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Abstract—For a variety of safety and economic reasons, 

engineering undergraduates in Australia have experienced 
diminishing access to the real hardware that is typically the 
embodiment of their theoretical studies. This trend will delay the 
development of practical competence, decrease the ability to model 
and design, and suppress motivation. The author has attempted to 
address this concern by creating a software tool that contains both 
photographic images of real machinery, and sets of graphical 
modeling ‘tools’. Academics from a range of disciplines can use the 
software to set tutorial tasks, and incorporate feedback comments for 
a range of student responses. An evaluation of the software 
demonstrated that students who had solved modeling problems with 
the aid of the electronic tutor performed significantly better in formal 
examinations with similar problems. The 2-D graphical diagnostic 
routines in the Tutor have the potential to be used in a wider range of 
problem-solving tasks. 

Keywords—CAL, graphics, modeling, structural distillation, 
tutoring.

I. INTRODUCTION

Among the multitude of difficulties facing 21st century 
engineering education are two that are growing more critical as 
time progresses: (a) pressures of reduced government funding 
have increased student/staff ratios and reduced opportunities 
for personalized tutoring, and (b) those reductions in funding, 
along with increased concerns about liability and safety have 
limited the opportunities for hands-on or otherwise realistic 
experiences for undergraduate engineers. When coupled with 
the shift toward student-centered learning (and the desire to 
match learning opportunities to individual needs) we find that 
those difficulties lead to students’ perceptions of a widening 
gulf between engineering practice and engineering education, 
with scarce opportunities for connecting individuals with their 
future profession. 

Those funding reductions are being addressed (to varying 
degrees of success) by a need for universities to earn income 
from other activities – mainly through research grants. 
Research success is consequently a desirable attribute for 
modern academics, while ongoing liaisons within the 
profession are less well regarded. Time, modest practical 
experience and funding limitations also create a gulf between 
many engineers in academia and industry, and this has an 
impact on the programs of teaching offered in engineering 
courses. 

The author and his colleagues at the University of 

Melbourne have observed that the majority of engineering 
sciences taught at their universities are bereft of the artifacts 
associated with the science, and in some instances, are bereft 
of realistic representations (e.g., photographs, videoclips) of 
those artifacts. Yet we have observed that students are highly 
motivated by the existence of realistic (“practical”) examples 
of the theory: it appears that an appreciation of abstractions 
requires some time to mature, perhaps even well after 
graduation for some. The experienced teacher-researcher 
already possesses this ability to abstract from reality, and often 
teaches from the abstraction, rather from the reality. This 
approach can lead to student dissatisfaction and their 
evaluation comments that a study unit is “too theoretical”. 

The act of constructing an abstraction from reality is called 
modeling. Models may be mathematical/ algebraic, physical, 
graphical or symbolic, or some combinations of these. When 
the models contain elements that are the basic building blocks 
of the engineering discipline, we call the modeling process that 
of ‘structural distillation’ [1]. The usual step following such a 
structural distillation is to find and include the numerical data 
that is specific to the discipline, thereby allowing the engineer 
to make detailed predictions from the model. 

It is evident that a practicing engineer should be able to 
form proper and correct models, uncover the data for their 
particular problem, and then ‘solve’ the problem to meet the 
final need [2]. Yet there is little evidence that undergraduate 
engineers are schooled in the art of structural distillation. The 
gap in this ability became apparent to the author and his 
colleagues, whose specialist teaching area is in mechanical 
design. In open-ended design problems the student may 
progress in either of two directions: (a) start at a conceptual 
idea, and systematically prove that the concept will work, or 
(b) start at a calculated (numerical/graphical) descriptor of the 
requirements and systematically develop the physical 
embodiment that would achieve the requirements. In both 
instances the student needs to formulate a model that bridges 
the two elements, and this is often the most inadequately 
performed task in an undergraduate design [3]. 

Most of the conceptual modeling tasks (structural 
distillations) needed in undergraduate problems are very basic, 
and require only a few minutes of effort (from a capable 
student). It is impractical to personally tutor large groups of 
students in this undertaking. With this restriction in mind, 
coupled with the concern for the reduction in ‘practicality’ in 
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many undergraduate engineering courses, the team conceived 
the potential for a computer-based tutor that could: (a) contain 
realistic representations of engineering artifacts (perhaps 
animated), (b) offer a method of allowing students to formulate 
structural distillations of those artifacts, and (c) implement a 
technique for correcting errors on an individualized basis. 

