
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1171

Abstract—For a variety of safety and economic reasons,

engineering undergraduates in Australia have experienced
diminishing access to the real hardware that is typically the
embodiment of their theoretical studies. This trend will delay the
development of practical competence, decrease the ability to model
and design, and suppress motivation. The author has attempted to
address this concern by creating a software tool that contains both
photographic images of real machinery, and sets of graphical
modeling ‘tools’. Academics from a range of disciplines can use the
software to set tutorial tasks, and incorporate feedback comments for
a range of student responses. An evaluation of the software
demonstrated that students who had solved modeling problems with
the aid of the electronic tutor performed significantly better in formal
examinations with similar problems. The 2-D graphical diagnostic
routines in the Tutor have the potential to be used in a wider range of
problem-solving tasks.

Keywords—CAL, graphics, modeling, structural distillation,
tutoring.

I. INTRODUCTION

Among the multitude of difficulties facing 21st century
engineering education are two that are growing more critical as
time progresses: (a) pressures of reduced government funding
have increased student/staff ratios and reduced opportunities
for personalized tutoring, and (b) those reductions in funding,
along with increased concerns about liability and safety have
limited the opportunities for hands-on or otherwise realistic
experiences for undergraduate engineers. When coupled with
the shift toward student-centered learning (and the desire to
match learning opportunities to individual needs) we find that
those difficulties lead to students’ perceptions of a widening
gulf between engineering practice and engineering education,
with scarce opportunities for connecting individuals with their
future profession.

Those funding reductions are being addressed (to varying
degrees of success) by a need for universities to earn income
from other activities – mainly through research grants.
Research success is consequently a desirable attribute for
modern academics, while ongoing liaisons within the
profession are less well regarded. Time, modest practical
experience and funding limitations also create a gulf between
many engineers in academia and industry, and this has an
impact on the programs of teaching offered in engineering
courses.

The author and his colleagues at the University of

Melbourne have observed that the majority of engineering
sciences taught at their universities are bereft of the artifacts
associated with the science, and in some instances, are bereft
of realistic representations (e.g., photographs, videoclips) of
those artifacts. Yet we have observed that students are highly
motivated by the existence of realistic (“practical”) examples
of the theory: it appears that an appreciation of abstractions
requires some time to mature, perhaps even well after
graduation for some. The experienced teacher-researcher
already possesses this ability to abstract from reality, and often
teaches from the abstraction, rather from the reality. This
approach can lead to student dissatisfaction and their
evaluation comments that a study unit is “too theoretical”.

The act of constructing an abstraction from reality is called
modeling. Models may be mathematical/ algebraic, physical,
graphical or symbolic, or some combinations of these. When
the models contain elements that are the basic building blocks
of the engineering discipline, we call the modeling process that
of ‘structural distillation’ [1]. The usual step following such a
structural distillation is to find and include the numerical data
that is specific to the discipline, thereby allowing the engineer
to make detailed predictions from the model.

It is evident that a practicing engineer should be able to
form proper and correct models, uncover the data for their
particular problem, and then ‘solve’ the problem to meet the
final need [2]. Yet there is little evidence that undergraduate
engineers are schooled in the art of structural distillation. The
gap in this ability became apparent to the author and his
colleagues, whose specialist teaching area is in mechanical
design. In open-ended design problems the student may
progress in either of two directions: (a) start at a conceptual
idea, and systematically prove that the concept will work, or
(b) start at a calculated (numerical/graphical) descriptor of the
requirements and systematically develop the physical
embodiment that would achieve the requirements. In both
instances the student needs to formulate a model that bridges
the two elements, and this is often the most inadequately
performed task in an undergraduate design [3].

Most of the conceptual modeling tasks (structural
distillations) needed in undergraduate problems are very basic,
and require only a few minutes of effort (from a capable
student). It is impractical to personally tutor large groups of
students in this undertaking. With this restriction in mind,
coupled with the concern for the reduction in ‘practicality’ in

B.W. Field is a Professor in the Department of Mechanical and Aerospace
Engineering at Monash University, Australia. (+61 3 9905 3518; e-mail
bruce.field@eng.monash.edu.au).

A Generic e-Tutor for Graphical Problems

B.W. Field

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1172

many undergraduate engineering courses, the team conceived
the potential for a computer-based tutor that could: (a) contain
realistic representations of engineering artifacts (perhaps
animated), (b) offer a method of allowing students to formulate
structural distillations of those artifacts, and (c) implement a
technique for correcting errors on an individualized basis.

Support for the development of such software was
forthcoming in 2001 from a joint funding scheme created by
Melbourne and Monash Universities. The basic version of the
electronic tutor was written during that year, and is called
MOMUS Tutor (Monash-Melbourne Universities’ Structural
Tutor). Somewhat perversely, ‘Momus’ is also a word for a
faultfinder, or persistent critic, derived from the Greek god of
ridicule.)

