
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1185

Abstract—An ontology is a data model that represents a set of
concepts in a given field and the relationships among those concepts.
As the emphasis on achieving a semantic web continues to escalate,
ontologies for all types of domains increasingly will be developed.
These ontologies may become large and complex, and as their size
and complexity grows, so will the need for multi-user interfaces for
ontology curation. Herein a functionally comprehensive, generic
approach to maintaining an ontology as a relational database is
presented. Unlike many other ontology editors that utilize a database,
this approach is entirely domain-generic and fully supports Web-
based, collaborative editing including the designation of different
levels of authorization for users.

Keywords—Ontology Editor, Relational Database, Collaborative
Curation.

I. INTRODUCTION
N ontology is a data model that represents a set of
concepts in a given field and the relationships among
those concepts. As stated in [1], “ontologies are

becoming popular largely due to what they promise: a shared
and common understanding of a domain that can be
communicated between people and application systems.”
These hierarchically organized, standardized vocabularies
facilitate the discovery, sharing, and integration of
information, and thereby will serve an invaluable role in
realizing a semantic web. Yet one should not lose sight of the
fact that an ontology is still fundamentally a collection of
related data, and should be maintained in such a way as to
ensure consistency of the information, while transparently
providing concurrent, authorized access to the data. These
requirements can most easily be addressed by utilizing a
database management system to maintain the ontology.

Recently there have been various efforts to represent
ontologies as relational databases [2]. However, for the most
part, these efforts simply have been for the purpose of
querying the data contained in the ontology, not for the daily
management of the information by multiple users. Instead,
updates to ontologies typically require the use of ontology
editor tools (which are not necessarily built upon relational
database management systems), most of which do not support

Jennifer Leopold, Alton Coalter, and Leong Lee are affiliated with the
Department of Computer Science, Missouri University of Science and
Technology, Rolla, MO 65409 USA (e-mail: {leopoldj, abcp7c,
llkr4}@mst.edu).

multiple users, collaborative editing, or the designation of
different levels of authorization for given users. Furthermore,
many of the systems that do utilize a relational database
tightly couple the schema to a particular ontology domain
(e.g., there may be a relational table for each concept defined
in the ontology), resulting in the need for customized software
applications to access and maintain the particular ontology.

Herein a functionally comprehensive, generic approach to
maintaining an ontology as a relational database is presented.
Implemented as a Web-based software system called RDBOM
(Relational Database Ontology Maintenance), this approach
exploits: (1) the traditional features of a relational database
management system in terms of concurrency control, security,
and consistency checking in order to facilitate querying and
updating of the ontology, and (2) the features of a Web-based
application to facilitate true community curation of the
ontology.

II. BACKGROUND AND RELATED WORK

The traditional data model for an ontology is a directed
graph that represents a set of triples, each of the form (subject,
predicate, object). The nodes of the graph are the subjects and
objects, both of which are commonly referred to as concepts
or classes. As in the object-oriented programming paradigm,
an instance of a concept also can be defined. Each edge in the
graph denotes the predicate (also known as a property or
relationship) that relates a subject to an object. The most
commonly used relationships in ontologies are is_a and
part_of; however, other relationships such as synonym_of are
often defined by the user. Ontology graphs are typically
acyclic, and may or may not be rooted.

Because of the important role of relationships in ontologies,
a relational database would seem to be an obvious choice for
their implementation. In recent years there has been a
considerable amount of work done in this area, with the
following (practical) motivations:

to enhance querying capabilities of the ontology,
to utilize data types not normally supported in some
ontology data formats,
to provide a translation to and from an XML-based
representation (e.g., OWL, DAML, OIL, RDF),
and/or
to facilitate Web-based access to the ontology data
(e.g., via PHP or ASP).

A Generic, Functionally Comprehensive
Approach to Maintaining an Ontology as a

Relational Database
Jennifer Leopold, Alton Coalter, and Leong Lee

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1186

In those systems that provide a translation from an XML-
based representation, a dominant paradigm has been to map
each concept in the ontology to a distinct relational database
table (e.g., [3] and [4]), a strategy that would seem better
suited for an object-oriented database. This tightly couples the
ontology to a particular domain, resulting in the need for
customized queries and maintenance applications. A partial
exception to this domain-specific approach is the Gene
Ontology (GO) [5] which, in addition to having tables
specifically designed to contain information about genes, also
includes more generic tables to represent the ontology as a
directed graph and to maintain pre-computed transitive
closures of commonly referenced relations within the
ontology.

