vn!+1), (Φ(v1),Φ(v2))...(Φ(vn!),Φ(vn!+1)))
is also a Hamiltonian cycle.

Proof: We check that Φ is an automorphism. If v1 �= v2 ∈
V (Stn), say v1 = (aρ1(1) . . . aρ1(n)), v2 = (aρ2(1) . . . aρ2(n)),
where ρ1(i) �= ρ2(i) for some 1 ≤ i ≤ n, then φ(aρ1(i)) �=
φ(aρ2(i)) as φ is injective, and so Φ(v1) and Φ(v2) differ
on their respective i-th elements φ(aρ1(i)) and φ(aρ2(i)).
Thus, Φ is injective. It is surjective as, given b1 . . . bn ∈
V (Stn), by surjectivity of φ we can choose aρ(1), . . . , aρ(n)

such that φ(aρ(1)) = b1, . . . , φ(aρ(n)) = bn and therefore
Φ(φ(aρ(1)) . . . φ(aρ(n))) = b1 . . . bn. To show that Definition
3(ii) holds, let (v1, v2) ∈ E(Stn). By Definition 1, for some
permutation ρ and 1 ≤ i ≤ n!,

e = (aρ(1) . . . aρ(i−1)aρ(i)aρ(i+1) . . . aρ(n),

aρ(i) . . . aρ(i−1)aρ(1)aρ(i+1) . . . aρ(n))

Then,

Φ(v1) = φ(aρ(1))...φ(aρ(i−1))φ(aρ(i))φ(aρ(i+1))...φ(aρ(n))

Φ(v2) = φ(aρ(i))...φ(aρ(i−1))φ(aρ(1))φ(aρ(i+1))...φ(aρ(n))

As φ : {a1, . . . , an} → {a1, . . . , an} is a bijection, there is a
permutation σ of {1, . . . , n} such that:

φ(aj) = aσ(j) for 1 ≤ j ≤ n

Therefore,

Φ(v1) = aσρ(1) . . . aσρ(i−1)aσρ(i)aσρ(i+1) . . . aσρ(n)

Φ(v2) = aσρ(i) . . . aσρ(i−1)aσρ(1)aσρ(i+1) . . . aσρ(n)

and so (Φ(v1),Φ(v2)) satisfies (1) with σρ in place of ρ and
thus (Φ(v1),Φ(v2)) ∈ E. This completes the check of (i) of
this lemma, that Φ is an automorphism.

To prove (ii) of this lemma, we check that (i), (ii) and (iii)
of Definition 2 are satisfied. Put (v′, e′) = ΦH(v, e) so that:

v′ = Φ(v1) . . .Φ(vn!+1)

e′ = (Φ(v1),Φ(v2)) . . . (Φ(vn!),Φ(vn!+1))

For (i) of Definition 2, let (Φ(vi),Φ(vi+1)) ∈ e′ where 1 ≤
i ≤ n!. As (v, e) is a Hamiltonian cycle in Stn, we have that
(vi, vi+1) is an edge in E(Stn). By (i) of this lemma, Φ is an
automorphism and so (Φ(vi),Φ(vi+1)) is an edge in E(Stn)
as required. For Definition 2(ii), as Φ is an automorphism,
it maps the set of all vertices {v1, . . . , vn!+1} onto itself.
Thus V (Stn) = {v1, . . . , vn!+1} = {Φ(v1), . . . ,Φ(vn!+1)}.
For Definition 2(iii), we note that as (v, e) is a Hamiltonian
cycle in Stn, v1 = vn!+1 and therefore Φ(v1) = Φ(vn!+1).

The automorphism of interest to us for the graph St5, denoted
Φ5, corresponds to the bijection φ5 on the five elements a1 =
a, a2 = b, a3 = c, a4 = d and a5 = e given by:

φ5(a) = c, φ5(b) = a, φ5(c) = d, φ5(d) = b, φ5(e) = e

An important property of Φ5, that we shall make use of, is
that edges are mapped to edges of a different length.

