
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

230

Abstract—In this paper a new algorithm to generate random

simple polygons from a given set of points in a two dimensional
plane is designed. The proposed algorithm uses a genetic algorithm to
generate polygons with few vertices. A new merge algorithm is
presented which converts any two polygons into a simple polygon.
This algorithm at first changes two polygons into a polygonal chain
and then the polygonal chain is converted into a simple polygon. The
process of converting a polygonal chain into a simple polygon is
based on the removal of intersecting edges. The experiments results
show that the proposed algorithm has the ability to generate a great
number of different simple polygons and has better performance in
comparison to celebrated algorithms such as space partitioning and
steady growth.

Keywords—Divide and conquer, genetic algorithm, merge
polygons, Random simple polygon generation.

I. INTRODUCTION
HE presented algorithm in this paper generates random
simple polygons from a given set of points called , where

 and the points lie in a two dimensional
plane. The problem of generating simple polygons interests
researchers because of its wide area of applications. The most
important application of generating random simple polygons is
to evaluate the correctness of other computational geometry
algorithms which their input is simple polygons. Generating
sufficient test cases from user world to test the computational
geometry algorithms is a challenging task. To ease testing
procedure, an algorithm can be designed to generate polygons
uniformly at random.

Unfortunately, there is no polynomial-time algorithm to
generate all possible simple polygons with a given vertex set
uniformly at random. All previous works are based on
applying some heuristic or generating a specific class of
polygons. Some of these heuristics has caused the generation
of specific classes of polygons such as monotone polygons [1]
and star shaped polygons [2]. Although there are a lot of
heuristics to generate random polygons from points, by now
it is an open problem to generate all the polygons uniformly at
random. An algorithm can generate simple polygons
uniformly at random if and only if the probability of
generating each polygon is ; where the total number of
possible polygons to generate is .

Ali Nourollah is with the Shahid Rajaee Teacher Training University,
Tehran.

Mohsen Movahedinejad is with the Shahid Rajaee Teacher Training
University, Tehran (e-mail: m.movahedinejad@srttu.edu).

 Each heuristic omits one part of the problem space and
then generates the polygons, which this causes some polygons
not to be generated by the heuristic. Since genetic algorithm
searches the whole problem space, it can generate all the
possible polygons, but it is too slow to solve the problems
with great . To overcome this problem a divide and conquer
approach is used. So the proposed algorithm can solve
problems with more than 5000 points.

Since 1992, the generation of geometric objects has become
an interesting research topic to the researchers for its different
applications. Epstein [3] studied random generation of
triangulation. Zhu designed an algorithm to generate an x-
monotone polygon uniformly at random on a given set of
vertices [1]. A heuristic [4] for generating simple polygons
was investigated in 1991. The “2-Opt Move” heuristic was
first proposed to solve the traveling salesman problem by
J.van Leeuwen et al. [5]. In 1996, Thomas Auer et al. [2]
presented a study of all heuristics present at that time and
reported a variety of comparisons among them.

The organization of paper is as follows. In the second
section the needed preliminaries are mentioned. In the third
section the genetic algorithm is discussed and in the fourth
section the divide and conquer process is covered. The fifth
section shows the experimental results and the comparisons
among the existing algorithms.

II. PRELIMINARIES
The notations used in this paper are as follows. The input

points set which lies in a two-dimensional plane are shown
with , where is the number of input points.
The input points are supposed to lay in general positions for
simplicity. A polygonal chain is specified by a sequence of
points called its vertices [9] and a simple
polygonal chain is one in which only consecutive segments
intersect and only at their endpoints [9]. The vertices with
degree one is called the heads of the chain. The words chain or
polygonal chain would refer to a simple polygonal chain if
seen anywhere in the paper.

The terms points and vertices are used interchangeably
throughout the paper. A polygon is said to be simple [6] if it
consists of straight, non-intersecting line segments called
edges that are joined pair-wise to form a closed path. The
adjacent edges of polygon meet only at their common end
point known as vertices. An edge connecting two points and

 are denoted by . Here and throughout the paper, unless

A Genetic Based Algorithm to Generate Random
Simple Polygons Using a New Polygon Merge

Algorithm
Ali Nourollah, Mohsen Movahedinejad

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

231

qualified otherwise, we take polygon to mean simple polygon
on the plane. A subset of the plane is called convex [6] if
and only if for any pair of points the line segment

 is completely contained in . The Convex Hull of a
point set is the smallest convex set that contains . Convex
hull of a point set is represented by set of vertices that
defines hull edges. Many algorithms have been presented [6]-
[10] for finding convex hull. A point is said to be visible
[11] from a point if the line segment does not intersect
any other line segment nor does not pass through a third
point .