Regardless of whether or not an ontology editor is
implemented with a relational database, the following features
should be supported in order to provide end-users with a
functionally comprehensive, collaborative query and
maintenance system for their ontology:

Queries: users should be able to perform both
structural queries (e.g., finding ancestors and
descendents of a concept, finding all defined

relations between two concepts, etc.), and content-
based queries (e.g., finding a term that contains a
particular phrase).
Updates: users should be able to perform both
structural updates (e.g., moving a concept to a
different location within the graph structure of the
ontology, deleting or inserting a term, etc.), and
content-based updates (e.g., modifying the value of
an existing concept or property).
Collaboration: the system should facilitate concurrent
access by multiple users, with identification of who
made what changes and when.
Version control: some mechanism should be in place
for logging updates to the data so that previous
versions of the ontology can be recalled later.
Security: the system must provide security in terms
of user authorization for queries and updates;
preferably, update authorization should be node-
based in the sense that a particular user can be
restricted to accessing only certain “branches” of the
ontology.

TABLE. I SUMMARY OF FEATURES OF SOME DOMAIN-GENERIC, MULTI-USER ONTOLOGY EDITORS

Functional Comparisons:

R
D

B
O

M

C
hi

m
ae

ra

K
A

D
S2

2

K
A

O
N

O
B

O
ed

it

O
D

E

O
ilE

d

O
nt

ol
in

gu
a

O
nt

oS
au

ru
s

O
pe

nC
yc

PC
 P

ac
k

5

Pr
ot

ég
é

V
ys

ni
au

sk
as

W
eb

O
nt

o

Structural queries – – – × – – – × –
Content-based queries – – – – – – – –
Structural updating – – – – × –
Content-based updating – – – – –
Collaborative commenting × × – × × × × × × – – × –
Security, node-based per
user × × × × × × × × × × × × ×

Version control, logged user
transactions × n/a – n/a × × × × × × × ×

Web-based access × × × × × × × ×
If RDB, is each class
mapped to a table N n/a × N × n/a × × × n/a n/a x Y n/a

Commercial N N N N N N N N N Y Y N N N
 = functionality exists - = limited functionality exists × = functionality does not exist

There are several ontology maintenance systems available;
see [6] for an extensive list. However, many are not domain-
generic and/or are not multi-user systems. Table 1 summarizes
which of the above features are supported by fourteen
ontology editor systems (including the RDBOM system
introduced in this paper) that are domain-generic and support
some degree of concurrent access.

Almost all of the ontology maintenance systems listed in
Table 1 support some degree of structural and content-based
querying and updating. However, despite providing multi-user
access, many of these systems lack important features
necessary to facilitate collaborative development of the
ontology; namely, Web-based access, node-based user access
control, transaction-based version control, and a node-based

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1187

forum for user discussion. In contrast, the RDBOM system
does support all of these features.

The implementation of RDBOM in terms of the underlying
data representation and the end-user functionality will be
discussed next. The actual use of this system in terms of
workflow, including the incorporation of ontology language
translators, will then be addressed.

III. DATA REPRESENTATION

In order to facilitate data exchange with ontologies in OWL
[7] and OBO [11] formats, the RDBOM relational database
schema was designed to accomodate the expressivity of both
of those languages. The relational table schemas used by
RDBOM are as follows:

-- Databases distinguish separate ontologies
TABLE databases (
 id int IDENTITY(1,1),
 name varchar(64)
)

-- Term types distinguish the usage of terms within
-- an ontology (e.g., class, instance, property,
-- restriction, etc.)
TABLE term_types (
 id int IDENTITY(1,1),
 name varchar(800)
)

-- A term can be a class, instance, property, attribute,
-- restriction, or any other semantic unit of the ontology
TABLE terms (
 id int IDENTITY(1,1),
 name varchar(800),
 db_id int
)

-- Relationship between a term and a specific type
-- of usage for the term.
TABLE term_usages (
 id int,
 term_id int,
 term_type_id int
)