Lemma 5: If (v1, v2) in an edge in St5, then λ(v1, v2) �=
λ(Φ5(v1),Φ5(v2)).
Proof: The length λ(v1, v2) of an edge (v1, v2) is the distance
between the two symbols ai, aj ∈ {a, b, c, d, e} swapped at
that edge. The length of the corresponding edge under Φ5 is
the distance between φ5(ai) and φ5(aj). There are 10 pairs
of symbols {ai, aj} to consider:

(i) δ(a, b) = 1, δ(φ5(a), φ5(b)) = δ(c, a) = 2,
(ii) δ(a, c) = 2, δ(φ5(a), φ5(c)) = δ(c, d) = 1,

(iii) δ(a, d) = 2, δ(φ5(a), φ5(d)) = δ(c, b) = 1,
(iv) δ(a, e) = 1, δ(φ5(a), φ5(e)) = δ(c, e) = 2,
(v) δ(b, c) = 1, δ(φ5(b), φ5(c)) = δ(a, d) = 2,

(vi) δ(b, d) = 2, δ(φ5(b), φ5(d)) = δ(a, b) = 1,
(vii) δ(b, e) = 2, δ(φ5(b), φ5(e)) = δ(a, e) = 1,

(viii) δ(c, d) = 1, δ(φ5(c), φ5(d)) = δ(d, b) = 2,
(ix) δ(c, e) = 2, δ(φ5(c), φ5(e)) = δ(d, e) = 1,
(x) δ(d, e) = 1, δ(φ5(d), φ5(e)) = δ(b, e) = 2.

IV. CONSTRUCTION OF A HAMILTONIAN CYCLE

A Hamiltonian cycle for St5 is constructed by partitioning
the vertices of St5 into 6 pairwise disjoint cycles C1, . . . , C6,
and then producing a 7th cycle C7 that meets each of the other
cycles at exactly two vertices and a common edge. It is clear
that the union of the edges in the 7 cycles, excluding edges
that C7 has in common with any of the other 6 cycles, is then
a Hamiltonian cycle; we denote it by C. Below, in Lemma
7, we define a cycle C1 from which 5 further cycles C2,
C3, C4, C5 and C6 are generated by the 5 length-preserving
automorphisms of the following lemma:

Lemma 6: The 5 maps given by:
Ψ2(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5)) =
aρ(1)aρ(2)aρ(5)aρ(3)aρ(4)

Ψ3(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5)) =
aρ(1)aρ(2)aρ(4)aρ(5)aρ(3)

Ψ4(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5)) =
aρ(1)aρ(2)aρ(5)aρ(4)aρ(3)
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Ψ5(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5)) =
aρ(1)aρ(2)aρ(3)aρ(5)aρ(4)

Ψ6(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5)) =
aρ(1)aρ(2)aρ(4)aρ(3)aρ(5)

where aρ(1)aρ(2)aρ(3)aρ(4)aρ(5) is any given point in St5 with
corresponding permutation ρ, are automorphisms of St5 which
preserve cycles and lengths of edges, i.e.

λ(v1, v2) = λ(Ψi(v1),Ψi(v2)) (v1, v2 ∈ V (St5), 2 ≤ i ≤ 6)

(The 5 maps correspond to the 5 possible alternative orders of
the last 3 positions in a vertex.)
Proof: We check that the lemma holds for Ψ3 - a very similar
check can be performed for Ψ2, Ψ4, Ψ5 and Ψ6. Suppose
that aρ(1)aρ(2)aρ(3)aρ(4)aρ(5) and aρ′(1)aρ′(2)aρ′(3)aρ′(4)aρ′(5)
∈ St5 differ, i.e. ρ and ρ′ differ. Then, clearly,

Ψ3(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5)) =

aρ(1)aρ(2)aρ(4)aρ(5)aρ(3) �=
aρ′(1)aρ′(2)aρ′(4)aρ′(5)aρ′(3) =

Ψ3(aρ′(1)aρ′(2)aρ′(3)aρ′(4)aρ′(5))

Thus, Ψ3 is injective. If aρ(1)aρ(2)aρ(3)aρ(4)aρ(5) is
any vertex in Stn, then Ψ3(aρ(1)aρ(2)aρ(5)aρ(3)aρ(4)) =
aρ(1)aρ(2)aρ(3)aρ(4)aρ(5). Thus, Ψ3 is surjective. To show that
Ψ3 is an automorphism, suppose that v1 = aρ(1) . . . aρ(i) . . .,
v2 = aρ(i) . . . aρ(1) . . ., so that (v1, v2) ∈ E(St5), where
i = 2, 3, 4 or 5. In the case i = 2,

(v1, v2) =

(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5), aρ(2)aρ(1)aρ(3)aρ(4)aρ(5)),

(Ψ3(v1),Ψ3(v2)) =

(aρ(1)aρ(2)aρ(4)aρ(5)aρ(3), aρ(2)aρ(1)aρ(4)aρ(5)aρ(3))