Support for the development of such software was 
forthcoming in 2001 from a joint funding scheme created by 
Melbourne and Monash Universities. The basic version of the 
electronic tutor was written during that year, and is called 
MOMUS Tutor (Monash-Melbourne Universities’ Structural 
Tutor). Somewhat perversely, ‘Momus’ is also a word for a 
faultfinder, or persistent critic, derived from the Greek god of 
ridicule.) 

This paper describes the underlying educational 
philosophies and program structure of the MOMUS Tutor, and 
reports the educational outcomes from its first year of use. 

II. PRINCIPLES OF MOMUS TUTOR

It was intended that the proposed electronic tutor should be 
available for structural distillations in any of the engineering 
sciences in a mechanical engineering course, and it was 
envisaged that, since the fundamental issues being addressed 
by the Tutor were likely to be common across several 
disciplines (and outside of engineering), it might be possible to 
construct a fairly general tool. Since the engineering sciences 
tend to work in relative isolation, and students see this 
separation in their timetables and assessment activities, it was 
desirable to compartmentalize the modeling activities for each 
science. It was also recognized that the issues of modeling 
within one sub-discipline need to be tested over several 
different learning tasks to ensure that the principles have been 
properly understood. 

These aspects led us to hypothesize that it should be 
possible to construct a tutoring program with generalized 
capabilities that could be customized for separate pieces of 
common machinery, the relevant sciences, and even the 
disciplines of an educational program. The common element 
within the Tutor software would be the capability of 
diagnosing the appropriateness of a 2-D image created or 
manipulated by the learner. 

The requirements suggested a ‘grid’ of practice problems, 
with grid axes separately representing common examples of 
hardware and engineering sciences, with one or more tasks 
made available in each of the grid elements. Fig. 1 is the first 
grid for MOMUS Tutor that was coded. We intended that 
problems would be generated in each of the grid elements, and 
students might decide to select individual problems, sets of 
problems from an engineering science (a column), or the issues 
associated with an artifact (a row). The team was especially 
interested in the formulation of problems along a row, since 
this should illustrate the integration of several engineering 
sciences within the design of a single machine (one of the 
primary purposes of an engineering design unit). 

The machines themselves were intended to be realistic 

representations, so were likely to be information-rich 
(constructed from photographs, videotape, or rendered 3-D 
models), causing the artifact representations to occupy large 
volumes of electronic memory. To minimize the difficulty of 
managing such large amounts of memory, it was also desirable 
that the machines be suitable for modeling tasks in several 
sciences. At present, it is expected that final versions of the 
MOMUS Tutor for mechanical engineering, with eight 
different machines, will fit onto a conventional CD ROM, or 
be available through campus networks. It may not be suitable 
for dial-in modem access. 

Fig. 1  Contents page of MOMUS Tutor with several problems available 

MOMUS Tutor was coded in Macromedia’s® Director, a 
common base for educational software. It facilitates the simple 
creation of a stand-alone ‘projector’ for distribution, and 
compressed versions to be played by Shockwave (free 
downloadable software from Macromedia®. A starting ‘movie’ 
allows students to jump to an introduction, describing the 
purpose of the software and how to use it, or go directly to the 
problem set. From the contents frame (Fig. 1) one or more 
problems can be selected, then attempted in sequence.  The 
hardware is represented in separate ‘frames’ of the movie, and 
the separate sciences are represented by independent ‘casts’ 
[4] of icons. 

III. CODING MOMUS TUTOR

The core program structure is shown in Fig. 2, with a 
succession of ‘frames’ running indefinitely from left to right. 
Normally, a ‘movie’ begins on the left and progresses 
automatically to the right, except where coding causes the 
movie to freeze. 

When the user enters the frozen ‘Problems’ screen (Figs. 1 
and 2), MOMUS Tutor explores the folder in which it is 
located and identifies any compatible text files (those with 
names that include a hardware title, a science cast, and a 
number from 1 to 9). The Tutor then constructs the ‘contents 
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grid’, and places a single problem icon in a grid location where 
one problem has been found (such as with ‘Gas Turbine-Heat’, 
in Fig. 1), or a multiple-problem icon where two or more 
problems have been found (such as with ‘Doorstop-Statics’ in 
Fig. 1). Numbered pop-up lists for the multiple-problem sets 
are constructed. The user can select one or more problems 
from the grid, then ‘BEGINs’ the first task. 

