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A Ground Structure Method to Minimize the Total
Installed Cost of Steel Frame Structures

Filippo Ranalli, Forest Flager, Martin Fischer

Abstract—This paper presents a ground structure method to
optimize the topology and discrete member sizing of steel frame
structures in order to minimize total installed cost, including material,
fabrication and erection components. The proposed method improves
upon existing cost-based ground structure methods by incorporating
constructability considerations well as satisfying both strength and
serviceability constraints. The architecture for the method is a
bi-level Multidisciplinary Feasible (MDF) architecture in which the
discrete member sizing optimization is nested within the topology
optimization process. For each structural topology generated, the
sizing optimization process seek to find a s et o f d iscrete member
sizes that result in the lowest total installed cost while satisfying
strength (member utilization) and serviceability (node deflection
and story drift) criteria. To accurately assess cost, the connection
details for the structure are generated automatically using accurate
site-specific c ost i nformation o btained d irectly f rom f abricators and
erectors. Member continuity rules are also applied to each node in
the structure to improve constructability. The proposed optimization
method is benchmarked against conventional weight-based ground
structure optimization methods resulting in an average cost savings
of up to 30% with comparable computational efficiency.

Keywords—Cost-based structural optimization, cost-based
topology and sizing optimization, steel frame ground structure
optimization, multidisciplinary optimization of steel structures.

I. INTRODUCTION

COMPUTATIONAL methods to optimize topology and

member sizing for truss and frame structures were

originally developed for aerospace applications over twenty

years ago [1]. The objective of these methods was to minimize

the amount of material used while satisfying structural strength

and serviceability criteria. Significant subsequent research has

been devoted to developing methods that can be applied steel

frame building and civil structures. These methods can be

divided into two major categories based on how the topological

and sizing variables are represented: continuous and discrete.

Classic structural optimizations explored in the literature

can be divided into the major categories of topology, sizing,

connectivity and shape. The topology design space either

consists of all the members of ground structure of a pre-defined

density [2] in a discrete-geometry optimization problem, or all

the finite elements of a discretization in a continuous-geometry

problem formulation. Sizing optimization on the other hand is

only implemented in discrete-geometry optimization problems

(i.e. linear beam-column or truss elements), and its design
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space can either be characterized by continuous or discrete

cross-section sizes. Connectivity optimization iterates over

the degree of fixity of the nodal connections, which can be

fully restrained, partially restrained or unrestrained in any

degree of freedom. Finally, shape optimization is described by

the variation of discrete-geometry member coordinates. Each

of these design spaces can be explored simultaneously with

the other two or independently, depending on the particular

architecture and objective adopted. Commonly in the literature,

as well as this paper, topology and sizing are optimized

sequentially. Such design choice is due to the fact that changes

in the topology lead to a redistribution of the forces, load

path and structural response, which require member sizes

to be adjusted before taking another step towards topology

optimality. The methodology presented hereby also iterates

through connectivity, strictly with the purpose of meeting

stability requirements.

Continuous topology methods represent the structure as a

single monolithic body. Often the initial structure is discretized

into a set of continuum finite elements from which structural

members emerge through a subtractive optimization process.

Liang et al. [3] and Stromberg et al. [4] present two examples

of continuous topology methods. Liang optimizes for the

overall structural stiffness, keeping volume as a constraint

while Stromberg compares the results of a continuum-based

and finite-element-based approach, demonstrating how the

latter results in topologies closer to beam-column elements.

The objective of both of these methods is to minimize the

minimize the weight of steel used in the structure as it is

typical for engineers to estimate the cost of a steel structure

early in the design process by multiplying the weight of steel

by an assumed cost per unit weight [5]. However, the majority

of cost of a completed steel building structure can be attributed

to fabrication and erection costs which do not necessarily scale

linearly with material weight [6]. Fabrication and erection

costs and the constructability of the overall structure are

driven primarily by the connections between linear structural

members. Converting continuous finite element topologies

into discrete members and connections is difficult and has

limited the ability to incorporate cost and constructability

considerations that are important in the design of buildings

and civil structures.

