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Abstract—In this paper a new algorithm to generate random 

simple polygons from a given set of points in a two dimensional 
plane is designed. The proposed algorithm uses a genetic algorithm to 
generate polygons with few vertices. A new merge algorithm is 
presented which converts any two polygons into a simple polygon. 
This algorithm at first changes two polygons into a polygonal chain 
and then the polygonal chain is converted into a simple polygon. The 
process of converting a polygonal chain into a simple polygon is 
based on the removal of intersecting edges. The experiments results 
show that the proposed algorithm has the ability to generate a great 
number of different simple polygons and has better performance in 
comparison to celebrated algorithms such as space partitioning and 
steady growth.  

Keywords—Divide and conquer, genetic algorithm, merge 
polygons, Random simple polygon generation.  

I. INTRODUCTION 
HE presented algorithm in this paper generates random 
simple polygons from a given set of points called , where 

 and the points lie in a two dimensional 
plane. The problem of generating simple polygons interests 
researchers because of its wide area of applications. The most 
important application of generating random simple polygons is 
to evaluate the correctness of other computational geometry 
algorithms which their input is simple polygons. Generating 
sufficient test cases from user world to test the computational 
geometry algorithms is a challenging task. To ease testing 
procedure, an algorithm can be designed to generate polygons 
uniformly at random.  

Unfortunately, there is no polynomial-time algorithm to 
generate all possible simple polygons with a given vertex set 
uniformly at random. All previous works are based on 
applying some heuristic or generating a specific class of 
polygons. Some of these heuristics has caused the generation 
of specific classes of polygons such as monotone polygons [1] 
and star shaped polygons [2]. Although there are a lot of 
heuristics to generate random polygons from  points, by now 
it is an open problem to generate all the polygons uniformly at 
random. An algorithm can generate simple polygons 
uniformly at random if and only if the probability of 
generating each polygon is ; where the total number of 
possible polygons to generate is .  
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 Each heuristic omits one part of the problem space and 
then generates the polygons, which this causes some polygons 
not to be generated by the heuristic. Since genetic algorithm 
searches the whole problem space, it can generate all the 
possible polygons, but it is too slow to solve the problems 
with great . To overcome this problem a divide and conquer 
approach is used. So the proposed algorithm can solve 
problems with more than 5000 points. 

Since 1992, the generation of geometric objects has become 
an interesting research topic to the researchers for its different 
applications. Epstein [3] studied random generation of 
triangulation. Zhu designed an algorithm to generate an x-
monotone polygon uniformly at random on a given set of 
vertices [1]. A heuristic [4] for generating simple polygons 
was investigated in 1991. The “2-Opt Move” heuristic was 
first proposed to solve the traveling salesman problem by 
J.van Leeuwen et al. [5]. In 1996, Thomas Auer et al. [2] 
presented a study of all heuristics present at that time and 
reported a variety of comparisons among them. 

The organization of paper is as follows. In the second 
section the needed preliminaries are mentioned. In the third 
section the genetic algorithm is discussed and in the fourth 
section the divide and conquer process is covered. The fifth 
section shows the experimental results and the comparisons 
among the existing algorithms. 

II. PRELIMINARIES 
The notations used in this paper are as follows. The input 

points set which lies in a two-dimensional plane are shown 
with , where  is the number of input points. 
The input points are supposed to lay in general positions for 
simplicity. A polygonal chain is specified by a sequence of 
points  called its vertices [9] and a simple 
polygonal chain is one in which only consecutive segments 
intersect and only at their endpoints [9]. The vertices with 
degree one is called the heads of the chain. The words chain or 
polygonal chain would refer to a simple polygonal chain if 
seen anywhere in the paper. 

The terms points and vertices are used interchangeably 
throughout the paper. A polygon  is said to be simple [6] if it 
consists of straight, non-intersecting line segments called 
edges that are joined pair-wise to form a closed path. The 
adjacent edges of polygon meet only at their common end 
point known as vertices. An edge connecting two points  and 

 are denoted by . Here and throughout the paper, unless 
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qualified otherwise, we take polygon to mean simple polygon 
on the plane. A subset  of the plane is called convex [6] if 
and only if for any pair of points  the line segment 

 is completely contained in . The Convex Hull  of a 
point set  is the smallest convex set that contains . Convex 
hull of a point set  is represented by set of vertices that 
defines hull edges. Many algorithms have been presented [6]-
[10] for finding convex hull. A point  is said to be visible 
[11] from a point  if the line segment  does not intersect 
any other line segment nor does not pass through a third 
point .  