-- Relationship between two terms, specified along with
-- the edge joining them
TABLE term2terms (
 id int IDENTITY(1,1),
 term1_usage_id int,
 relation_term_id int,
 term2_usage_id int
)

-- Unnamed concepts such as enumerations, unions,
-- and intersections.
TABLE restrictions (

 id int IDENTITY(1,1),
 term_id int,
 value_relation_id int,
 value_term_id int,
 property_term_usage_id int,
 union_term_id int
)

-- An unnamed concept formed by the union of
-- other named classes
TABLE unions (
 id int IDENTITY(1,1),
 class_term_id int
)

-- Values used in translating RDBOM terms to and
-- from terms used by other ontology formats (for
-- import and export)
TABLE translations (
 term varchar(256),
 translation varchar(256),
 format char(4)
)

-- Data related to user discussions
TABLE forum (
 term_id int,
 User_ID int,
 DateTime datetime,
 comments varchar(2000)
)

-- Metadata concerning relational properties
TABLE properties (
 id int IDENTITY(1,1),
 tree char(1),
 transitive char(1),
 cyclic char(1),
 reflexive char(1),
 symmetric char(1),
 antisymmetric char(1),
 metadata char(1),
 inverse_id int,
 term_id int,
 indicator varchar(100)
)

In addition, the following schemas are used to maintain
information on user accounts and node-based access
permissions:

-- All users of the system must be registered for any
-- access beyond querying
TABLE users (
 ID int IDENTITY(1,1),
 Login varchar(128),
 Password varchar(50),
 Title varchar(5),
 Firstname varchar(128),

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1188

 Lastname varchar(128),
 Affiliation varchar(256),
 Researchinterests varchar(512)
)

-- Administrative users can perform tasks beyond
-- that of other users, such as granting access to
-- other users
TABLE admin_users (
 ID int IDENTITY(1,1),
 Login varchar(128),
 Password varchar(50),
 Title varchar(5),
 Firstname varchar(128),
 Lastname varchar(128),
 Affiliation varchar(256)
)

-- Authorization levels for users identify query and
-- update privileges
TABLE authorization_levels (
 id int IDENTITY(1,1),
 description varchar(128)
)

-- Authorization levels are assigned at the topmost
-- node(s) that can be accessed by the user
TABLE authorizations (
 user_id int,
 authorization_id int,
 term_id int
)

It is important to note that the entire RDBOM schema is
generic in the sense that it could be used to represent an
ontology for any domain. There are also additional relational
tables in RDBOM that support the storage of multimedia data
such as image and sound files, and their subsequent
association with ontology terms.

As an example of how some of the database tables would
be populated, consider the portion of an ontology for anatomy
[8] that is shown in Fig. 1, where the “I” icon represents an
is_a relation. Examples of other available icons (not shown in
Fig. 1) include a “P” icon to represent a part_of relation and a
"D" icon to represent a develops_from relation.

Fig. 1 Portion of an ontology of amphibian anatomy

The corresponding OWL representation for the ontology
shown in Fig. 1 is as follows:

<owl:Class rdf:about="#Cranial_skeleton"/>
 <owl:Class rdf:about="#Superior_prenasal_cartilage">
 <owl:disjointWith rdf:resource="#Solum_nasi"/>
 <rdfs:subClassOf rdf:resource="#Nasal_capsule"/>
 <owl:disjointWith rdf:resource="#Tectum_nasi"/>
 </owl:Class>
 <owl:Class rdf:about="#Tectum_nasi">
 <owl:disjointWith rdf:resource="#Solum_nasi"/>
 <owl:disjointWith rdf:resource"#Superior_prenasal_cartilage"/>
 <rdfs:subClassOf rdf:resource="#Nasal_capsule"/>
 </owl:Class>
 <owl:Class rdf:about="#Nasal_capsule">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Cranial_skeleton"/>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Suspensory_elements"/>
 </owl:Class>
 <owl:Class rdf:about="#Solum_nasi">
 <owl:disjointWith rdf:resource="#Superior_prenasal_cartilage"/>
 <owl:disjointWith rdf:resource="#Tectum_nasi"/>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Nasal_capsule"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Suspensory_elements">
 <rdfs:subClassOf rdf:resource="#Cranial_skeleton"/>
 <owl:disjointWith rdf:resource="#Nasal_capsule"/>
 </owl:Class>
 <owl:Class rdf:about="#Skeletal_support_for_eminentia_olfactoria">
 <rdfs:subClassOf rdf:resource="#Solum_nasi"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Solar_ossification_of_eminentia"/>
 <owl:Class rdf:about="#Turbinal_fold"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:SymmetricProperty rdf:about="#is_Synonym_Of"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Turbinal_fold">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#English_term"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:SymmetricProperty rdf:about="#is_Synonym_Of"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about
="#Skeletal_support_for_eminentia_olfactoria"/>