Discrete topology optimization methods begin with an

array of nodes that are interconnected with a dense mesh

of linear members known as the ground structure. Since the

optimal member topology is found from within the original

ground structure, an advantage of the method is that the

initial ground structure geometry can be defined so as to
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ensure feasibility of fabrication and erection of all possible

solutions before the optimization process begins. The most

common algorithms used for simultaneous topology and sizing

optimization are genetic algorithms, as seen in Tang et al. [7],

Rajan et al. [8], and Deb et al. [9]. Genetic algorithms are

zero-order methods, meaning they explore the design space

heuristically and without the use of gradients or a smooth

objective function, and they come in different problem-specific

variants. The greatest limitation of this family of algorithms

is the computational time and scalability, as the design

space increases very rapidly with the number of elements,

complexity of the costing model, constraints, different frame

types, connectivity and constructability considerations.

Achtziger et al. [10] propose an interesting formulation of 
discrete topology and sizing optimization, featuring a global 
minimum weight solution. While genetic algorithms and 
heuristic methods converge to local optima, this study frames 
the problem as a convex optimization, thus guaranteeing the 
global optimum. This method only applies to trusses and does 
not consider cost or constructability, but it poses an upper 
bound on optimal convergence, as the other methods described 
hereby are never guaranteed to yield a global optimum design.

The Ground Structure Based Topology Optimization 
(GRAND) method presented by Paulino et al. [11] uses a 
discrete-truss approximation of the full finite-element problem 
to dramatically improve computational efficiency compared to 
similar ground structure methods. The structural topologies 
produced by the GRAND methods are constructible. However, 
the GRAND method is only applicable does not account 
for bending forces in the members and, therefore, is only 
applicable to truss structures. This method aims to minimize 
material weight rather than the total installed cost of the 
structure. Asadpoure et al. [12] take a leap forward in 
discrete topology and sizing optimization, formulating a 
smooth and differentiable cost objective for truss structures. 
The advantages of such method is that gradient descent can 
be utilized to optimize the objective, which leads to very fast 
convergence. However, this approach does not account for 
actual buildability, and uses a very basic cost function that 
is dependent on the member weight.

Havelia [13] developed the Cost-Driven Deterministic

Ground Structure Method (CDD-GSM) that utilizes a

Multidisciplinary Feasibility (MDF) [14] architecture to

perform capital cost-based topology and sizing optimization

of 2D steel frame structures. Havelia compared minimum cost

structures generated by the CDD-GSM method to minimum

weight solutions and successfully demonstrated that a heavier

structure can be significantly cheaper due to efficiencies in

the fabrication and erection process. The CDD-GSM, however,

only considers structural strength criteria and does not account

for serviceability criteria that are essential for the design of

building and civil structures, including limited on member

deflection and inter-story drifts. Furthermore, the method did

not enable members to be continuous across a joint which

is commonly done for these types of structures to improve

constructability and reduce cost.

II. PROBLEM FORMULATION

The cost-based topology and sizing constrained

optimization problem can be formalized in (1).

minimize C =
M∑

m
ccapital(s(m), t(m),H(m,N))

δ = K−1F

f(m) = k′(m)u(m)

Mt(m) = {W,HSSR, HSSSQ}
t(m) ∈ {0, 1}
H(m,N) = H(t(m),Mt(m),N)

s(m) = s(t(m), f(m),Mt(m), δ,H(m))

s.t. :

d(t(M), f(M),Mt(M)) <= c(t(M), f(M),Mt(M))

δ(N, �v) <= δall(N, �v)

ξMode1 >= ξcontrol

with :

M = {m1,m2, ...mM}
N = {n1, n2, ...nN}
�v = {�x+, �x−, �y+, �y−,�z+,�z−}

(1)

TABLE I
GLOSSARY

Variable Name Variable Description
M Members
N Nodes
C Total capital cost

δ, u Global and local displacements
K,k′ Global and local stiffness matrices
F, f Global and local forces
�v Coordinate directions
t Member topology
s Member sizing
Mt Member section type from the AISC catalog
H Member fixity and sizing continuity contraints
d, c Member demand and capacity per AISC code
ξ Modal frequency

In this formulation, ccapital is the total capital cost

associated with each member, and is described in detail in

the costing section of the method. Moreover, t(m) is the

binary topology variable for each member of the ground

structure, controlling whether a member is active or removed.