This paper describes the underlying educational
philosophies and program structure of the MOMUS Tutor, and
reports the educational outcomes from its first year of use.

II. PRINCIPLES OF MOMUS TUTOR

It was intended that the proposed electronic tutor should be
available for structural distillations in any of the engineering
sciences in a mechanical engineering course, and it was
envisaged that, since the fundamental issues being addressed
by the Tutor were likely to be common across several
disciplines (and outside of engineering), it might be possible to
construct a fairly general tool. Since the engineering sciences
tend to work in relative isolation, and students see this
separation in their timetables and assessment activities, it was
desirable to compartmentalize the modeling activities for each
science. It was also recognized that the issues of modeling
within one sub-discipline need to be tested over several
different learning tasks to ensure that the principles have been
properly understood.

These aspects led us to hypothesize that it should be
possible to construct a tutoring program with generalized
capabilities that could be customized for separate pieces of
common machinery, the relevant sciences, and even the
disciplines of an educational program. The common element
within the Tutor software would be the capability of
diagnosing the appropriateness of a 2-D image created or
manipulated by the learner.

The requirements suggested a ‘grid’ of practice problems,
with grid axes separately representing common examples of
hardware and engineering sciences, with one or more tasks
made available in each of the grid elements. Fig. 1 is the first
grid for MOMUS Tutor that was coded. We intended that
problems would be generated in each of the grid elements, and
students might decide to select individual problems, sets of
problems from an engineering science (a column), or the issues
associated with an artifact (a row). The team was especially
interested in the formulation of problems along a row, since
this should illustrate the integration of several engineering
sciences within the design of a single machine (one of the
primary purposes of an engineering design unit).

The machines themselves were intended to be realistic

representations, so were likely to be information-rich
(constructed from photographs, videotape, or rendered 3-D
models), causing the artifact representations to occupy large
volumes of electronic memory. To minimize the difficulty of
managing such large amounts of memory, it was also desirable
that the machines be suitable for modeling tasks in several
sciences. At present, it is expected that final versions of the
MOMUS Tutor for mechanical engineering, with eight
different machines, will fit onto a conventional CD ROM, or
be available through campus networks. It may not be suitable
for dial-in modem access.

Fig. 1 Contents page of MOMUS Tutor with several problems available

MOMUS Tutor was coded in Macromedia’s® Director, a
common base for educational software. It facilitates the simple
creation of a stand-alone ‘projector’ for distribution, and
compressed versions to be played by Shockwave (free
downloadable software from Macromedia®. A starting ‘movie’
allows students to jump to an introduction, describing the
purpose of the software and how to use it, or go directly to the
problem set. From the contents frame (Fig. 1) one or more
problems can be selected, then attempted in sequence. The
hardware is represented in separate ‘frames’ of the movie, and
the separate sciences are represented by independent ‘casts’
[4] of icons.

III. CODING MOMUS TUTOR

The core program structure is shown in Fig. 2, with a
succession of ‘frames’ running indefinitely from left to right.
Normally, a ‘movie’ begins on the left and progresses
automatically to the right, except where coding causes the
movie to freeze.

When the user enters the frozen ‘Problems’ screen (Figs. 1
and 2), MOMUS Tutor explores the folder in which it is
located and identifies any compatible text files (those with
names that include a hardware title, a science cast, and a
number from 1 to 9). The Tutor then constructs the ‘contents

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1173

grid’, and places a single problem icon in a grid location where
one problem has been found (such as with ‘Gas Turbine-Heat’,
in Fig. 1), or a multiple-problem icon where two or more
problems have been found (such as with ‘Doorstop-Statics’ in
Fig. 1). Numbered pop-up lists for the multiple-problem sets
are constructed. The user can select one or more problems
from the grid, then ‘BEGINs’ the first task.

MOMUS Tutor then opens the appropriate problem text file
and loads the task text and problem settings into the hardware
window. The chosen science cast is loaded into the hardware
window, and a cast instruction page is loaded into a layer
above the hardware window. Control passes to a hardware
introduction window.

The introduction to the hardware item may be several
‘frames’ long, and typically contains information about the
hardware that is to follow. In the case of the ‘4-stroke engine’,
the information frames contain a simple animation of the 4-
stroke engine cycle.

The student can progress to the ‘how to use cast’ frozen
window to learn how to manipulate the cast icons available in
the problem, or go directly to the first problem’s window, and
then to any frozen position in the animated hardware movie.

Thereby, a problem is constructed from the combination of
an artifact with the contents of a science cast, plus the specific
text that is authored for each problem.

The potential to animate machines (in order to gain insight
into their functionality) and the need to isolate portions of a
machine in some modeling processes led to the decision to
‘construct’ the machine representations from separate images,
‘assembled’ together to show the whole device. Fig. 3 is the
screen image of the first problem in the grid shown in Fig. 1,
and the hardware is ‘made’ from three photographic images:
the bent doorstop leg, the doorstop bracket, and the door/floor.
There is also a background image to give context.