III. GENETIC ALGORITHM
Genetic algorithm is a special kind of evolutionary

algorithms that use Biology techniques such as inheritance and
mutation. This algorithm has been applied to a wide variety of
combinatorial optimization problems and is the subject of
numerous recent books [12]-[15], [20] and conference
proceedings [16]-[19]. Some traditional heuristics and some
Meta heuristics like Tabu search generate a simple solution to
the problem and try to improve it. Sometimes these algorithms
are trapped in local minimums. On the opposite side, genetic
algorithms generate a large number of solutions and make
changes in each solution. The number of solutions generated is
called the population. Any member in the population is called
an individual or a chromosome. Each chromosome is an
encoded version of a solution. The answer to the question of
how to code the solution may be different for different
problems and a given problem may be coded in more than one
way. The purpose of coding the solutions is to translate them
into strings or sequences of numbers, so the genetic operators
can change and improve these sequences.

In each step, several operators make changes to the
generation chromosomes and construct a new generation
which has better chromosomes. This makes the chromosomes
closer to the solution. Many GA operators have been
proposed. The four most common are reproduction, crossover,
mutation and fitness function. These four operators are used
the proposed algorithm.

A. Reproduction Operator
Reproduction consists of simply copying some

chromosomes from the previous generation into the next. This
operator preserves very high-quality chromosomes in the
population. In this algorithm the elitist solutions in the
population are copied to the next generation. This guarantees a
constant supply of good individuals for mating.

B. Random Key Crossover Operator
Crossover chooses two “parents” randomly and produces

one or more “offspring” that contain some characteristics of
genes from the parents. Crossover can be performed in a
deterministic manner like “one point” crossover or “two
point” crossover, where one or two cutoffs are selected at
random. A new chromosome is made of the combination of
two chromosomes such that genes which appear before a
certain cutoff comes from parent 1 and genes after the cutoff

comes from parent 2. This process can happen in a random
manner, with each gene taken from a given parent with a
certain probability. In most of the optimization genetic
algorithms one- or two-point crossover operators are used.
These operators are not applicable for some problems such as
traveling sales man problem or generating random simple
polygons, because they produce infeasible chromosomes.

The GA presented in this paper uses random keys to encode
solutions. The use of random keys is described in [21] and is
useful for problems that require permutations of the integers
and for which traditional one- or two-point crossover presents
feasibility problems. Consider a 5-node instance of the random
polygon generation problem. The best way to encode the
problem is to make a permutation of nodes which shows the
orders in which nodes are connected to each other. (e.g., the
solution 4 2 1 5 3 represents the order of nodes connected to
each other, which is: 4 2 1 5 3 4.). One- or two-
point crossovers may cause some sequence where some
vertices are not in them. These chromosomes represent
infeasible polygons. For example, the parents 1 4 3 | 2 5 and 2
4 5 | 3 1 produce the children 1 4 3 3 1 and 2 4 5 2 5, where
none of them are feasible.

In the random key method, a two dimensional array is used
which the first row is filled with random numbers uniformly
selected from [0,1]. The second row shows the vertices of the
polygon. A chromosome with 5 vertices is shown below.

 Random key 0.42 0.06 0.38 0.48 0.81
 Decodes as 3 1 2 4 5

To decode a polygon from a chromosome, the array should

be sorted with respect to the first row. In the sorted array the
elements of the second row shows the order of the vertices
connecting to each other. In other words, the nodes which the
difference of their random values is smaller are connected to
each other. The above chromosome shows the polygon where
1 2 3 4 5 1 shows the order of vertices connected
to each other. Now, Standard one- or two-point crossover
techniques over the first row of the array will generate
children that are guaranteed to be feasible.

C. Mutation Operator
The mutation operator selects some genes of a chromosome

at random and changes their values, this is the same concept as
biology, any small changes in one chromosome may cause in
better offspring, and absolutely this event may occur
conversely. In this algorithm the mutation operator picks up
two genes and reassigns them with random numbers between
0 and 1.