Because the framework supports different section types from

the AISC catalog and the sizing equations are different for

each type, Mt records whether each member belongs to

the wide flange, round HSS or square HSS design space.

The load combinations are applied as static loads, therefore

the generalized displacements δ can be trivially obtained by

inverting the global stiffness matrix K, and the member forces

f(m) can be retrieved from the local displacements u(m)
and member stiffness matrix k′(m). Furthermore, the member

size s(t(m), f(m),Mt(m), δ,H(m)) is a function of the

topology, the member forces, the generalized displacements

and the continuity constraints H(t(m),Mt(m),N). The

demand/capacity ratio of each member is controlled per AISC
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TABLE II
PREPROCESSING INFORMATION

Input Type Input Description
Ground Structure Spacing, density, structural model

Nodes Coordinates, loaded flags, support flags
Members Start and end nodes, fixity, section type

Loading Conditions Design load cases and combinations, point loads
Structural properties Material strength, frame type (OCBF or OMF)
Design Constraints Max displacements and d/c ratio, min frequency

Constructability Constraints Continuity in sizing and fixity, max member length
Objective Function Weight or capital cost

Cost Data Member, connection, fabrication and erection costs
Hyperparameters Removal %, sizing parameters α, β

equations as a function of the topology, forces and member

type. Also, the maximum drift at all nodes is constrained to be

within allowable limits for each of the 6 coordinate directions

identified by their unit vectors. Lastly, the frequency of the first

mode is also constrained to a minimum, avoiding instabilities

or singularities in the generalized stiffness.

III. METHOD

The full model architecture shown in Fig. 1 is a MDF model

where the two inter-dependent sub-disciplines of topology

and sizing are optimized sequentially starting from the same

initial input batch at every iteration. The outer topology

optimization loop ranks and removes a specified percentage

of members at each iteration after the structure has been

detailed and costed, and the embedded sizing loop has ensured

strength and stiffness constraints are met. The individual

topology, sizing and costing components highlighted in red are

described in detail in the following sub-sections. The proposed

methodology addresses shortcomings of the previous models

by adopting constructability rules along with member-level

and structure-level code compliance, guaranteeing that the

converged structure is not only buildable, but also safe.

Constructability is considered as an inviolable factor, and

is achieved by adopting standard AISC sections, detecting

member continuity and enforcing connection and member

length requirements. Safety on the other hand is guaranteed

by simultaneously sizing for strength and stiffness per AISC

requirements. This methodology also presents advantages in

problem scalability and component modularity, allowing it

to be extended and tailored to specific industry projects.

Scalability is achieved by an algorithm that allows for any

initial geometric configuration and scales efficiently with size,

whereas modularity is inherent to the particular architecture

adopted, where each components of the optimization can be

modified to accommodate different modeling assumptions.

Lastly, this new framework has been designed to work on

both moment-frame structures and braced-frame structures, the

latter of which are a novelty in topology optimization and are

being handled with heuristic techniques for overall structural

stability.

A. Preprocessing

The pre-processing step in Table II involves assembling 
all the project-specific required information regarding the 
geometry and boundary constraints, the loading conditions, 
the purpose and location of the structure, the cost information

Fig. 1 Optimization flowchart. Red: key algorithm component. Blue: logic
operator

and the constructability requirements. The very first step is to

implement a ground structure to model the design space, which

could be of different densities at the designer’s discretion and

without loss of generality. A fully-connected sparse ground

structure, where each node is connected to every other node

through a single element, is compared to a sparse ground

structure in Fig. 2. The meaning of ”sparse” indicates that the

design space is packed using only a limited number of nodes,

usually at a constant distance equal to a pre-defined span. The

initial ground structure, along with the loading conditions and

all the geometric information that feeds into the optimization

can be automatically assembled using the SAP2000 API.