Students are able to construct the line-diagram models that
represent the machine or selected portion of the machine by
dragging and dropping segments of the model onto the

appropriate part of the image(s). A typical tutorial problem
would ask a student to construct a line diagram model for
some part of the image under defined external conditions (e.g.,
loads, temperatures, speeds) that might be used in the solution
within a particular engineering science (e.g., dynamics,
thermodynamics, control). Their answer will comprise several
components, including the machine configuration at some
point in its cycle, the highlighted components, and the
locations, shapes and alignments of the various modeling
‘icons’ that define the model. The answer is therefore
essentially a unique 2-D image, the construction of which is
rendered in a convenient manner by the Tutor’s interface.

When the student has completed the task, the ‘Next’ button
identifies the second problem on the selected list, and goes
through the same loading routine for that problem.

Fig. 3 Appearance of MOMUS Tutor hardware screen during an attempt to
solve a problem

Fig. 3 shows the screen of the Tutor during the formulation
of an answer to a basic problem in statics. The object (in this
case a simple doorstop) fills the main window. The task is

EXIT

PROBLEMS HARDWARE 1
WINDOW

INTRO
H’WARE

1

HOW
TO USE
CAST

2ND PROBLEM

PROBLEM
LIST

INTRO
H’WARE

2

HOW
TO USE
CAST

HARDWARE 2
WINDOW

EXIT

X X X

HARDWARE
‘HOLD’

POSITIONS

SCIENCE CASTS

PROBLEM
TEXT
FILES

X X

A B C

H1-A-1 H1-A-2 H1-B-1 H2-A-1 H2-C-3

FIND
PROBLEM

FILES

1ST

S
T
A
R
T

MOVIE ‘PLAY’ DIRECTION >

Fig. 2 Structure of core MOMUS software

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1174

defined in the upper left-hand window, and the modeling icons
(point and distributed forces, and moments) are available in
the lower left-hand window. When the Tutor offers feedback
after a student asks it to ‘Check’ the answer, a feedback
window overlays modeling icons. The top row of buttons
allows the image to be manipulated – zoomed, selected and
animated, and the lower row of buttons allows the problems to
be navigated. The student’s answer (in the case shown in Fig.
3) is two copies of the point force icon dragged, dropped and
rotated onto the image, which may contain several de-selected
parts of the machine, defining the ‘free-body boundary’. The
alignment of the force icons is facilitated by the creation of
internally generated straight line ‘icons’ that can be gripped
and rotated.

The Tutor is programmed to diagnose the student’s answer,
and then to offer appropriate comments that have been
prepared in advance by the educator who set the problem after
switching the software to an authoring mode.

IV. DIAGNOSING STUDENT ANSWERS

MOMUS Tutor contains a generic diagnostic routine that
compares the screen appearance with previously stored
solutions.

While authoring, the educator has the opportunity to create
a number of possible solutions – correct or incorrect, that are
judged to be likely responses by students. The first solution
that the educator creates is defined as the ‘target’ solution (the
most desired correct solution), but any successive solutions
loaded into the Tutor can be examples of the most common
types of errors that students tend to make. For example, the
solution shown in Fig. 3 was an incorrect solution that was
offered by 20% of the students who attempted the problem
when it was set on paper as a ‘spot test’. This approach follows
a similar philosophy to that adopted by Scott and Stone [5]
with their introductory Dynamics tutor at the University of
Western Australia and their generalized ‘Jellyfish’ tutorial
environment.

The science icons in MOMUS Tutor have definable
characteristics that can be separately enabled when the science
cast is constructed. For example, the ‘Moment’ icon with the
‘M’ in Fig. 3 is called a free vector, and has the same physical
effect on an object wherever it is applied onto that object.
Therefore the location of the ‘M’ is characterized in MOMUS
by the code number of the machine component over which the
icon has been placed. The ‘point force’ (two of which have
been placed in Fig. 3) is characterized by the location of the
point (the tip of the arrow) over the machine and its slope (the
two forces in Fig. 3 are horizontal, but facing on opposite
directions), so is characterized by the screen position in x and
y directions, and its slope, each with a definable ± tolerance.
That is, three parameters are diagnosable in a point force. The
distributed force (the central selectable icon in Fig. 3) is
diagnosed as for the point force, plus its (stretchable) length: a
total of four diagnosable characteristics.

Using the set of authored ‘solutions’, the diagnosis in the

MOMUS Tutor is performed in two stages.
First stage: The diagnosis conducted by the Tutor is a

search through its set of stored solutions for a close match
(within tolerances), and, if it finds a match, the Tutor offers the
corresponding feedback comment that was pre-stored along
with that solution.