III. GENETIC ALGORITHM 
Genetic algorithm is a special kind of evolutionary 

algorithms that use Biology techniques such as inheritance and 
mutation. This algorithm has been applied to a wide variety of 
combinatorial optimization problems and is the subject of 
numerous recent books [12]-[15], [20] and conference 
proceedings [16]-[19]. Some traditional heuristics and some 
Meta heuristics like Tabu search generate a simple solution to 
the problem and try to improve it. Sometimes these algorithms 
are trapped in local minimums. On the opposite side, genetic 
algorithms generate a large number of solutions and make 
changes in each solution. The number of solutions generated is 
called the population. Any member in the population is called 
an individual or a chromosome. Each chromosome is an 
encoded version of a solution. The answer to the question of 
how to code the solution may be different for different 
problems and a given problem may be coded in more than one 
way. The purpose of coding the solutions is to translate them 
into strings or sequences of numbers, so the genetic operators 
can change and improve these sequences. 

In each step, several operators make changes to the 
generation chromosomes and construct a new generation 
which has better chromosomes. This makes the chromosomes 
closer to the solution. Many GA operators have been 
proposed. The four most common are reproduction, crossover, 
mutation and fitness function. These four operators are used 
the proposed algorithm. 

A. Reproduction Operator 
Reproduction consists of simply copying some 

chromosomes from the previous generation into the next. This 
operator preserves very high-quality chromosomes in the 
population. In this algorithm the elitist solutions in the 
population are copied to the next generation. This guarantees a 
constant supply of good individuals for mating. 

B. Random Key Crossover Operator 
Crossover chooses two “parents” randomly and produces 

one or more “offspring” that contain some characteristics of 
genes from the parents. Crossover can be performed in a 
deterministic manner like “one point” crossover or “two 
point” crossover, where one or two cutoffs are selected at 
random. A new chromosome is made of the combination of 
two chromosomes such that genes which appear before a 
certain cutoff comes from parent 1 and genes after the cutoff 

comes from parent 2. This process can happen in a random 
manner, with each gene taken from a given parent with a 
certain probability. In most of the optimization genetic 
algorithms one- or two-point crossover operators are used. 
These operators are not applicable for some problems such as 
traveling sales man problem or generating random simple 
polygons, because they produce infeasible chromosomes.  

The GA presented in this paper uses random keys to encode 
solutions. The use of random keys is described in [21] and is 
useful for problems that require permutations of the integers 
and for which traditional one- or two-point crossover presents 
feasibility problems. Consider a 5-node instance of the random 
polygon generation problem. The best way to encode the 
problem is to make a permutation of nodes which shows the 
orders in which nodes are connected to each other. (e.g., the 
solution 4 2 1 5 3 represents the order of nodes connected to 
each other, which is: 4  2  1  5  3  4.). One- or two-
point crossovers may cause some sequence where some 
vertices are not in them. These chromosomes represent 
infeasible polygons. For example, the parents 1 4 3 | 2 5 and 2 
4 5 | 3 1 produce the children 1 4 3 3 1 and 2 4 5 2 5, where 
none of them are feasible. 

In the random key method, a two dimensional array is used 
which the first row is filled with random numbers uniformly 
selected from [0,1]. The second row shows the vertices of the 
polygon. A chromosome with 5 vertices is shown below. 

 
           Random key 0.42 0.06 0.38 0.48 0.81 
           Decodes as      3      1      2      4      5 
 
To decode a polygon from a chromosome, the array should 

be sorted with respect to the first row. In the sorted array the 
elements of the second row shows the order of the vertices 
connecting to each other. In other words, the nodes which the 
difference of their random values is smaller are connected to 
each other. The above chromosome shows the polygon where 
1  2  3  4  5  1 shows the order of vertices connected 
to each other. Now, Standard one- or two-point crossover 
techniques over the first row of the array will generate 
children that are guaranteed to be feasible. 

C. Mutation Operator 
The mutation operator selects some genes of a chromosome 

at random and changes their values, this is the same concept as 
biology, any small changes in one chromosome may cause in 
better offspring, and absolutely this event may occur 
conversely. In this algorithm the mutation operator picks up 
two genes and reassigns them with random numbers between 
0 and 1. 

D. Fitness Function 
Fitness function acts on each chromosomes and calculate 

how much a chromosome is near to a simple polygon. In this 
paper the number of intersections between edges is the main 
criterion to calculate the fitness function. The number of 
intersections for each edge is counted, then the values for all 
the edges are summed up together and the produced number is 
returned. If the returned value is equal to zero the termination 
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criteria is met and the algorithm finishes, else the fitness for 
other chromosomes is evaluated. If in a generation no 
chromosome meets the termination criteria the other iteration 
occurs. Fig. 1 shows a chromosome with fitness value equal to 
5 and the chromosome shown in Fig. 2 has the fitness value of 
zero. 