Depending on the desired sizing design space, the necessary

information from the AISC section catalog is readily available

for HSS round, HSS square and W sections, describing the

geometric and strength properties of the sections along with



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:2, 2018

139

Fig. 2 Different ground structure configurations

a unit member costs obtained from the selected mills. The

final pre-processing step is to specify whether the optimization

will take place in 2D or 3D, identify the structure either as

moment frame or braced frame and specify the maximum drift

constraints for each designer-specified critical node.

B. Structural Analysis

The structural analysis components runs in two separate

instances in the optimization framework described in the

previous section: once after every topology update in the

outer loop, and as many times as necessary to find a strength

and sizing compliant structure in the inner sizing loop. The

model presented here features modal and linear static analyses,

used respectively to monitor the stability of the structure

through the modal frequency and to apply each of the design

combinations. This component represents the computational

bottle-neck of the optimization, hence the overall algorithm

efficiency will be expressed in terms of analyses performed.

The sizing software implemented here is CSI SAP2000 v18,

which has been chosen for such purpose due to its flexible

API functionality, wide range of modeling capabilities, visual

feedback and world-wide use in the industry. The analysis is

run through the API as a ModelCenter component, reading the

most current variable states hence updating sizes, topology and

connection fixities, returning forces and displacements.

C. Sizing Optimization

The sizing algorithm is based on a discrete variable design

space, where every member can be sized using a section

from the AISC catalog. Each sizing loop Fig. 3 is passed the

geometry and loading conditions from the outer optimization

loop at the current iteration, and sizes the structure to meet

both drift and strength constraints.

The first step of the sizing algorithm consists of updating
the continuity and hierarchy of all the members, according to

a pre-defined set of geometric rules Fig. 4:

• Collinear elements and columns are continuous for their

entire span.

• At every connection, at least one element is continuous

through.

• Transfer beams are always continuous.

• Braces are the hierarchical dependents of beams, and

beams are the dependents of columns.

Such rules are then used by the sizing functions to ensure

continuity in member sizing and beam-column joint feasibility.

When two members are regarded as collinear, they are sized

with the same section and the fixity at their shared joint

is set to resist moment, effectively behaving as a single

member. Subsequently the available section sizes are sorted

Fig. 3 Sizing optimization logic

Fig. 4 Continuity rules before (left) and after (right) reassignment

using supplier cost information and strength sizing for each

member is performed for shear and simultaneous compression

and flexure (2), with an exhaustive search starting from the

cheapest section to the first section satisfying the requirements.

Pr

Pc
+ 8

9 (
Mrx

Mcx
+

Mry

Mcy
) ≤ 1.0 if Pr

Pc
≥ 0.2

Pr

2Pc
+ (Mrx

Mcx
+

Mry

Mcy
) ≤ 1.0 if Pr

Pc
< 0.2

φv
Vr

Vc
≤ 1.0

(2)

While Vr , Pr , Mrx , Mry are the forces from the critical

load case acting on each member, Vc , Pc , Mcx , Mcy are the
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member capacities obtained from AISC sections E, F and G

respectively for compression, bi-directional flexure and shear.

The algorithm accounts for the entirety of the flange and web

slenderness sub-cases in the code requirements for round HSS,

square HSS and W sections, effectively automating all the

checks that a designer would need to go through to design the

element. Each member is then sized with sections from the

catalog corresponding to the particular section type specified

by the designer in the inputs (i.e. a member of type W in the

initial ground structure will always be sized with a section

of type W). The strength-sizing component will attempt to

size every member from the bottom of the list, allowing

to down-size with respect to previous configurations and

guaranteeing the cheapest strength design at every iteration.

After finding the optimal sizes for strength, the worst-case

enveloped displacements of a series of pre-defined control

nodes are checked against the allowable drifts. These control

nodes, defaulting as all the loaded nodes, and maximum drifts

are specified by the designer on a project basis. If none

of the allowable drifts are exceeded, the sizing optimization

converges and the optimal strength design is passed onto the

subsequent optimization components. If instead any drift is

exceeded, an iterative stiffness sizing process based on virtual
work is necessary to guarantee compliance [15]. This approach

is used to determine which members contribute most in terms

of stiffness in the direction in which drift is exceeded, allowing

to rank each relative contribution and tentatively increase

the section sizes accordingly. For each (load case, exceeding

displacement) pair, the virtual work contribution of each of

the members in the structure is computed through (3).