D. Fitness Function
Fitness function acts on each chromosomes and calculate

how much a chromosome is near to a simple polygon. In this
paper the number of intersections between edges is the main
criterion to calculate the fitness function. The number of
intersections for each edge is counted, then the values for all
the edges are summed up together and the produced number is
returned. If the returned value is equal to zero the termination

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

232

criteria is met and the algorithm finishes, else the fitness for
other chromosomes is evaluated. If in a generation no
chromosome meets the termination criteria the other iteration
occurs. Fig. 1 shows a chromosome with fitness value equal to
5 and the chromosome shown in Fig. 2 has the fitness value of
zero.

Fig. 1 The fitness functions gets 5

Fig. 2 The fitness functions gets zero

At each generation, 20 percent of the population comes

directly from the previous population via reproduction. 50
percent is generated via crossover, and 10 percent are new
chromosomes generated randomly. The remaining 20 percent
is generated via mutation.

Genetic algorithm is a complete search algorithm which this
is an advantage of the algorithm, but it has a drawback. It
makes the search process slow. The execution of the algorithm
for input points up to 20 returns the simple polygon correctly,
but for more than that the algorithm is unable to find the
simple polygon due to the constraints imposed on the CPU-
time consumption and the available main memory. This is an
important drawback which makes the algorithm useless. To
overcome this drawback, the divide and conquer approach is
used.

IV. DIVIDE AND CONQUER PROCESS
High CPU consumption is the most important disadvantage

of genetic algorithm. Since CPU consumption increase
exponentially with the increase of number of points, it’s
impossible to reform this algorithm to find polygons for big

s. To overcome this drawback we have used a divide and
conquer approach. The main idea is to divide the problem
space into small number of points, so the genetic algorithm
can find the sub polygons easily and then we propose a new
merge algorithm which merges all the polygons and produces
a unit simple polygon.

A recursive procedure is needed to divide the points. First a
random number between 3 and is chosen and is
named , then a real random number between zero and 180 is
generated and is named . The number shows a direction
and all the points are sorted in this direction. The sorted points
can be easily divided into two groups by such that the first
points lie in one group and the other points lie in the
other group. If two new groups have less than twenty points,
the genetic algorithm is called for each group and a simple
polygon is generated, else each group is divided into smaller
groups, recursively. This preprocesses helps to overcome the
CPU consumption problem.

In this section a new algorithm which merges the polygons
and produces a unit polygon is proposed. It’s clear that the
convex hull of each group of points does not intersect, because
they are divided by a line. To merge two polygons which their
convex hulls do not intersect, the closest pairs of points are
chosen, each from one polygon. These two points are
connected to each other. Then just one of the edges in each
polygon which has intersection with these points is omitted.
This process changes two polygons into a polygonal chain. In
Fig. 3, points and are the closest pairs, so they are selected
and connected to each other. Then one edge from each
polygon is omitted. This edge should have intersection with
selected points. is omitted from the right polygon and is
omitted from the left polygon. The produced polygonal chain
is shown in the right side of Fig. 3.

Fig. 3 Change of two polygons into a polygonal chain

Now, the algorithm which converts any kind of polygonal

chain into simple polygon is presented. In a polygonal chain
the degree of the first and the last nodes is one and the other
nodes have the degree of two. The nodes whose degree is one
are selected. We call them and and imagine a
hypothetical segment between and . If the segment

 does not intersect any edges of the polygonal chain,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

233

 would be connected to and the algorithm finishes.
If there are some edges which have intersection with the
segment the intersection point for each edge and
the distance between the intersection points and and

 are calculated. Then the closest edge to and
are selected.

Next, one of the heads or is selected at random.
The selected head is called and the other is called . The
polygonal chain is traversed from until the closest segment
of the polygonal chain to which intersected with the
segment is reached. The vertices of this segment are
called and where is the vertex seen first on the
traverse. Now the segment is omitted from the chain, and
the segment is added instead. So, a new polygonal chain is
produced and and are the heads of this chain. Then, if
sees , these two heads are connected to each other and the
algorithm finishes, or else the program calls another recursion
with the newly produced chain.