 

 
Fig. 1 The fitness functions gets 5 

 

 
Fig. 2 The fitness functions gets zero 

 
At each generation, 20 percent of the population comes 

directly from the previous population via reproduction. 50 
percent is generated via crossover, and 10 percent are new 
chromosomes generated randomly. The remaining 20 percent 
is generated via mutation.  

Genetic algorithm is a complete search algorithm which this 
is an advantage of the algorithm, but it has a drawback. It 
makes the search process slow. The execution of the algorithm 
for input points up to 20 returns the simple polygon correctly, 
but for more than that the algorithm is unable to find the 
simple polygon due to the constraints imposed on the CPU-
time consumption and the available main memory. This is an 
important drawback which makes the algorithm useless. To 
overcome this drawback, the divide and conquer approach is 
used.  

IV. DIVIDE AND CONQUER PROCESS 
High CPU consumption is the most important disadvantage 

of genetic algorithm. Since CPU consumption increase 
exponentially with the increase of number of points, it’s 
impossible to reform this algorithm to find polygons for big 

s. To overcome this drawback we have used a divide and 
conquer approach. The main idea is to divide the problem 
space into small number of points, so the genetic algorithm 
can find the sub polygons easily and then we propose a new 
merge algorithm which merges all the polygons and produces 
a unit simple polygon. 

A recursive procedure is needed to divide the points. First a 
random number between 3 and  is chosen and is 
named , then a real random number between zero and 180 is 
generated and is named . The number  shows a direction 
and all the points are sorted in this direction. The sorted points 
can be easily divided into two groups by  such that the first  
points lie in one group and the other  points lie in the 
other group. If two new groups have less than twenty points, 
the genetic algorithm is called for each group and a simple 
polygon is generated, else each group is divided into smaller 
groups, recursively. This preprocesses helps to overcome the 
CPU consumption problem.  

In this section a new algorithm which merges the polygons 
and produces a unit polygon is proposed. It’s clear that the 
convex hull of each group of points does not intersect, because 
they are divided by a line. To merge two polygons which their 
convex hulls do not intersect, the closest pairs of points are 
chosen, each from one polygon. These two points are 
connected to each other. Then just one of the edges in each 
polygon which has intersection with these points is omitted. 
This process changes two polygons into a polygonal chain. In 
Fig. 3, points  and  are the closest pairs, so they are selected 
and connected to each other. Then one edge from each 
polygon is omitted. This edge should have intersection with 
selected points.  is omitted from the right polygon and  is 
omitted from the left polygon. The produced polygonal chain 
is shown in the right side of Fig. 3. 

 

 
Fig. 3 Change of two polygons into a polygonal chain 

 
Now, the algorithm which converts any kind of polygonal 

chain into simple polygon is presented. In a polygonal chain 
the degree of the first and the last nodes is one and the other 
nodes have the degree of two. The nodes whose degree is one 
are selected. We call them and  and imagine a 
hypothetical segment between and . If the segment 

 does not intersect any edges of the polygonal chain, 
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 would be connected to  and the algorithm finishes. 
If there are some edges which have intersection with the 
segment  the intersection point for each edge and 
the distance between the intersection points and  and 

 are calculated. Then the closest edge to  and  
are selected. 

Next, one of the heads  or  is selected at random. 
The selected head is called  and the other is called . The 
polygonal chain is traversed from  until the closest segment 
of the polygonal chain to  which intersected with the 
segment  is reached. The vertices of this segment are 
called  and  where  is the vertex seen first on the 
traverse. Now the segment  is omitted from the chain, and 
the segment  is added instead. So, a new polygonal chain is 
produced and  and  are the heads of this chain. Then, if  
sees , these two heads are connected to each other and the 
algorithm finishes, or else the program calls another recursion 
with the newly produced chain.  

 In some cases, it is impossible to add a segment to the 
chain because the vertices of that segment do not see each 
other. In Fig. 4, according to the algorithm, we have to 
connect  to  and remove , but  and  are not visible. 
In this case, we call another recursion of the algorithm with 
the same chain, but the heads of chain change to  and . In 
this case, the traverse begins from .  intersects with , 
so  is removed, and  is added to the chain. Now, a new 
polygonal chain is produced.  and  are the heads of the new 
chain (Fig. 4 (b)). Starting the traverse from ,  is 
removed,  is added to the chain, and the final chain is 
produced (Fig. 4 (c)). 

The proposed algorithm is continued for the newly 
generated chain recursively until we get a chain whose heads 
can see each other, and thus the algorithm finishes. It could be 
demonstrated that the number of edges which are omitted from 
the chain (the number of recursions) is lower than , so this 
proves that the algorithm is terminable. 