∈ E(St5)

In the case i = 3,
(v1, v2) =

(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5), aρ(3)aρ(2)aρ(1)aρ(4)aρ(5)),

(Ψ3(v1),Ψ3(v2)) =

(aρ(1)aρ(2)aρ(4)aρ(5)aρ(3), aρ(3)aρ(2)aρ(4)aρ(5)aρ(1))

∈ E(St5)

In the case i = 4,
(v1, v2) =

(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5), aρ(4)aρ(2)aρ(3)aρ(1)aρ(5)),

(Ψ3(v1),Ψ3(v2)) =

(aρ(1)aρ(2)aρ(4)aρ(5)aρ(3), aρ(4)aρ(2)aρ(1)aρ(5)aρ(3))

∈ E(St5)

In the case i = 5,
(v1, v2) =

(aρ(1)aρ(2)aρ(3)aρ(4)aρ(5), aρ(5)aρ(2)aρ(3)aρ(4)aρ(1)),

(Ψ3(v1),Ψ3(v2)) =

(aρ(1)aρ(2)aρ(4)aρ(5)aρ(3), aρ(5)aρ(2)aρ(4)aρ(1)aρ(3))

∈ E(St5)

Thus, Ψ3 is an automorphism and therefore also preserves
cycles by an argument similar to that in Lemma 4(ii). We
note from the above cases that, given an edge of the form:

(aρ(1) . . . aρ(i) . . . , aρ(i) . . . aρ(1) . . .) ∈ E(St5), (2)

we have that

(Ψ3(aρ(1) . . . aρ(i) . . .),Ψ3(aρ(i) . . . aρ(1) . . .))

is still of the form (2), albeit aρ(i) occurs in a different po-
sition in Ψ3(aρ(1) . . . aρ(i) . . .) and aρ(1) occurs in a different
position in Ψ3(aρ(i) . . . aρ(1) . . .). It follows, by the definition
of the length of edges, that Ψ3 preserves lengths of edges.

Lemma 7: The six cycles C1, C2, C3, C4, C5, C6 formed by
starting at vertices abcde, abdec, abced, abedc, abecd, abdce
respectively, and progressing along edges of length 1 until
cycles are completed, partition St5 into 6 disjoint cycles.
Proof: We list the 20 vertices of C1:

abcde, bacde, cabde, dabce, eabcd,

aebcd, beacd, ceabd, deabc, edabc,

adebc, bdeac, cdeab, dceab, ecdab,

acdeb, bcdea, cbdea, dbcea, ebcda

As, we have that

Ψ2(abcde) = abecd,Ψ3(abcde) = abdec,Ψ4(abcde) = abedc,

Ψ5(abcde) = abced, and Ψ6(abcde) = abdce,

it follows by Lemma 6 that the other cycles also contain 20
vertices. The only vertex with ab in the first two positions
in C1 is abcde. By Lemma 6, as Ψ2, Ψ3, Ψ4, Ψ5 and Ψ6

only reorder the last 3 elements of a vertex, the only vertices
with ab in the first two positions in C2, C3, C4, C5, and C6

are abecd, abdec, abedc, abced, and abdce respectively. Thus,
each of abcde, abecd, abdec, abedc, abced, abdce can only
occur in one of the cycles, and it follows that the Ci’s are
pairwise disjoint and account for the 6×20 vertices of St5.

Lemma 8: The cycle C7 given by:

bacde, abcde, cbade, dbace, bdace, adbce,

cdbae, dcbae, bcdae, acdbe, cadbe, dacbe, bacde (3)

meets each Ci (1 ≤ i ≤ 6) at exactly two vertices and a
common edge.
Proof: We have that:

(bacde, abcde) ∈ E(C1)

by Lemma 7,

(cbade, dbace) = (Ψ2(cbdea),Ψ2(dbcea)) ∈ E(C2)
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by Lemmas 7 and 6,

(bdace, adbce) = (Ψ3(bdeac),Ψ3(adebc)) ∈ E(C3)

by Lemmas 7 and 6,

(cdbae, dcbae) = (Ψ4(cdeab),Ψ4(dceab)) ∈ E(C4)

by Lemmas 7 and 6,

(bcdae, acdbe) = (Ψ5(bcdea),Ψ5(acdeb)) ∈ E(C5)

by Lemmas 7 and 6, and

(cadbe, dacbe) = (Ψ6(cabde),Ψ6(dabce)) ∈ E(C6)

by Lemmas 7 and 6.