Second stage: If a close match to the student’s answer is not
found, the Tutor uses its second diagnosis routine. In this
routine the Tutor compares successive elements of the
student’s answer with the ‘target solution’, and offers feedback
associated with the first substantial mismatch that it finds.
These feedback comments are also pre-stored when the
educator set the problem, and cover, in order, circumstances
where:
1) No icons have been placed,
2) The machine is wrongly configured (wrong ‘frame’),
3) The wrong machine components have been selected,
4) At least one wrong icon has been placed,
5) At least one correct icon has been wrongly placed,
6) At least one adjustable icon has been wrongly sized,
7) At least one rotatable icon has been wrongly aligned,
8) At least one icon is missing.

In the case of circumstances 4 to 7, an offending icon can be
authored to flash.

The Tutor keeps track of the number of times that an
identical ‘error’ occurs, and provides access to second and
third level ‘hints’ that the educator has prepared. The student
has no direct access to the ‘target’ solution, or any other
‘good’ solutions that have been stored, so the hints and
feedback have to be constructed by the educator to direct
students toward the target, and the target solution needs to
have a feedback comment that identifies itself as the
termination of the problem. In this way it was intended that the
Tutor could follow a similar structured approach to that of an
experienced human personal tutor.

V. AUTHORING IN MOMUS TUTOR

The access point for problems in the Tutor is a ‘contents
page’. This page (Fig. 1) displays a grid, where the rows
represent the alternative ‘machines’ available for analysis.
The ‘doorstop’ in Fig. 3 is the first of these machines. The
columns represent the engineering sciences for which
problems may be authored. The ‘static equilibrium’ icons in
Fig. 3 belong to the first of the engineering sciences. It is
therefore possible to set or access problems in any of the
nominated engineering sciences applied to any of the
machines, by selecting the corresponding grid element. The
Tutor can be used to create, then access up to nine problems in
each grid element, although it begins with a completely empty
grid. Currently the grid is 8 machines x 6 sciences, allowing a
teacher to create up to 8x6x9 = 432 separate problems.

After entering the authoring mode, protected by a password,
the educator can select any of the grid elements to create or
edit a problem. This route is shown in Fig. 4. The starting
configuration is then chosen: image size, scales, default

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1175

sensitivities (tolerances) for the diagnosis, the problem text
and the subset of modeling icons, including any pre-placed
icons if desired. The feedback comments associated with the
second stage diagnosis are then entered, followed by the target
configuration and its specific comments. The required
diagnostic accuracy (tolerance) for this and other sample
solutions can be set for each solution by manipulating visual
‘tolerance zones’. For icons that can be rotated, the tolerance
zones for the alignment are shown as sectors of a circle, such
as those shown as dark ‘wedges’ associated with a ‘beam’ icon
in Fig. 5: the Tutor will accept any alignment of the icon that
falls within the sector. The tolerance zones for positions of
icons in x-y space are rectangular areas, such as those
associated with the three forces in Fig. 5. Other icons may
have special characteristics: the length of the beam in Fig. 5
can be no less than that shown, but could be larger (with
redundant overhang), so its tolerance zone for length is
indefinitely long each side of a central minimum length.

Fig. 4 Authoring a problem: after a problem grid is selected, the cast is
loaded into the hardware movie. Input windows then allow the author to

configure the hardware, then create solutions and write appropriate feedback
comments. The outcomes are written to a text file and stored in the MOMUS

folder.

Any number of alternative solutions and their feedback
comments are then entered. The problem-setting task is then
terminated, and all of the information about the problem and
its solutions is recorded in a separate text file, averaging 35
kilobytes in size (and easily transmitted through the internet,

even to students with slow a dial-up internet connection).
Subsequently, when the Tutor is opened, it searches its

default directory for problem text files, and, finding any,
makes them accessible in the contents page. In the authoring
mode, any existing problem can be edited or extended: in the
tutoring mode, each problem can be selected individually, or
in sets, and attempted by students.

Fig. 5 Authoring a problem, showing the colored tolerance zones associated
with machine element icons (beam and point forces in this case)

VI. EVALUATION OF MOMUS TUTOR

The doorstop images of Fig. 3 were created, along with the
set of static equilibrium icons. Coding for most of the desired
characteristics of the software was completed, including the
methods for manipulating the images, manipulating the icons
through pop-up selections, rotations, and distortions,
diagnosing the answers, and authoring new problems. It was
therefore possible to prepare up to nine problems in statics
with one piece of machinery, and to test the software with
students. The Tutor was mounted onto fileservers at Monash
University, and onto a smaller number of stand-alone PC’s at
the University of Melbourne.

The evaluation comprised the following sequence:
1) Conceive a problem that could be set in the MOMUS

Tutor, and set the problem on paper.
2) Administer the problem to students at the respective

universities, allocating credit points for correct solutions.
These problems, which only required the placement of
two or three force images, were constrained to allow only
five minutes of effort.

3) Collect the alternative solutions and group them into
identical (or near-identical) sets.