 <owl:Class rdf:about="#Solar_ossification_of_eminentia"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1189

A portion of the corresponding RDBOM representation for
the ontology shown in Fig. 1 is as follows:

terms
ID: NAME:
2 rdfs:subClassOf
4 rdfs:comment
9 owl:disjointWith

33 owl:allValuesFrom
35 is_Synonym_Of
81 owl:unionOf
127 Superior_prenasal_cartilage
132 Tectum_nasi
134 Solum_nasi
139 Nasal_capsule
192 Suspensory_elements
196 Cranial_skeleton
362 Floor of nasal capsule.
364 Skeletal_support_for_eminentia_olfactoria
365 Turbinal_fold
366 Solar_ossification_of_eminentia

term_usages
ID: TERM_ID: TERM_TYPE_ID:
30 35 3
114 127 1
119 132 1
121 134 1
128 139 1
183 192 1
186 196 1
353 366 1
488 365 1
520 364 1

term_types
ID: NAME:
1 owl:Class
3 owl:SymmetricProperty

term2terms

ID
:

TE
RM

1_

U
SA

G
E_

ID
:

RE
LA

TI
O

N
_

TE
RM

_I
D

:

TE
RM

2_

U
SA

G
E_

ID
:

1244 121 9 114
1246 121 2 128
1248 121 4 351
1265 121 9 119
1271 128 9 183
1272 128 2 186
1325 353 2 99
1562 186 2 42
1873 183 2 186
1875 183 4 410
1876 183 9 128
2143 119 9 121
2146 119 9 114
2152 119 2 128
2153 119 4 436
2895 114 2 128
2899 114 9 121
2915 114 9 119
2916 114 4 471
3129 488 2 99

3466 520 2 121

restrictions

ID
:

TE
RM

_I
D

:

VA
LU

E_
_

RE
LA

TI
O

N
_

ID
:

VA
LU

E_

TE
RM

_I
D

:

PR
O

PE
RT

Y_

TE
RM

_
U

SA
G

E_
ID

:

U
N

IO
N

_
TE

RM
_I

D
:

32 366 33 81 30 12
74 365 33 81 30 30

unions
ID: CLASS_TERM_ID:
12 364
12 365
30 364
30 366
36 366
36 365

IV. END-USER FUNCTIONALITY

RDBOM was implemented as a Web-based application that
allows users to query and update an ontology that is
represented using the relational database schema given in the
previous section. Available tools to translate an ontology from
a language such as OWL to this relational database structure
will be discussed in Section V.

Any user can add a comment about any class in the
ontology, and can view the comments of other users. Query
and update permissions are assigned by the ontology
administrator at the node level; specifically, access is granted
at the root node of each “branch” of the ontology for which
the user is to be allowed update and/or query access.

A. Queries
As listed in the ontology maintenance requirements

presented earlier, users should be able to perform both
content-based queries (e.g., finding a term that contains a
particular phrase), as well as structural queries (e.g., finding
ancestors and descendents of a class, finding all relationships
between two terms, etc.). In this section the queries that are
currently available in RDBOM are discussed.

Content-based queries should allow the user to search the
ontology based on the textual content of any class, instance, or
property. To find any term containing a particular phrase, it is
sufficient to search the terms table. To find all references to a
particular class, the term2terms table can be searched,
subsequently retrieving a term by joining the terms table with
the term_usages table.

To find all entities containing a given phrase in a given
property the terms table is used in conjunction with the
terms_usage table to find the rows from the term2terms table
that match the specified property and phrase. Similarly, to find
all entities for which data are known for a given property, the
search is performed for non-null values for the term.