VWi =
∫
L
(PP ′
EA + M(x)M ′(x)

EI + V V ′
EAv

+ T (x)T ′(x)
GJ )dx

VWi = max[VWi, 0]
(3)

where P, M(x), V, T(x) are the member forces corresponding

to the real load case in which drifts are exceeded, and P’,
M’(x), V’, T’(x) are the forces generated by a virtual case of

a unit force applied at the node and in the direction of the

exceeded drift. EA, EI, EAv and GJ are the axial, flexural,

shear and torsional stiffness respectively. They virtual member

contributions in the formula above represent the strain energy

density of each member generated by the real load case and

the virtual displacement, effectively classifying the stiffness

each member provides against the specified drift. Here the

virtual work contribution of each member is considered no

smaller than 0, since a negative contribution simply implies

the member provides no stiffness at all to the displacement

in question. All member virtual work contributions are

normalized by the maximum and used in the heuristic formula

in (4) to increase the section sizes for each member.

new sizei = Round(sizei × (
δi
δalli

+ β)× (VWi +α)) (4)

where new sizei and sizei are indexes of the section catalog

sorted by area and dept, δi
δalli

is the ratio of actual to allowable

displacement, VWi is the normalized member virtual work

contribution and α, β are hyperparameters that can be tuned

for best performance. The Round operation is necessary to

ensure the catalog index returned is an integer. Hence, a

proposed stiffness design is obtained for each exceeded drift

and the designs are conservatively enveloped to achieve a

comprehensive stiffness design. Such design is then enveloped

with the proposed strength design computed as previously

described. However, to ensure the final proposed design is

the one of minimum cost, the stiffness-strength envelope is

performed such that the maximum of the two designs is taken

for sections that have been increased to meet stiffness, and the

minimum of the two designs is taken otherwise.

Upon convergence of the strength and stiffness designs,

the sizing component enforces the member continuity and

hierarchy rules, adjusting the final design accordingly. The

sizing optimization is followed by the detailing and costing

components described in the next section.

D. Costing and Detailing

The detailing component is run on the current toplogy and

optimal section sizes, assembling a geometric configuration

map storing information on the direction of all the members

framing into each node. Such information is then passed

onto the coster and optimizer. If the initial structure passed

to the sizing component is unstable or a strength and

stiffness-compliant design is infeasible, a flag is passed

downstream to the optimizer component to handle such case.

Upon convergence of the sizing component and the assembly

of node-element map by the detailing logic, the total capital

cost of the structure is evaluated as the sum of each member

cost per (5) and is passed on to the optimizer as the objective

function.

ci = cmi
+ c0 + nγicc

C =
M∑

i=1

ci
(5)

Every member incurs in a material cost cm, a fixed

connection cost c0, and a per-member additional connection

cost as a percentage of the sum of all the material costs of

the member framing into the node cc, featuring a correction

factor γ based on the continuity rules described. The correction

factor ensures continuous members are also costed as such,

assigning a lower fraction of the total connection cost to

members that are continuous through, which are hence costed

as a single member. Also, multi-span continuous members

uniformly share the cost incurred at all connection instances of

their individual members. The three cost components {cm, c0,

cc} are estimated on the basis of project location-dependent

accurate fabricator and erector unit rates, and are strongly

correlated to the final topology of the structure.

E. Topology Optimization

The optimizer in Fig. 5 is responsible for the member

removal phase and acts as the wrapper of the optimization

framework, managing the variables fed into it from the

upstream components.

The first functionality of the optimizer is to determine

the fitness of the members, once again, with a virtual work
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Fig. 5 Topology optimization logic

approach. Here, each member is given a score based on its

overall stiffness contribution divided by its cost (6).