4) Code the most common of the sets of solutions into the
Tutor, along with the associated feedback comments.
(Across the four initial problems generated, there was an
average of 18 different sets of solutions coded per
problem. This coding took an average of 1.5 hours per
problem, following an average of 1.5 hours to define
each set from the 300+ students’ attempts on each set).

PROBLEMS HARDWARE 1
WINDOW

INTRO
H’WARE

1

HOW
TO USE
CAST

PASSWORD

X X X

SCIENCE CASTS

A B C

S
T
A
R
T

EXIT

Task environment settings, scale, icon subset.

Task text, starting frame, task settings.

Level 2 feedback comments: for frame,
component selection, icons and icon
placements, sizes and rotations.

Best solution specification, comments &
tolerance on icon parameters.

Alternative solution 1 specification &
comments: 3 levels of hints, icon tolerance.

Alternative solution 2 specification &
comments: 3 levels of hints, tolerances.

etc. PROBLEM TEXT FILE

CONSTRUCT
SOLUTIONS
AND SAVE

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1176

5) Encourage some students to seek the solutions to the
problems via the Tutor.

6) Administer a similar problem, and dissimilar problems
involving the same principles, to all students, and seek
differences in the success rate between students who had
used the software, and those who had not.

A. Results of the evaluation

Four different problems on the equilibrium of the parts of
the doorstop machine were administered on paper during the
trial. These included the basic, 2-force single moving part
through to the more complex three-force 2-part doorstop
assembly. Approximately 300 students at the two universities
attempted these problems simultaneously. Because of earlier
experiences [6] the team was not surprised at the low success
rate of their students: only 1%, that is, five of the students
created correct solutions to all four of the tasks.

The most common solutions for each problem were coded
into the Tutor and students at Monash University were given
access to those solutions one week after they had attempted the
problem. For a variety of reasons, only a few students took the
opportunity to explore the solutions and find out how well they
had performed, or to seek the ‘correct’ solution.

Following the fourth problem, a fifth test problem in
equilibrium was set, representing an abstract 2-piece object
with one external load, and two support points. The abstract
object could be analyzed with exactly the same force images as
were used on the four tasks set on the doorstop, but the
fundamental similarity was not immediately obvious to most
students. Students were also asked to indicate how much time,
if any, they had spent using the Tutor software during the
previous month.

Although only ten of the 120 students at Monash University
indicated that they had used the Tutor, five (50%) of this group
reached the correct solution for the fifth problem, whereas
only 5% of the remainder of the group did so (consistent with
their capabilities found in earlier tests). This was not
conclusive evidence that the Tutor had increased student skills
in the area, but at least the results were encouraging. An
alternative explanation: the self-selection of students who used
the Tutor may have biased this group to contain more
educationally motivated students, who may well have found
alternative sources of learning. Ethical and administrative
obstacles precluded the authors from using fully randomized
groups.

In the main evaluation study, students at the University of
Melbourne were not given access to the Tutor until the
classroom tests had all been completed. However, their final
examination in the design subject was to include a fifth
doorstop equilibrium problem, another more abstract problem
in static equilibrium (comprising a multi-segmented loaded
ring), and a set of questions relating to their use of the Tutor.
Four more potential doorstop problems were coded into the
Tutor, making a total of eight, and students were told that one
of the four new problems would appear on the examination.
None of those four new problems contained the correct

solution or useful comments if students attempted to solve
them in the Tutor. We expected that some students would try
to use the Tutor on the first four problems before they
accessed the four new problems, but we thought that some
students would rely on others to ‘find’ the new problems for
them, and therefore not access the Tutor at all.

The examination results were analyzed to distinguish the
achievements of those who had used the Tutor from those who
had not. The results indicated a significant correlation of 0.33
(n=182, p<0.001) between the number of problems solved
using MOMUS Tutor and success on the examination
problem. Cross correlations with other possible causes for
differential performances were not as significant. (For
example, there was weak correlation between the success on
the examination problem and success on the test problems
throughout the semester, and between success on those test
problems and usage of the MOMUS Tutor). Other relevant
correlation coefficients are summarized in Table 1. It was
concluded that the most likely cause of better examination
performance was the successful exposure to problem-solving
with the Tutor software.

TABLE 1
CORRELATION COEFFICIENTS FOR MOMUS TUTOR EVALUATION

 Mean S.D.

Doorstop
examination
problem result / 8

2.5 1.2

Number of problems
attempted on
MOMUS / 4

2.8 1.2

Time spent using
MOMUS Tutor,
minutes

40.6 47.6

Score on similar
doorstop tests in
class / 2

0.4 0.4

Final mark gained in
Engineering Design
course / 100

60.1 11.5

N=182. The correlations in bold are significant (p<0.001)

B. Discussion and comments

The encouraging findings from the evaluations of the Tutor
led to minor refinements in the diagnostic routines and the
expansion of the hardware and icon sets to include a four-
stroke engine and the elements used for representing columns,
beams, shafts and tensile members (Fig. 5). The engine image
can be animated continuously, or stopped in various critical
configurations. By de-selecting (ghosting) external
components, such as the crankcase, images of all the important
separate parts can be seen, selected and magnified for detailed
study. These new aspects to the Tutor allowed us to generate
both static equilibrium and structural elements for two pieces
of hardware (i.e., four grid elements in MOMUS’s contents).