To find all entities that are related via a particular
relationship, a join is performed between the terms,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1190

term_usages, and term2terms tables as in the following SQL
statement, where the values represented using angle brackets
('<' and '>') represent actual literal values for the particular
data:

SELECT DISTINCT a.name, a.id
 FROM terms a, terms b, terms c, term_usages u,
 term_usages v, term2terms t
 WHERE t.term1_usage_id = u.id
 AND t.relation_term_id = b.id
 AND t.term2_usage_id = v.id
 AND u.term_id = a.id
 AND v.term_id = c.id
 AND a.db_id = <DBID>
 AND b.name = '<RELATION>'
 AND c.name = '<ENTITY>'
 ORDER BY a.name

The results for each of the content-based queries is a linear
list of a terms, any of which can be clicked on to select the
corresponding node in the ontology tree display.

Given the hierarchical organization of ontologies, it is
likely that the user might want to find the ancestors and
descendants of a term, as well as the structural relationships
between two terms. In a large ontology, such information may
be difficult to determine simply by navigating a graphical
(tree) display.

To find all ancestors of a particular class in RDBOM, the
following SQL statement (using the returned values in place
of '<NODEID>') is recursively executed until each call fails to
return any rows:

SELECT a.name, a.id
 FROM terms a, terms h, term_usages d,
 term_usages e, term_usages f,
 term2terms c, properties p
 WHERE c.term1_usage_id = d.id
 AND c.relation_term_id = p.term_id
 AND p.tree = 'Y'
 AND h.id = e.term_id
 AND e.id = c.term1_usage_id
 AND a.id = f.term_id
 AND f.id = c.term2_usage_id
 AND d.term_id = <NODEID>
 AND a.db_id = <DBID>
 ORDER BY a.name

Each invocation of this query joins the term from the terms
table (via the terms_usage table) to the term2terms table,
restricting the relationship to parent-child relations (e.g.
subclass, part_of, or instance_of) and using <NODEID> as
the child class. The <NODEID> value is used instead of the
name in the joins because it is guaranteed to be unique,
whereas the name itself is not.

To find all descendants of a particular class, the following
query is recursively executed to retrieve all subclasses of that
class, using the results returned as the <NODEID> value for
subsequent calls:

SELECT a.name, a.id, p.indicator
 FROM terms a, terms b, term_usages u,
 term_usages v,
 term2terms t, properties p
 WHERE t.term1_usage_id = u.id
 AND t.relation_term_id = b.id
 AND t.term2_usage_id = v.id
 AND u.term_id = a.id
 AND b.id = p.term_id
 AND p.tree = 'Y'
 AND v.term_id = <NODEID>
 ORDER BY a.name

The returned value p.indicator provides information about
the particular relationship of the child to its parent; for
example, this would show whether the child is related to its
parent with an is_a relationship, or a part_of relationship.

In order to retrieve all associated instances, the following
SQL statement is then executed for each class that was found
by the previous query:

SELECT f.name, f.id, d.name, a.name, a.id, y.name
 FROM terms a, term_usages b, term2terms c,
 terms d, term_usages e, terms f,
 term_types y
 WHERE a.id = b.term_id
 AND b.term_type_id = y.id
 AND b.id = c.term2_usage_id
 AND c.relation_term_id = d.id
 AND d.id = <RELID> -- from above query
 AND e.id = c.term1_usage_id
 AND e.term_id = f.id
 AND f.id = <NODEID>
 ORDER BY d.name, f.name, a.name

As with the content-based queries, the result of finding the
ancestors or descendants of a class is a linear list. Any entry in
the result list can then be clicked on to select the
corresponding node in the ontology tree display.

In order to obtain a list of all relationships between two
concepts, the specified classes are joined via the terms table
and the term_usages table to the term2terms table, as in the
following SQL statement:

SELECT a.name, b.name, c.name
 FROM terms a, terms b, terms c, term_usages d,
 term_usages e, term2terms f
 WHERE a.id = d.term_id
 AND d.id = f.term1_usage_id
 AND b.id = f.relation_term_id
 AND c.id = e.term_id
 AND e.id = f.term2_usage_id
 AND a.db_id = <DBID>
 AND ((a.name = '<TERM1>' AND
 c.name = '<TERM2>')
 OR (a.name = '<TERM2>' AND
 c.name = '<TERM1>'))
 ORDER BY c.name, a.name

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1191

To find the closest shared parent of two classes, it is
necessary to first find all ancestors for one class and store
those values in a list. The ancestors for the second class can
then be found, checking each value to see whether it is
contained in the list for the ancestors of the first class. This
recursive search is terminated as soon as a match is found.
The resulting term is then highlighted in the ontology tree
display, and both paths are displayed for the user.