Fi =
Ncritical∑

j=1

(VWij×Iij)
ci

(6)

After the fitness is computed, the optimizer has to determine
the candidate members for removal based on a designer-input

percentage to remove at each iteration. Such percentage can be

kept as fixed or can be annealed as a function of the iteration

number.

In this instance, virtual work is calculated for all the

critical nodes and maximum-drift load cases, weighting the

contribution of each combination for each member with

an importance factor Iij =
δij
δallj

, where δij and δallj
are respectively the maximum and the allowable node

displacements. The members are successively ranked in

ascending order by their fitness value and placed on the

candiate list for removal, to which all members with either

virtual work contribution or forces of 0 are appended. This

steps allows to short-circuit the removal process, helping the

optimization to converge faster and avoid local instabilities.

The optimizer then enforces the structural continuity

relations by updating each member end-fixity. At this point,

the candidate list for removal goes through heuristic checks
to help prevent instability or infeasible structures that would

need to be dealt with further down the line. The heuristic check

function performs the following actions on the candidate list

for removal:

• Prevents loaded nodes from being removed from

the structure, ensuring at least one member remains

connected.

• If the structure is a braced-frame (moment frames do

not incur in these stability issues), stabilizes each node

recursively using a breadth-search algorithm.

The first action is achieved by removing the members

among those in the candidate list with the lowest fitness. On

the other hand, to stabilize the nodes connected to members

in the candidate removal list, they are placed in a queue and

iteratively checked one by one. A node does not pass the check

if upon removal it does not meet at least one of the following

requirements for stability:

• All members at the node are in the removal list.

• If the node only has one element connected to it,

through-continuity is provided at the node itself or at the

other end of the element.

• The elements connected to the node are not all coplanar

(3D case) or collinear (2D case) with one another.

• More than one element remains connected to the node

(only for 2D structures).

The requirements above are a hard constraint for the

optimization, and a back-filling mechanism is triggered in case

the checks above do not allow to remove the desired number of

elements at a given iteration. Back-filling expands the original

candidate list by doubling the desired removal percentage until

such number of elements passes the heuristic checks. This

functionality may also lead to an early convergence, in the case

where even taking all the remaining members as candidates

would not yield the desired percentage for removal. After

the heuristic checks, the member removal is executed and the

inputs are passed on to the next iteration.

While fairly comprehensive, the heuristic checks deployed

do not succeed in preventing the three main causes of an

unfeasible solution: an instability, an excessive cost increase or

a broken load path. Instabilities can be of a global or localized

nature, and can be efficiently detected in the frequency of

vibration of the first mode. Small cost increases of 5-10%

are tolerated across iterations, as these are local peaks in

the objective which in most cases transition to better local

minima. Broken load paths occur when a path to ground is

eliminated, and can be detected in sudden changes in the

total base reactions. When one of the three critical conditions

manifests itself, the optimizer enters a Local Search mode,

halting the progression of the optimization until the issue is

fixed. When Local Search is triggered, all the members from

the previous feasible iteration are added back. Subsequently,
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each member in the removal list is now removed individually

and the outcome is evaluated. If removing such member yields

no issue, no action is taken and the next member on the list is

evaluated. If otherwise the individual removal of the member

causes an infeasible solution, such member is placed on a

permanent ”Do-not-remove” list.

Convergence occurs when all the remaining members are

on the ”Do-not-remove” list, indicating that they have all

been attempted to remove. Once the optimization converges,

the ”Do-not-remove-list” is cleared out and the optimization

is run once more on the remaining members. This process

helps removing members that were kept around in previous

iterations for stability purposes only, but are redundant in the

final configuration.

IV. BENCHMARK EXAMPLES

The algorithm is showcased on two examples: a cantilevered

truss with a 3x3 initial ground structure, Fig. 6, and a simply

supported beam with a 3x6 initial ground structure, Fig. 9. The

same sets of loads, drift/strength constraints and properties are

applied to the benchmark problems. The following examples

serve the role of showing the topology and sizing optimization

performance and outcome given different cost and continuity

assumptions: each benchmark problem is optimized under the

following cost and continuity models:

1) Cost-based: member cost cm, a fixed connection cost

c0 = $50, a variable connection cost cc equal to 50%

of the total member weight cost. Constructability is

enforced through continuity rules (Figs. 7 and 10.