0.33

0.20

0.14 0.5

0.20 0.00

0.00 0.15

0.00

0.20

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1177

VII. UNEXPECTED EXPANSION

In separate projects, the author and senior undergraduates
have identified hardware that would be motivating to lower
level students, and have identified the types of imaging tasks
that students found most difficult. These tasks have included
the subtleties of dynamic and kinematic analysis, the selection
of manufacturing processes, the construction of numerically-
based (i.e., scale) diagrams and tutoring in descriptive
geometry: the latter two of which were not considerations
when MOMUS Tutor was conceived.

A. Dynamic analysis

Two honors-level project-students at the University of
Melbourne surveyed their colleagues on their study
difficulties, and identified a desire to more fully understand the
way in which analytical analyses of dynamic (i.e., machine
motion) problems should be set up so as to simplify the
subsequent numerical work. The students then prepared a
‘Dynamics’ cast and a series of problems using the 4-stroke
engine hardware (Fig. 5) that the author had created earlier.

Since the procedures for setting up the analytical framework
involved a large number of ordered concepts, such as the
identification of relevant moving parts, their types of motion, a
suitable analytical reference frame and so on, the students
decided to utilize the 9-question option for the relevant
contents grid element to create a set of sequential tasks. For
every problem after the first, the ‘solution’ to the previous
problem was pre-placed on the model, and the next task was
set. Fig. 6 is the problem screen for the fourth problem in the
sequence.

Fig. 6 Fourth problem in a structured sequence in Dynamics, with several
pre-placed dynamics icons. The student is required to select, drag and drop an

icon into each of the targets in the lower left of the hardware window.

In Fig. 6, the 4-stroke engine is presented with the relevant
moving parts highlighted. The labels, the upper left
illustration, and the targets on the lower left have been pre-
placed for this problem. The animation button (upper right)
has been disabled and the engine has been frozen in its current

position. This was the first group of problems set in MOMUS
in which a student could ‘give up’ and find the correct answer
(by simply going to the next question). The evaluation of this
task suggested that it could be appropriate to provide some
form of ‘show me the right answer’ option, possibly by
enabling an additional button that constructed the preferred
answer after a set number of failed attempts, or multiple
similar failures.

B. Manufacturing analysis

Two honors-level students chose to adapt MOMUS to an
unanticipated science area, namely that of determining the
appropriate manufacturing methods for metal components.
Neither of the existing two MOMUS hardware items was
suitable, so the students obtained a motor mower engine,
dismantled it, and generated a series of photographs of the
parts in a new movie sequence. A succession of problems was
authored to jump to, and freeze on the appropriate image. The
manufacturing science icon set comprised simple select, drag
and drop icons for which the author had already coded suitable
diagnostic routines. This student project demonstrated that
naïve programmers could easily create a set of hardware
images and swap them into MOMUS without difficulty. The
screen for this version is shown in Fig. 7.

Fig.7 Student-created MOMUS hardware including selectable translucent
engine parts and separate photographs of an engine part. The selectable icon
set comprises nine drag-and-drop labels, and the drop areas are defined by

four pre-placed targets.

C. Descriptive geometry

The potential versatility of the Tutor as a diagnostic
machine for 2-D graphic problems, together with the perceived
learning difficulties for students undertaking studies in
descriptive geometry encouraged the development of non-
modeling modules in the MOMUS Tutor. Descriptive
geometry involves the solution of three-dimensional spatial
problems by manipulating a series of 2-D ‘projections’. The
projections are typically presented as abstractions that are
usually separately ambiguous, but which make sense when
families of these abstractions are assembled. Many students
have difficulty in learning how to ‘read’ these projections and

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1178

subsequently create additional views (that may be required in
order to solve some real or abstract problem). In its simplest
form, students are supplied with two related views of an object
view (classically referred to as plan and elevation, but these
terms may have little meaning in some problem tasks), and are
required to construct a third. MOMUS Tutor has now been
programmed with a set of nine problems that take students
from a simple introduction, which includes a 3-D image to aid
visualization (Fig. 8) through to visually difficult images. In all
cases, the solution is constructed by placing multiple copies of
a simple drag-and-drop line component. The lines may be
rotated and stretched to complete the image.