MOMUS Tutor then opens the appropriate problem text file
and loads the task text and problem settings into the hardware 
window. The chosen science cast is loaded into the hardware 
window, and a cast instruction page is loaded into a layer 
above the hardware window. Control passes to a hardware 
introduction window. 

The introduction to the hardware item may be several 
‘frames’ long, and typically contains information about the 
hardware that is to follow. In the case of the ‘4-stroke engine’, 
the information frames contain a simple animation of the 4-
stroke engine cycle. 

The student can progress to the ‘how to use cast’ frozen 
window to learn how to manipulate the cast icons available in 
the problem, or go directly to the first problem’s window, and 
then to any frozen position in the animated hardware movie. 

Thereby, a problem is constructed from the combination of 
an artifact with the contents of a science cast, plus the specific 
text that is authored for each problem. 

The potential to animate machines (in order to gain insight 
into their functionality) and the need to isolate portions of a 
machine in some modeling processes led to the decision to 
‘construct’ the machine representations from separate images, 
‘assembled’ together to show the whole device. Fig. 3 is the 
screen image of the first problem in the grid shown in Fig. 1, 
and the hardware is ‘made’ from three photographic images: 
the bent doorstop leg, the doorstop bracket, and the door/floor. 
There is also a background image to give context. 

Students are able to construct the line-diagram models that 
represent the machine or selected portion of the machine by 
dragging and dropping segments of the model onto the 

appropriate part of the image(s). A typical tutorial problem 
would ask a student to construct a line diagram model for 
some part of the image under defined external conditions (e.g., 
loads, temperatures, speeds) that might be used in the solution 
within a particular engineering science (e.g., dynamics, 
thermodynamics, control). Their answer will comprise several 
components, including the machine configuration at some 
point in its cycle, the highlighted components, and the 
locations, shapes and alignments of the various modeling 
‘icons’ that define the model. The answer is therefore 
essentially a unique 2-D image, the construction of which is 
rendered in a convenient manner by the Tutor’s interface.  

When the student has completed the task, the ‘Next’ button 
identifies the second problem on the selected list, and goes 
through the same loading routine for that problem. 

Fig. 3 Appearance of MOMUS Tutor hardware screen during an attempt to 
solve a problem 

Fig. 3 shows the screen of the Tutor during the formulation 
of an answer to a basic problem in statics. The object (in this 
case a simple doorstop) fills the main window.  The task is 
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defined in the upper left-hand window, and the modeling icons 
(point and distributed forces, and moments) are available in 
the lower left-hand window. When the Tutor offers feedback 
after a student asks it to ‘Check’ the answer, a feedback 
window overlays modeling icons. The top row of buttons 
allows the image to be manipulated – zoomed, selected and 
animated, and the lower row of buttons allows the problems to 
be navigated. The student’s answer (in the case shown in Fig. 
3) is two copies of the point force icon dragged, dropped and 
rotated onto the image, which may contain several de-selected 
parts of the machine, defining the ‘free-body boundary’. The 
alignment of the force icons is facilitated by the creation of 
internally generated straight line ‘icons’ that can be gripped 
and rotated. 

The Tutor is programmed to diagnose the student’s answer, 
and then to offer appropriate comments that have been 
prepared in advance by the educator who set the problem after 
switching the software to an authoring mode. 

IV. DIAGNOSING STUDENT ANSWERS

MOMUS Tutor contains a generic diagnostic routine that 
compares the screen appearance with previously stored 
solutions. 

While authoring, the educator has the opportunity to create 
a number of possible solutions – correct or incorrect, that are 
judged to be likely responses by students. The first solution 
that the educator creates is defined as the ‘target’ solution (the 
most desired correct solution), but any successive solutions 
loaded into the Tutor can be examples of the most common 
types of errors that students tend to make. For example, the 
solution shown in Fig. 3 was an incorrect solution that was 
offered by 20% of the students who attempted the problem 
when it was set on paper as a ‘spot test’. This approach follows 
a similar philosophy to that adopted by Scott and Stone [5] 
with their introductory Dynamics tutor at the University of 
Western Australia and their generalized ‘Jellyfish’ tutorial 
environment.  