2) Weight-based: cost attributed entirely to member weight 
cm, no connection cost (c0, cc = 0) and no continuity 
rules (Figs. 8 and 11).

In both the cost scenarios explored, the material cost

cm for each member is estimated with unit rates provided

by Nucor Construction Corp. based in New York, as is

a function of the member type, section, length, and steel

properties. The parameters utilized in the benchmark examples

are summarized below:

Available sections: AISC Catalog, wide flanges. Design
method: effective length. Steel cost: $39 per metric ton. E: 200
GPa. Fy: 345 MPa. Effective length factor: K = 1.2. Maximum
vertical drift: 2 cm. Maximum lateral drift: 2 mm. Span length
and interstory height: 2 m. Vertical loads: 445 kN. α = β =
0.1.

The results illustrated in Table III show that the

weight-based, without continuity optimal structure for the 3x3

cantilever appears much lighter than the cost-based structure

with continuity rules in place. At the same time, the cost

is 16.7% lower for the latter structure. In this example,

not only constructability (in the form of member continuity)

has converged to a solution that is more realistic to the

as-built design, but it has also helped achieve a lower cost

objective. In the second example presented, the 3x6 supported

beam, there is no significant difference in weight between

the two converged structures, however the cost-based solution

with continuity achieves a cost that is 30% lower than its

counter-part. Since the loads applied to both the 3x3 and 3x6

trusses are the same, it is intuitive that the optimal design of

the 3x6 is cheaper and lighter than the 3x3 given that it has

an additional support.

Moreover, the computational runtime, quantified by the

number of structural analyses performed, is not significantly

impacted by the different continuity or objective function

configurations. This also shows the scalability potential of

the algorithm, given that doubling the number of elements

between the two benchmark examples does not require more

analyses.

TABLE III
DESIGN COMPARISON SUMMARY

Example Configuration Cost Weight Analyses
3x3 Cost-based $8817 28.5kN 229
3x3 Weight-based $10287 18.4kN 199
3x6 Cost-based $7790 23.6kN 209
3x6 Weight-based $10137 24.9kN 207

V. CONCLUSION

The proposed topology and sizing optimization method

is a step forward from classic methods in the literature,

in that it aims at accurately optimizing for cost while

enforcing the same constructability and code-compliance

requirements that a designer would have to manually iterate

through when approaching a new project. At the same

time, it provides flexibility, modularity and scalability in

the type, shape and dimensions of steel structural systems.

With accurate material, fabrication, and erection rates, as

well as specific constructability requirements on a project

basis, the designer may use this optimization framework to

achieve a constructible solution with minimal post-processing.

This cost-based approach may generate structures that are

heavier than those obtained with classic weight-based topology

optimization methods, but whose cost is lower by up to

30%. The benchmark examples analyzed show how great of

Fig. 6 3x3 cantilever ground structure
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Fig. 7 3x3 Cantilever, cost-based, continuity enabled

Fig. 8 3x3 Cantilever, weight-based, continuity disabled

an influence cost and constructability have over the optimal

design, and how such parameters cannot be ignored for the

optimization to be applicable in practice.

The optimization framework described in this paper is still

in the early stages of development. The immediate next steps

are to extend the optimization to 3D moment and braced-frame

structures and to define the constructability and stability rules

for this case. Larger 3D design spaces also require more

complex ground structures, as well as many different real

and virtual load cases. This step will be fully automated to

make it easily scalable to these applications. The authors

also plan to implement with a much more comprehensive

costing framework that models the cost of each member

and connection based on section sizes, member forces and

Fig. 9 3x6 beam ground structure

Fig. 10 3x6 Beam, cost-based, continuity enabled

Fig. 11 3x6 Beam, weight-based, continuity disabled

specified connection denomination. Finally, we plan to extend

the current method to include seismic design considerations

and innovative building structural systems such as BRBFs

(Buckling-Restrained Braced Frames) or EBFs (Eccentrically

Braced Frames).
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