Fig. 8 MOMUS Tutor screen with an introductory problem in descriptive
geometry

For this series of problems, a single background grid was
prepared, containing six, vertically aligned line drawings (the
first two of which are seen in Fig. 8) and one 3-D image. Two
icons were made: the single straight line that was stretchable
and rotatable, and the datum point ‘A’ to be pre-placed onto
the grid to define the required projected view for the problem.
In successive problems, the ‘A’ could be positioned in one of
three locations for the same starting images, and/or a different
pair of line drawings could be presented in the frozen frame

Although purpose-coded tutoring software in descriptive
geometry has been written with an easier interface for drawing
lines [7], the MOMUS Tutor has a special advantage. The
coding of this task and the basic problems only required a few
days of work, since the ‘behaviors’ of the icons and the
versatility of being able to pre-set the hardware image and pre-
placed icons had already been coded. In the current version,
six alternative pairs of initial views are available, with four
alternative placements of the datum ‘A’, meaning that 24
alternative problems are possible. Many more alternatives
would be available by constructing other sets of starting
images (perhaps in later ‘frames’ of the movie), and other
types of lines could be readily added to the cast: dashed
‘hidden’ lines and stretchable curves could readily use existing
diagnostic options in MOMUS.

D. Numerically-based problems

Both faculty and students reported difficulties in learning
how to analyze the loads on structural beams, and in particular
how determine the effects of those loads at various positions
along beams. Classically, this type of analysis involves the
production of graphs showing the variations in two loading
parameters (termed SF and BM) as functions of beam position.
These graphs need to have correct shapes and sizes. It would
have been quite straightforward to use the graphical
construction tools in MOMUS to create an icon set for
drawing these graphs, but some alternative approach was
needed if numerical values were to be chosen by the learner,
since this characteristic was not planned to be a diagnosable
property in MOMUS.

In providing a MOMUS module for learning how to analyze
beams, the requirement for checking numerical values was
addressed in two separate ways. The first method was to
provide graphical axes and stretchable icons so that the size of
a one-dimensional icon could be set to a chosen measure, and
the second method was to provide an expandable icon with its
computed size superimposed for feedback. In both instances,
the actual size of the icon could be diagnosed with existing
MOMUS codes. The screen for the first of nine ‘Beams’
problems is shown in Fig. 9.

Fig. 9 MOMUS screen for the solution to the first problem in ‘Beams’. The
two graphs have been given, and the task requires the selection, sizing and

replacement of three loading icons on the top diagram.

Two copies of the ‘force’ icon have been placed (rotated to
face in opposite directions) and stretched to be four ‘units’
long (this correct length can be worked out from the SFD
graph). One copy of a ‘clockwise moment’ icon has been
selected from a pop-up pair (from the same ‘M’ icon as in Fig.
3) and placed. This moment icon has been overlaid with a
second icon, in which an item of text can be inserted. The
moment icon has been made expandable by the use of lateral
‘handles’, and the expanded size has been converted to an
integer number, overwriting the text in its overlay. In this case
the expanded size is correctly labeled ‘4M’ (a fact that learners
can deduce from the BMD graph).

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1179

E. Remote monitoring of learner behavior

There are two particular concerns when MOMUS is being
prepared for a learning task: (a) what common errors will the
learners make, so which incorrect solutions should the teacher
code, and (b) how do we know that the feedback offered by the
teacher in response to an anticipated error is not misleading?

For the problem set involving the ‘Doorstop-Statics’
problems (Fig. 3), each problem was printed on a sheet of A4
paper and given to more than 100 students as a ‘class test’.
Their attempts were classified, and the most common answers
were coded into MOMUS. For example, the problem shown in
Fig. 3 has one correct, and 13 incorrect solutions in its text
file. This approach is effective, but somewhat laborious.

Normal CAL materials are evaluated during the
development phase by observing and surveying a sample of
users. The software is then refined before it is finalized.
However, MOMUS begins as an authoring tool, and will be
accessed by a teacher as a ‘blank’ page. The teacher creates
each problem task, and the feedback is coded as a reflection of
the teacher’s personal style. The evaluation of each problem,
and the measuring the effectiveness of the feedback comments
would be a substantial task if it had to be done for every
problem that was authored.

The first of the two concerns is being addressed by using
MOMUS to offer on-line tests. The version on the Monash
University fileserver has an additional password option for
authors: namely the creation of a ‘test’. The text of a test file
has no solutions or feedback comments. In the MOMUS
Contents screen (Fig. 1) a test problem becomes separately
colored and contains the prefix ‘T’. If a student selects this
file, the MOMUS screen is normal, except that the ‘HINT’
button is disabled and the ‘CHECK’ button becomes a
‘SUBMIT’ button. This button sends the student’s solution
and their personal details, to a master file.

An on-line ‘Agent’ 8], [9] will capture student test
submissions generated from within MOMUS Tutor, and feed
them in a grouped form (with similar submissions grouped
together) to the educator. Student attempts may then be
assessed, and accessed through the ‘edit’ feature in MOMUS
Tutor, where the feedback comments can be appended, and the
outcome recorded as a conventional tutorial problem text file.
When students then re-visit the test problem as a tutorial task,
they will have the opportunity to work toward the solution in
the established manner.