The science icons in MOMUS Tutor have definable 
characteristics that can be separately enabled when the science 
cast is constructed. For example, the ‘Moment’ icon with the 
‘M’ in Fig. 3 is called a free vector, and has the same physical 
effect on an object wherever it is applied onto that object. 
Therefore the location of the ‘M’ is characterized in MOMUS 
by the code number of the machine component over which the 
icon has been placed. The ‘point force’ (two of which have 
been placed in Fig. 3) is characterized by the location of the 
point (the tip of the arrow) over the machine and its slope (the 
two forces in Fig. 3 are horizontal, but facing on opposite 
directions), so is characterized by the screen position in x and 
y directions, and its slope, each with a definable ± tolerance. 
That is, three parameters are diagnosable in a point force. The 
distributed force (the central selectable icon in Fig. 3) is 
diagnosed as for the point force, plus its (stretchable) length: a 
total of four diagnosable characteristics. 

Using the set of authored ‘solutions’, the diagnosis in the 

MOMUS Tutor is performed in two stages.  
First stage: The diagnosis conducted by the Tutor is a 

search through its set of stored solutions for a close match 
(within tolerances), and, if it finds a match, the Tutor offers the 
corresponding feedback comment that was pre-stored along 
with that solution. 

Second stage: If a close match to the student’s answer is not 
found, the Tutor uses its second diagnosis routine. In this 
routine the Tutor compares successive elements of the 
student’s answer with the ‘target solution’, and offers feedback 
associated with the first substantial mismatch that it finds.  
These feedback comments are also pre-stored when the 
educator set the problem, and cover, in order, circumstances 
where: 
1) No icons have been placed, 
2) The machine is wrongly configured (wrong ‘frame’), 
3) The wrong machine components have been selected,
4) At least one wrong icon has been placed, 
5) At least one correct icon has been wrongly placed, 
6) At least one adjustable icon has been wrongly sized, 
7) At least one rotatable icon has been wrongly aligned, 
8) At least one icon is missing. 

In the case of circumstances 4 to 7, an offending icon can be 
authored to flash.  

The Tutor keeps track of the number of times that an 
identical ‘error’ occurs, and provides access to second and 
third level ‘hints’ that the educator has prepared. The student 
has no direct access to the ‘target’ solution, or any other 
‘good’ solutions that have been stored, so the hints and 
feedback have to be constructed by the educator to direct 
students toward the target, and the target solution needs to 
have a feedback comment that identifies itself as the 
termination of the problem. In this way it was intended that the 
Tutor could follow a similar structured approach to that of an 
experienced human personal tutor. 

V. AUTHORING IN MOMUS TUTOR

The access point for problems in the Tutor is a ‘contents 
page’. This page (Fig. 1) displays a grid, where the rows 
represent the alternative ‘machines’ available for analysis.  
The ‘doorstop’ in Fig. 3 is the first of these machines. The 
columns represent the engineering sciences for which 
problems may be authored. The ‘static equilibrium’ icons in 
Fig. 3 belong to the first of the engineering sciences. It is 
therefore possible to set or access problems in any of the 
nominated engineering sciences applied to any of the 
machines, by selecting the corresponding grid element. The 
Tutor can be used to create, then access up to nine problems in 
each grid element, although it begins with a completely empty 
grid.  Currently the grid is 8 machines x 6 sciences, allowing a 
teacher to create up to 8x6x9 = 432 separate problems. 

After entering the authoring mode, protected by a password, 
the educator can select any of the grid elements to create or 
edit a problem. This route is shown in Fig. 4. The starting 
configuration is then chosen: image size, scales, default 
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sensitivities (tolerances) for the diagnosis, the problem text 
and the subset of modeling icons, including any pre-placed 
icons if desired. The feedback comments associated with the 
second stage diagnosis are then entered, followed by the target 
configuration and its specific comments. The required 
diagnostic accuracy (tolerance) for this and other sample 
solutions can be set for each solution by manipulating visual 
‘tolerance zones’. For icons that can be rotated, the tolerance 
zones for the alignment are shown as sectors of a circle, such 
as those shown as dark ‘wedges’ associated with a ‘beam’ icon 
in Fig. 5: the Tutor will accept any alignment of the icon that 
falls within the sector. The tolerance zones for positions of 
icons in x-y space are rectangular areas, such as those 
associated with the three forces in Fig. 5. Other icons may 
have special characteristics: the length of the beam in Fig. 5 
can be no less than that shown, but could be larger (with 
redundant overhang), so its tolerance zone for length is 
indefinitely long each side of a central minimum length.  

Fig. 4  Authoring a problem: after a problem grid is selected, the cast is 
loaded into the hardware movie.  Input windows then allow the author to 

configure the hardware, then create solutions and write appropriate feedback 
comments. The outcomes are written to a text file and stored in the MOMUS 

folder. 