 

  
Fig. 4 In the case which adding to the chain is impossible; a new 

recursion is called again 
 
Figs. 5, 6 show the steps of the algorithm over a twenty-

point set. Fig. 5 (a) shows the input chain. Points  and  are 
the heads of the chain and  is selected as  at random. The 
closest intersection to  is the segment , so the segment 

 is omitted and the segment  is added. Fig. 5 (b) shows 
the newly produced chain after one step. 

 

  
Fig. 5 (a) The input chain, (b) the chain produced after one recursion 

 
Fig. 6 (a) shows the polygonal chain produced in the 

previous step and that the point  is selected as  and  is 
the closest segment to . According to the algorithm,  is 
removed and  is added to the chain. Fig. 6 (b) shows the 
newly generated chain. 

 

  
Fig. 6 (a) The chain produced in the first step (b) the new chain 

generated from 6 (a) 
 
Figs. 7 (a)-(c) show the last three recursions of the 

algorithm. In each figure one intersection between  and  is 
removed, and a new chain is generated. Each newly generated 
chain is the input of a new recursion until  and  are visible 
to each other, so  and  connect to each other and the 
polygon is generated. Fig. 8 shows the pseudo code written for 
this algorithm. 

The time complexity of converting a chain into a simple 
polygon is , where . Clearly,  is the number 
of points, and  is the number of intersections which cause the 
change to the chain. In other words,  is equal to the number of 
recursions happened in the algorithm. In the mentioned 
algorithm, the time complexity has a direct correlation with 
the input chain. If the number of edges of the chain which 
intersect with the segment  increases, the time 
complexity of the algorithm increases, too. In the best case, 
the time complexity of the algorithm is , where the heads 
of the chain  and  are visible to each other. So no 
recursion occurs. In the worst case,  edges of the chain 
intersect with the segment , so the time complexity 
would be . 
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Fig. 7 Three last recursions which cause the generation of polygon 
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Fig. 8 The algorithm to convert a chain into a simple polygon 

V. EXPERIMENTAL RESULTS 
There are two main criteria to compare the performance of 

algorithms which generate random simple polygons. The main 
criterion is the number of different polygons generated by the 

algorithms and the other is the amount of uniformity of 
algorithm in generating random polygons. Each algorithm 
capable of generating more polygons with a high degree of 
uniformity is better than other algorithms. 

In this paper the methods like 2-opt Moves, Steady Growth 
1 and 2, Space Partitioning, Incremental Construction and 
Backtracking and Permute and Reject are compared. Number 
of different polygons generated is the criterion of the 
comparison. Ten different 10 points sets are used as samples 
and the performance of existing algorithms are compared 
using these samples. The whole number of possible simple 
polygons for each point sets are calculated by using a 
modified version of Incremental Construction and 
Backtracking algorithm. Table I shows the total number of 
possible simple polygons for each sample.  

 
TABLE I 

NUMBER OF SIMPLE POLYGONS FOR 10 POINTS SET PROBLEMS  
Polygon number Simple polygon size 

10 
1 320 
2 349 
3 596 
4 179 
5 237 
6 840 
7 324 
8 378 
9 549 

10 560 
 181440 

 

 
Fig. 9 The performance of 7 methods where genetic algorithm is 

better than steady growth and space partitioning and can be compared 
with 2-opt moves 

 
The number of different polygons generated by each 

algorithm is calculated from the division of number of 
different polygons generated by the algorithm over the whole 
number of existing polygons (the values written in Table I). 
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Let  denote the number of polygons generated by the 
algorithms and  denote the number of simple polygons that 
exist on the set. If  is the number of different simple 
polygons generated by the algorithms, so the value of  

 is always between zero and one and describes the 
performance of the algorithms. This value is calculated for all 
the algorithms and all the samples and the results are depicted 
in Fig. 9.  

Auer in [2] compared the algorithms in Fig. 8. In this paper 
the genetic algorithm based on divide and conquers is 
compared to the existing algorithms. In each sample 10000 
simple polygons is generated for each algorithm, and the 
performance of the algorithms is calculated according to 

. The proposed algorithm has the performance of 
100 percent for seven samples of ten samples. The results 

showed that this algorithm is always better than Space 
Partitioning and in 9 samples is better than Steady Growth. In 
some samples the proposed algorithm won over the 2-opt 
Move algorithm and in some samples lost. Fig. 10 shows the 
generated random simple polygons for 5000 points, and Fig. 
11 shows the unit simple polygon generated after merging the 
small simple polygons. 

High time complexity is the nature of genetic algorithm. 
But in the case of random polygons parallel algorithm can be 
used. Since all the divided parts of the problem act 
independently, genetic algorithm can be run for every single 
sub problems simultaneously. This reduces the time needed to 
solve the genetic algorithm for all the sub problems to the time 
needed to solve a sub problem.  

 

 
Fig. 10 The polygons generated for each group of points using genetic algorithm 
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Fig. 11 The unit polygon generated after merging process 
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