The second concern with authored problems, namely an
evaluation of the usefulness of any feedback comments, is
expected to be addressed by a refinement to the ‘Agent’ used
for collecting the test submission. In this case the modified
Agent would capture the screen configuration (zoom, pan, and
hint), as well as the ‘solution’ and a time stamp, and transmit
the data to a central file every time the ‘CHECK’ button is
pressed. This would allow the educator to follow the logic path
taken by a learner, and to identify where the path to a solution
appeared to deviate from the expected route. The teacher
would then be able to add intermediate solutions to the set of

student responses so that more efficient learning would take
place. The overall aim of this latest MOMUS Tutor
development effort is to reduce the gulf that exists unavoidably
between educator and student in computer-mediated learning
environments.

The combination of using MOMUS to collect test
submissions, grouping similar submissions with an Agent,
preparing tutorial problems based on the test results, and
monitoring tutorial work with a similar Agent is shown in Fig.
10.

F. Expansion beyond Mechanical Engineering

The encouraging outcome from the evaluations has led to a
separate project at the University of Melbourne to use the
basic shell of the MOMUS Tutor with a special set of
photographic images of various mechatronic devices, along
with new drag and drop labels, to provide an introduction to
the separate discipline of Mechatronic Engineering. There is a
long-term plan to extend this approach into other engineering
and non-engineering disciplines where convenient
customization, author accessibility, and immediate student
feedback on modeling tasks are desirable educational goals.

This example, albeit from within an area related to the
discipline of mechanical engineering, nevertheless illustrates
that MOMUS Tutor is customizable to a range of graphical
tutorial problems, and is therefore likely to find applications in
other disciplines.

Fig. 10 Plans for the use of Agents to collect MOMUS-based test
submissions (right side), convert them to tutorial problems (central), and then

monitor tutorial work (left side) to identify inadequate authoring.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

1180

VIII. CONCLUSION

The electronic tutor gave valuable learning experiences to
the students who used it in the solution of classic problems in
static equilibrium, and assisted in improving a universally
weak skill. The expansion of the Tutor to include a wider
range of modeling icons, more exciting machinery, and
abstract graphical problem-solving, is under way.

The basic diagnosable characteristic of ‘select-drag-and-
drop into position’ has been utilized by senior engineering
students, who had no prior knowledge in MOMUS’s coding
language, to create a wide variety of task scenarios with very
little effort. This indicates that the basic shell of MOMUS
Tutor might be economic for other disciplines where 2-D
representations of tasks and solutions are appropriate, and
where resources available for coding stand-alone CAL
material are restricted.

The special characteristic of MOMUS Tutor, where a
teacher can construct a series of problems from a pre-set
environment, and then author any number of correct and
incorrect answers along with the most suitable feedback makes
MOMUS a versatile tool for on-campus and remote learning
applications.

ACKNOWLEDGMENT

The author acknowledges the support and input from Colin
Burvill and John Weir, lecturers in the Department of
Mechanical and Manufacturing Engineering at the University
of Melbourne for their assistance in evaluating the electronic
tutor, for their suggestions on the manuscript, and for their co-
operation in the development of the software. Several
undergraduate students at the University of Melbourne
contributed to the creation of unique modules within the
software; these were Leonard Kar Yui Tao, Mazen Afara,
Nazid Ab Razak, Billy Tabourlos, and Janet Karroum.

REFERENCES

[1] A.E. Samuel and J.G. Weir, Introduction to Engineering Design.
Oxford: Butterworth Hinemann, 1999.

[2] A.E. Samuel and J.G. Weir, “The acquisition of wisdom in engineering
design,” Instructional Science, vol 20, pp. 419-442, 1991.

[3] E.S. Ferguson, Engineering and the mind’s eye. Cambridge, MA, MIT
Press, 1992.

[4] G. Rosenweig, Using Director 8. USA, QUE, 2000.
[5] N. Scott and B. Stone, “A flexible web-based tutorial system for

engineering, maths and science subjects”, Global Journal of
Engineering Education, vol 2, no 1, pp 7-16, 1998.

[6] B.W. Field, C.R. Burvill and J.G. Weir, “Student misconceptions in
engineering design”, Proceedings of the International Conference on
Engineering Design ‘01 (ICED’01), Glasgow, 2001, vol 1, pp 253-260.

[7] L. Murch and B. Woolfe, The engineering drawing tutor, University of
Massachusetts, http://althea.cs.umass.edu/ckc/34spacialreason.html.

[8] T. Juan, A. Pearce, and L. Sterling, “ROADMAP: Extending the Gaia
methodology for complex open systems”, Proc First International
Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS2002), Bologna, 2002, pp.3-10.

[9] A. Baylor, “Agent-based learning environments for investigating
teaching and learning”, Journal of Educational Computing Research,
vol. 26, no.3, pp. 249-270, 2002.