V. EDGE-DISJOINT HAMILTONIAN CYCLES

The Hamiltonian cycle defined by means of C1, . . . C7 in
Section IV, produces a Hamiltonian cycle when mapped by
the automorphism Φ5 of Section III. It remains to show that
the 2 Hamiltonian cycles are edge disjoint.

Lemma 9:
(i) For the set of vertices V (C7) of C7, we have that

Φ5(V (C7)) = V (C7).
(ii) For the set of edges E(C7) of C7, we have that

Φ5(E(C7) ∩
⋃6

i=1E(Ci)) = E(C7) −
⋃6

i=1E(Ci).
Proof: The vertices of (3) are mapped to

acdbe, cadbe, dacbe, bacde, abcde, cbade,

dbace, bdace, adbce, cdbae, dcbae, bcdae, acdbe (4)

respectively, by Φ5. We see that (4) is just a reordering of the
edges in (3) and thus (i) holds. For (ii), consider the edges of
E(C7) ∩

⋃6
i=1E(Ci) in Lemma 8 shown underlined below:

bacde, abcde, cbade, dbace, bdace, adbce,

cdbae, dcbae, bcdae, acdbe, cadbe, dacbe,

We have:
(Φ5(bacde),Φ5(abcde)) =

(acdbe, cadbe) ∈ E(C7) −
6⋃

i=1

E(Ci)

(Φ5(cbade),Φ5(dbace)) =

(dacbe, bacde) ∈ E(C7) −
6⋃

i=1

E(Ci)

(Φ5(bdace),Φ5(adbce)) =

(abcde, cbade) ∈ E(C7) −
6⋃

i=1

E(Ci)

(Φ5(cdbae),Φ5(dcbae)) =

(dbace, bdace) ∈ E(C7) −
6⋃

i=1

E(Ci)

(Φ5(bcdae),Φ5(acdbe)) =

(adbce, cdbae) ∈ E(C7) −
6⋃

i=1

E(Ci)

(Φ5(cadbe),Φ5(dacbe)) =

(dcbae, bcdae) ∈ E(C7) −
6⋃

i=1

E(Ci)

Theorem 10: The Hamiltonian cycles C and Φ5(C) are
edge-disjoint.
Proof: Let v ∈ V (C) − V (C7), v ∈ V (Ci) say, where 1 ≤
i ≤ 6. Then, there exist u1, u2 ∈ V (Ci) such that the edges
incident at v in C, (u1, v) and (v, u2), belong to Ci and so,
by the definition of Ci in Lemma 7,

λ(u1, v) = λ(v, u2) = 1 (5)

Consider the edges (v1, v) and (v2, v) incident at v in Φ5(C).
As v /∈ V (C7), by Lemma 9(i) v = Φ5(v′) for some v′ ∈
V (C) − V (C7), say v′ ∈ Cj where 1 ≤ j ≤ 6. Then, there
exist edges (v′1, v

′), (v′, v′2) in Cj such that Φ5(v′1) = v1 and
Φ5(v′2) = v2. By the definition of Cj in Lemma 7,

λ(v′1, v
′) = λ(v′, v′2) = 1 (6)

By (6) and Lemma 5,

λ(Φ5(v′1),Φ5(v′)) = λ(Φ5(v′),Φ5(v′2)) = 2

i.e.
λ(v1, v) = λ(v, v2) = 2 (7)

By (5) and (7), different edges are incident at the vertex v ∈
C−C7 in C and Φ5(C). Hence, we have shown that an edge
in C, which has a vertex not in C7, cannot belong to Φ5(C).
It follows that an edge common to both C and Φ5(C) must
be an edge in C7. So, let e be an edge of C belonging to
C7. For 1 ≤ i ≤ 6, e cannot be an edge in Ci as C does
not contain edges common to C7 and Ci. By Lemma 9(ii),
Φ5 maps an edge in C7 and some Ci, where 1 ≤ i ≤ 6 to e.
Thus, Φ5 maps an edge not in C to e. Therefore e /∈ Φ5(C).
We conclude that C and Φ5(C) have no common edges.

VI. CONCLUSIONS

We have given a Hamiltonian decomposition of 5-star,
based on a graph automorphism relating the two Hamiltonian
cycles. Our further work will investigate properties of similar
automorphisms in higher degree star graphs to determine
whether they can be used to establish or refute the existence
of Hamiltonian decompositions there.
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