Any number of alternative solutions and their feedback 
comments are then entered. The problem-setting task is then 
terminated, and all of the information about the problem and 
its solutions is recorded in a separate text file, averaging 35 
kilobytes in size (and easily transmitted through the internet, 

even to students with slow a dial-up internet connection). 
Subsequently, when the Tutor is opened, it searches its 

default directory for problem text files, and, finding any, 
makes them accessible in the contents page. In the authoring 
mode, any existing problem can be edited or extended: in the 
tutoring mode, each problem can be selected individually, or 
in sets, and attempted by students. 

Fig. 5  Authoring a problem, showing the colored tolerance zones associated 
with machine element icons (beam and point forces in this case) 

VI. EVALUATION OF MOMUS TUTOR

The doorstop images of Fig. 3 were created, along with the 
set of static equilibrium icons. Coding for most of the desired 
characteristics of the software was completed, including the 
methods for manipulating the images, manipulating the icons 
through pop-up selections, rotations, and distortions, 
diagnosing the answers, and authoring new problems. It was 
therefore possible to prepare up to nine problems in statics 
with one piece of machinery, and to test the software with 
students. The Tutor was mounted onto fileservers at Monash 
University, and onto a smaller number of stand-alone PC’s at 
the University of Melbourne. 

The evaluation comprised the following sequence: 
1) Conceive a problem that could be set in the MOMUS 

Tutor, and set the problem on paper.  
2) Administer the problem to students at the respective 

universities, allocating credit points for correct solutions.  
These problems, which only required the placement of 
two or three force images, were constrained to allow only 
five minutes of effort. 

3) Collect the alternative solutions and group them into 
identical (or near-identical) sets. 

4) Code the most common of the sets of solutions into the 
Tutor, along with the associated feedback comments. 
(Across the four initial problems generated, there was an 
average of 18 different sets of solutions coded per 
problem. This coding took an average of 1.5 hours per 
problem, following an average of 1.5 hours to define 
each set from the 300+ students’ attempts on each set). 
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5) Encourage some students to seek the solutions to the 
problems via the Tutor. 

6) Administer a similar problem, and dissimilar problems 
involving the same principles, to all students, and seek 
differences in the success rate between students who had 
used the software, and those who had not. 

A. Results of the evaluation 

Four different problems on the equilibrium of the parts of 
the doorstop machine were administered on paper during the 
trial. These included the basic, 2-force single moving part 
through to the more complex three-force 2-part doorstop 
assembly. Approximately 300 students at the two universities 
attempted these problems simultaneously. Because of earlier 
experiences [6] the team was not surprised at the low success 
rate of their students: only 1%, that is, five of the students 
created correct solutions to all four of the tasks.

The most common solutions for each problem were coded 
into the Tutor and students at Monash University were given 
access to those solutions one week after they had attempted the 
problem. For a variety of reasons, only a few students took the 
opportunity to explore the solutions and find out how well they 
had performed, or to seek the ‘correct’ solution. 

Following the fourth problem, a fifth test problem in 
equilibrium was set, representing an abstract 2-piece object 
with one external load, and two support points. The abstract 
object could be analyzed with exactly the same force images as 
were used on the four tasks set on the doorstop, but the 
fundamental similarity was not immediately obvious to most 
students. Students were also asked to indicate how much time, 
if any, they had spent using the Tutor software during the 
previous month. 

Although only ten of the 120 students at Monash University 
indicated that they had used the Tutor, five (50%) of this group 
reached the correct solution for the fifth problem, whereas 
only 5% of the remainder of the group did so (consistent with 
their capabilities found in earlier tests). This was not 
conclusive evidence that the Tutor had increased student skills 
in the area, but at least the results were encouraging. An 
alternative explanation: the self-selection of students who used 
the Tutor may have biased this group to contain more 
educationally motivated students, who may well have found 
alternative sources of learning. Ethical and administrative 
obstacles precluded the authors from using fully randomized 
groups. 

In the main evaluation study, students at the University of 
Melbourne were not given access to the Tutor until the 
classroom tests had all been completed. However, their final 
examination in the design subject was to include a fifth 
doorstop equilibrium problem, another more abstract problem 
in static equilibrium (comprising a multi-segmented loaded 
ring), and a set of questions relating to their use of the Tutor.  
Four more potential doorstop problems were coded into the 
Tutor, making a total of eight, and students were told that one 
of the four new problems would appear on the examination. 
None of those four new problems contained the correct 

solution or useful comments if students attempted to solve 
them in the Tutor. We expected that some students would try 
to use the Tutor on the first four problems before they 
accessed the four new problems, but we thought that some 
students would rely on others to ‘find’ the new problems for 
them, and therefore not access the Tutor at all. 