 In some cases, it is impossible to add a segment to the
chain because the vertices of that segment do not see each
other. In Fig. 4, according to the algorithm, we have to
connect to and remove , but and are not visible.
In this case, we call another recursion of the algorithm with
the same chain, but the heads of chain change to and . In
this case, the traverse begins from . intersects with ,
so is removed, and is added to the chain. Now, a new
polygonal chain is produced. and are the heads of the new
chain (Fig. 4 (b)). Starting the traverse from , is
removed, is added to the chain, and the final chain is
produced (Fig. 4 (c)).

The proposed algorithm is continued for the newly
generated chain recursively until we get a chain whose heads
can see each other, and thus the algorithm finishes. It could be
demonstrated that the number of edges which are omitted from
the chain (the number of recursions) is lower than , so this
proves that the algorithm is terminable.

Fig. 4 In the case which adding to the chain is impossible; a new

recursion is called again

Figs. 5, 6 show the steps of the algorithm over a twenty-

point set. Fig. 5 (a) shows the input chain. Points and are
the heads of the chain and is selected as at random. The
closest intersection to is the segment , so the segment

 is omitted and the segment is added. Fig. 5 (b) shows
the newly produced chain after one step.

Fig. 5 (a) The input chain, (b) the chain produced after one recursion

Fig. 6 (a) shows the polygonal chain produced in the

previous step and that the point is selected as and is
the closest segment to . According to the algorithm, is
removed and is added to the chain. Fig. 6 (b) shows the
newly generated chain.

Fig. 6 (a) The chain produced in the first step (b) the new chain

generated from 6 (a)

Figs. 7 (a)-(c) show the last three recursions of the

algorithm. In each figure one intersection between and is
removed, and a new chain is generated. Each newly generated
chain is the input of a new recursion until and are visible
to each other, so and connect to each other and the
polygon is generated. Fig. 8 shows the pseudo code written for
this algorithm.

The time complexity of converting a chain into a simple
polygon is , where . Clearly, is the number
of points, and is the number of intersections which cause the
change to the chain. In other words, is equal to the number of
recursions happened in the algorithm. In the mentioned
algorithm, the time complexity has a direct correlation with
the input chain. If the number of edges of the chain which
intersect with the segment increases, the time
complexity of the algorithm increases, too. In the best case,
the time complexity of the algorithm is , where the heads
of the chain and are visible to each other. So no
recursion occurs. In the worst case, edges of the chain
intersect with the segment , so the time complexity
would be .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

234

Fig. 7 Three last recursions which cause the generation of polygon

:

:

1.
2.

3.
4.
5.
6.

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Fig. 8 The algorithm to convert a chain into a simple polygon

V. EXPERIMENTAL RESULTS
There are two main criteria to compare the performance of

algorithms which generate random simple polygons. The main
criterion is the number of different polygons generated by the

algorithms and the other is the amount of uniformity of
algorithm in generating random polygons. Each algorithm
capable of generating more polygons with a high degree of
uniformity is better than other algorithms.

In this paper the methods like 2-opt Moves, Steady Growth
1 and 2, Space Partitioning, Incremental Construction and
Backtracking and Permute and Reject are compared. Number
of different polygons generated is the criterion of the
comparison. Ten different 10 points sets are used as samples
and the performance of existing algorithms are compared
using these samples. The whole number of possible simple
polygons for each point sets are calculated by using a
modified version of Incremental Construction and
Backtracking algorithm. Table I shows the total number of
possible simple polygons for each sample.

TABLE I

NUMBER OF SIMPLE POLYGONS FOR 10 POINTS SET PROBLEMS
Polygon number Simple polygon size

10
1 320
2 349
3 596
4 179
5 237
6 840
7 324
8 378
9 549

10 560
 181440

Fig. 9 The performance of 7 methods where genetic algorithm is

better than steady growth and space partitioning and can be compared
with 2-opt moves

The number of different polygons generated by each

algorithm is calculated from the division of number of
different polygons generated by the algorithm over the whole
number of existing polygons (the values written in Table I).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

235

Let denote the number of polygons generated by the
algorithms and denote the number of simple polygons that
exist on the set. If is the number of different simple
polygons generated by the algorithms, so the value of

 is always between zero and one and describes the
performance of the algorithms. This value is calculated for all
the algorithms and all the samples and the results are depicted
in Fig. 9.