B. Updates
As listed in the ontology maintenance requirements

discussed in Section II, users should be able to perform both
content-based updates (e.g., modifying the value of an
existing term or property) as well as structural updates (e.g.,
moving, deleting, or inserting a class, etc.). To provide
support for version control (with the potential of later rolling
back changes), the RDBOM system logs a description of each
update in an administrative table of the relational database,
including a timestamp and the identification of the user who
issued the update.

An example of the RDBOM user-interface for performing
content-based updates is shown in Fig. 2. Once a class is
selected for update in the ontology tree display, the user can
rename the node, modify the definition, add properties (that
have been previously defined by the administrators of the
ontology), or add instances. These updates largely just affect
the terms table and possibly the term2terms table in the
database.

An example of the RDBOM user-interface for performing
structural updates is shown in Fig. 3. Once a class is selected
for update in the ontology tree display, the user can create a
new “child” node beneath it, move the node to another
location in the tree (using the “cut” and “paste” functions), or
delete the node. Currently, only “leaf” nodes in the ontology
tree can be moved or deleted.

To create a child node, a new class is added to the terms
table, and an entry is made in the term_usages table. It is also
necessary to make appropriate entries in the term2terms table
of the database for the intended 'subClass' relation.

Fig. 2. RDBOM content-based update web interface

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1192

Fig. 3. RDBOM structural update web interface

In order to delete a leaf node, it is necessary to delete all
relationships involving the term, not just the subClass or
instanceOf relations. These updates can be performed with the
following atomic transaction:

// To delete the node, first delete all records from
// restrictions, unions, and term2terms,
// then from term_usages, and finally from terms.
BEGIN TRANSACTION;
// Find the id of the correct terms record.
SELECT id AS Term_ID
 FROM terms
 WHERE name = '<TERM>';
// Find the id of the correct term_usages record.
SELECT id AS Usage_ID
 FROM term_usages
 WHERE term_id = <Term_ID>;
// Using the values from the above SQL statements
// (Term_ID and Usage_ID),

// delete any restrictions or unions for this term.
DELETE FROM restrictions
 WHERE term_id = Term_ID
 OR value_term_id = Term_ID
 OR union_term_id = Term_ID;
DELETE FROM unions
 WHERE class_term_id = Term_ID;
// Remove any forum records or authorizations
// for this term.
DELETE FROM authorizations
 WHERE term_id = Term_ID;
DELETE FROM forum
 WHERE term_id = Term_ID;
// Delete any relationships involving this term.
DELETE FROM term2terms
 WHERE term1_usage_id = Usage_ID
 OR term2_usage_id = Usage_ID;
// Delete orphaned term_usages rows.
DELETE FROM term_usages

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1193

 WHERE id IN
 (SELECT u.id
 FROM term_usages u, terms a
 WHERE u.id NOT IN
 (SELECT DISTINCT
 term1_usage_id FROM term2terms)
 AND u.id NOT IN
 (SELECT DISTINCT
 term2_usage_id FROM term2terms)
 AND u.term_type_id =
 (SELECT id FROM term_types
 WHERE name = 'class')
 AND u.term_id = a.id
 AND a.db_id = <DBID>);
// Finally delete the actual terms and end

// the transaction.
DELETE FROM terms WHERE id = Term_ID;
COMMIT TRANSACTION;

In order to move a node, it is sufficient to replace the
parent's reference in the term2terms table with the reference to
the new parent; all other relationships remain unchanged. It is
necessary to first find the unique record id of the row to be
updated in the term2terms table using the node names of the
child and the current parent. In the following SQL statement,
<USAGE_ID> is the usage ID of the node to be moved (from
the term_usages table), <PARENT_ID> is the usage Id for the
current parent node, and <NEWPARENT_ID> is the
corresponding value for the new parent node:

Fig. 4. RDBOM collaborative workflow

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1194

SELECT id
 FROM term2terms
 WHERE term1_usage_id = <USAGE_ID>
 AND term2_usage_id = <PARENT_ID>
 AND relation_term_id IN
 (SELECT term_id
 FROM properties
 WHERE ptree = 'Y')

An update is then made to the term2terms table as follows
where <T2T_ID> is the value returned by the previous SQL
statement:

UPDATE term2terms
 SET term2_usage_id = <NEWPARENT_ID>
 WHERE id = <T2T_ID>

Although other types of updates to ontologies are possible
(e.g., defining new relations, adding new restrictions on
relations, etc.) and are supported in ontology editors such as
Protégé, this type of functionality has not been provided for
general users in RDBOM; only administrators have permission
to make such changes via an administrative update utility
which is similar in design to the content-based and structural
update interfaces that have been presented.

V. WORKFLOW

The Web-based RDBOM software system provides a
collaborative development environment for querying,
maintaining, and annotating ontologies through a central
relational database. The workflow process is diagrammed in
Fig. 4, both from the perspective of users as well as
administrators.

The ontology database can be defined from scratch, or
initially populated from an OWL or OBO file by using a
translation program that is provided with the RDBOM system.
The translator utilizes a C#/asp.net framework to parse the
import file entries and to insert the transformed data into the
RDBOM database via the database management system's SQL
calls.

Using a Web interface, a user must register for an account
to access the ontology. Upon notification of the registration,
the administrator can create a user account and grant access
rights based on the user’s intended role in the development of
the ontology. Query and update permissions are assigned at
the node level; specifically, access is granted at the root node
of each “branch” of the ontology for which the user is to be
allowed update and/or query access. To facilitate
collaboration, users can also annotate any node in the
ontology with comments, and view the comments of other
users.

Updates made by users are automatically recorded in a
transaction log. Each log entry contains a description of the
update, a timestamp, and the user’s account identification.
This information is only available to RDBOM administrators,
and can be used to monitor progress on the development of
the ontology. The transaction log can also be used by the
administrator to effectively undo a particular update.

Currently, the undo facility is manual in the sense that the
administrator must make the necessary edits to the ontology
via the user update menu, and determine what other updates
are required due to possible cascading effects. In the near
future, this process will be automated.

To facilitate exporting the ontology to other data formats,
translators for OWL and OBO are provided that maintain all
information about the concepts, instances, and relationships in
the ontology. This allows the user the option to utilize other
ontology editors such as Protégé, or to simply display the
ontology (as HTML) on a web page. It should be noted that if
the ontology is modified in another ontology editor system,
the database can be rebuilt later by using the RDBOM import
utility (assuming that the ontology is in an OBO or an OWL
format).

VI. FUTURE WORK

RDBOM currently is being used by a consortium of
approximately 50 biologists who are developing an ontology
for amphibian anatomy (AmphibAnat, www.amphibanat.org).
This ontology currently contains over 10,000 classes, and is
expected to grow to approximately 50,000 classes over the
next three years.

In a recently held workshop of 28 amphibian biologists, a
survey was administered to 21 of the (U.S. and international)
participants who did not have much prior experience using
other ontology editors. The results of the survey (shown in
Table 2) are promising, and have identified areas for
improvement in the user interface. The usability and
usefulness of RDBOM will be more extensively evaluated in
the near future with participants from a more diverse
background. The usefulness and usability of RDBOM also
should be empirically compared to other popular ontology
editors such as OBO-EDIT and Protégé.

Additionally, the RDBOM database schema and software
will be modified in the future to support modular ontologies as
discussed in [9, 10]. This will facilitate merging, swapping,
and comparison functions across multiple ontologies, and will
further enhance ontology reuse.

VII. SUMMARY
As the emphasis on achieving a semantic web continues to

escalate, ontologies for all types of domains increasingly will
be developed. These ontologies may become large and
complex, and as their size and complexity grows, so will the
need for controlled-access, multi-user interfaces for ontology
curation. The generic, functionally comprehensive approach
implemented in RDBOM should facilitate collaborative
development of such ontologies.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1195

TABLE II SURVEY RESULTS

Question avg min max

1. How much previous experience have you
had with ontologies? (none = 1, a lot = 10) 2.5 1 7

2. How much experience have you had with
the Protégé? (never used it = 1, proficient in
using it = 10)

1.0 1 2

3. How much experience have you had with
the OBO-Edit ? (never used it = 1, proficient
in using it = 10)

1.1 1 2

4. Overall, does RDBOM allow you to
perform the tasks necessary to query and
modify an ontology? (never = 1, sometimes =
5, always = 10)