Auer in [2] compared the algorithms in Fig. 8. In this paper
the genetic algorithm based on divide and conquers is
compared to the existing algorithms. In each sample 10000
simple polygons is generated for each algorithm, and the
performance of the algorithms is calculated according to

. The proposed algorithm has the performance of
100 percent for seven samples of ten samples. The results

showed that this algorithm is always better than Space
Partitioning and in 9 samples is better than Steady Growth. In
some samples the proposed algorithm won over the 2-opt
Move algorithm and in some samples lost. Fig. 10 shows the
generated random simple polygons for 5000 points, and Fig.
11 shows the unit simple polygon generated after merging the
small simple polygons.

High time complexity is the nature of genetic algorithm.
But in the case of random polygons parallel algorithm can be
used. Since all the divided parts of the problem act
independently, genetic algorithm can be run for every single
sub problems simultaneously. This reduces the time needed to
solve the genetic algorithm for all the sub problems to the time
needed to solve a sub problem.

Fig. 10 The polygons generated for each group of points using genetic algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

236

Fig. 11 The unit polygon generated after merging process

REFERENCES

[1] C. Zhu, G. Sundaram, J. Snoeyink, J. S. B. Mitchel, Generating random
polygons with given vertices, Computational Geometry: Theory and
Application (1996) 277–290.

[2] T. Auer, M. Held, RPG: Heuristics for the generation of random
polygons, in: Proc. 8th Canadian Conference Computational Geometry,
1996, pp. 38–44.

[3] P. Epstein, J. Sack, Generating triangulation at random, ACM
Transaction on Modeling and Computer Simulation VOL 4 NO 3 (1994)
267–278.

[4] J. O’Rourke, M. Virmani, Generating random polygons, in: Technical
Report 011,CS Dept., Smith College, Northampton, MA 01063,
1991,pp. 38–44.

[5] J. V. Leeuwen, A. A. Schoone, Untangling a travelling salesman tour in
the plane, in: 7th Conference Graph-theoretic Concepts in Computer
Science, 1982, pp. 87–98.

[6] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational
Geometry: Algorithms and Applications 3rd ed, Springer-Verlag
TELOS Santa Clara, CA, USA, 2008.

[7] R. L. Graham, An efficient algorithm for determining the convex hull of
a finite planar set, Information Processing Letter (1972) 132–133.

[8] F. P. Preparata, S. J. Hong, Convex hulls of finite sets of points in two
and three dimensions, Commun. ACM (1977) 87–93.

[9] R. A. Jarvis, On the identification of the convex hull of a finite set of
points in the plane, Information Processing Letter (1973) 18–21.

[10] A. C. Yao, A lower bound to finding convex hulls., J. ACM (1981) 780–
787.

[11] S. K. Ghosh, Visibility Algorithm in the Plane, Cambridge University
press, 2007.

[12] K.F. Man, K.S. Tang, S. Kwong, Genetic Algorithms: Concepts and
Designs, Springer, New York, 1999.

[13] J.E. Rawlins, Gregory (Eds.), Foundations of Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA, 1991.

[14] L.D. Whitley (Ed.), Foundations of Genetic Algorithms 2, Morgan
Kaufmann, San Mateo, CA, 1993.

[15] A.M.S. Zalzala, P.J. Fleming (Eds.), Genetic Algorithms in Engineering
Systems, The Institution of Electrical Engineers, London, 1997.

[16] J.T. Alander (Ed.), Proceedings of the First Nordic Workshop on
Genetic Algorithms and their Applications (1NWGA), January 9–12,
Vaasa Yliopiston Julkaisuja, Vaasa, 1995.

[17] W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M.
Jakiela, R.E. Smith (Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference, Orlando, FL, July 13–17, Morgan Kaufmann,
San Mateo, CA, 1999.

[18] R.K. Belew, L.B. Booker (Eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms, University of California, San Diego,
July 13–16, Morgan Kaufmann, San Mateo, CA, 1991.

[19] J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (Eds.), Genetic
Programming: Proceedings of the First Annual Conference, Stanford
University, July 28–31, MIT Press, Cambridge, 1996.

[20] G. Winter, J. Pe´riaux, M. Gala´n, P. Cuesta (Eds.), Genetic Algorithms
in Engineering and Computer Science, Wiley, New York, 1995.

[21] J.C. Bean, Genetic algorithms and random keys for sequencing and
optimization ORSA, Journal on Computing 6 (1994) 154–160.