6.0 3 9

5. Overall, how would you rate the number of
functions that are available to query and
modify an ontology in RDBOM? (too few = 1,
just right = 5, too many = 10)

5.2 3 10

6. Do you feel that you get sufficient feedback
after doing operations in RDBOM? (never = 1,
sometimes = 5, always = 10)

7.0 2 10

7. Overall, how easy is it to perform various
operations in RDBOM? (difficult = 1, easy =
10)

5.4 2 10

8. How easy is it to navigate between the
different windows in RDBOM? (difficult = 1,
easy = 10)

5.1 1 9

9. How well does RDBOM distinguish
ontology classes, properties and instances?
(bad = 1, good = 10)

5.1 1 9

10. Do you feel that the RDBOM user
interface is designed in a uniform way? (is not
uniform = 1, is very uniform = 10)

7.6 2 10

11. How would you describe your experience
using RDBOM? (boring = 1, fun = 10) 6.3 2 10

12. How would you rate the amount of
documentation that is available in RDBOM?
(not enough = 1, adequate = 10)

6.8 2 10

13. How easy is to understand the meaning of
the RDBOM icons and menus? (difficult = 1,
easy = 10)

7.1 2 10

14. How easy is the RDBOM terminology to
understand? (never = 1, sometimes = 5, always
= 10)

5.6 1 8

15. How easy is it to use the RDBOM
documentation? (difficult = 1, easy = 10) 7.3 4 9

16. Overall, how clear is the purpose of each
RDBOM function? (unclear = 1, clear = 10) 6.0 1 10

17. How easy is it to learn the RDBOM
interface for ontology management? (difficult
= 1, easy = 10)

6.8 4 9

18. How easy is it to remember how to use
RDBOM? (difficult = 1, easy = 10) 6.9 4 10

ACKNOWLEDGEMENTS

This work was supported by NSF under award DBI-
0640053.

REFERENCES

[1] Davies, J., Fensel, D., and Van Harmelen, F. (eds.) (2004), Towards the
Semantic Web: Ontology-driven Knowledge Management. West Sussex,
England, John Wiley & Sons.

[2] Goodwin, R., Lee, J., Stanoi, G., and Leveraging, M. (2005), “Relational
Database Systems for Large-Scale Ontology Management,” CIDR
Conference, www.alphaworks.ibm.com/ topics/semantics.

[3] Vysniauskas, E. and Nemuraite, L. (2006), “Transforming Ontology
Representation from OWL to Relational Database,” Information
Technology and Control, vol. 35, no. 3A.

[4] Nyulas, C., O’Connor, M., and Tu, S. (2007), “DataMaster – a Plug-in
for Importing Schemas and Data from Relational Databases into
Protégé,” 10th International Protégé Conference, July 15-18.

[5] “GO Database Guide,” The Gene Ontology Consortium — Amigo,
www.geneontology.org/ GO.database.shtml.

[6] Denney, M. (2002), “Ontology Building: A Survey of Editing Tools,”
www.xml.com/pub/a/ 2002/11/06/ontologies.html

[7] Dean, M. and Schreiber, G. (eds) (2004), “OWL Web Ontology
Language Reference,” W3C Recommendation,
www.w3.org/TR/2004/REC-owl-ref-20040210.

[8] Maglia, A., Leopold, J., Pugener, A., and Gauch, S. (2007), “An
Anatomical Ontology for Amphibians,” Proceedings of the Pacific
Symposium on Biocomputing (PSB 2007), Wailea, Maui, pp. 367-378.

[9] Hitzler, P., Krotzsch, M., Ehrig, M., and Sure, Y. (2005), “What is
Ontology Merging?” American Association for Artificial Intelligence.

[10] Cuenca-Grau, B., Parsia, B., Sirin, E., and Kalyanpur, A. (2006),
“Modularity and Web Ontologies,” Proc. of KR.

[11] Day-Richter, J. (2006), “The OBO Flat File Format Specification,
version 1.2,” The Gene Ontology, www.geneontology.org/GO.format.
obo-1_2.shtml.