The examination results were analyzed to distinguish the 
achievements of those who had used the Tutor from those who 
had not. The results indicated a significant correlation of 0.33 
(n=182, p<0.001) between the number of problems solved 
using MOMUS Tutor and success on the examination 
problem. Cross correlations with other possible causes for 
differential performances were not as significant. (For 
example, there was weak correlation between the success on 
the examination problem and success on the test problems 
throughout the semester, and between success on those test 
problems and usage of the MOMUS Tutor). Other relevant 
correlation coefficients are summarized in Table 1. It was 
concluded that the most likely cause of better examination 
performance was the successful exposure to problem-solving 
with the Tutor software.  

TABLE 1 
CORRELATION COEFFICIENTS FOR MOMUS TUTOR EVALUATION

 Mean S.D. 

Doorstop 
examination 
problem result / 8 

2.5 1.2 

Number of problems 
attempted on 
MOMUS / 4 

2.8 1.2 

Time spent using 
MOMUS Tutor, 
minutes 

40.6 47.6 

Score on similar 
doorstop tests in 
class / 2 

0.4 0.4 

Final mark gained in 
Engineering Design 
course / 100 

60.1 11.5 

N=182.  The correlations in bold are significant (p<0.001) 

B.  Discussion and comments 

The encouraging findings from the evaluations of the Tutor 
led to minor refinements in the diagnostic routines and the 
expansion of the hardware and icon sets to include a four-
stroke engine and the elements used for representing columns, 
beams, shafts and tensile members (Fig. 5). The engine image 
can be animated continuously, or stopped in various critical 
configurations. By de-selecting (ghosting) external 
components, such as the crankcase, images of all the important 
separate parts can be seen, selected and magnified for detailed 
study. These new aspects to the Tutor allowed us to generate 
both static equilibrium and structural elements for two pieces 
of hardware (i.e., four grid elements in MOMUS’s contents). 
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VII. UNEXPECTED EXPANSION

In separate projects, the author and senior undergraduates 
have identified hardware that would be motivating to lower 
level students, and have identified the types of imaging tasks 
that students found most difficult. These tasks have included 
the subtleties of dynamic and kinematic analysis, the selection 
of manufacturing processes, the construction of numerically-
based (i.e., scale) diagrams and tutoring in descriptive 
geometry: the latter two of which were not considerations 
when MOMUS Tutor was conceived. 

A. Dynamic analysis 

Two honors-level project-students at the University of 
Melbourne surveyed their colleagues on their study 
difficulties, and identified a desire to more fully understand the 
way in which analytical analyses of dynamic (i.e., machine 
motion) problems should be set up so as to simplify the 
subsequent numerical work. The students then prepared a 
‘Dynamics’ cast and a series of problems using the 4-stroke 
engine hardware (Fig. 5) that the author had created earlier. 

Since the procedures for setting up the analytical framework 
involved a large number of ordered concepts, such as the 
identification of relevant moving parts, their types of motion, a 
suitable analytical reference frame and so on, the students 
decided to utilize the 9-question option for the relevant 
contents grid element to create a set of sequential tasks. For 
every problem after the first, the ‘solution’ to the previous 
problem was pre-placed on the model, and the next task was 
set. Fig. 6 is the problem screen for the fourth problem in the 
sequence. 

Fig. 6  Fourth problem in a structured sequence in Dynamics, with several 
pre-placed dynamics icons. The student is required to select, drag and drop an 

icon into each of the targets in the lower left of the hardware window. 

In Fig. 6, the 4-stroke engine is presented with the relevant 
moving parts highlighted. The labels, the upper left 
illustration, and the targets on the lower left have been pre-
placed for this problem. The animation button (upper right) 
has been disabled and the engine has been frozen in its current 

position. This was the first group of problems set in MOMUS 
in which a student could ‘give up’ and find the correct answer 
(by simply going to the next question). The evaluation of this 
task suggested that it could be appropriate to provide some 
form of ‘show me the right answer’ option, possibly by 
enabling an additional button that constructed the preferred 
answer after a set number of failed attempts, or multiple 
similar failures. 

B. Manufacturing analysis 

Two honors-level students chose to adapt MOMUS to an 
unanticipated science area, namely that of determining the 
appropriate manufacturing methods for metal components. 
Neither of the existing two MOMUS hardware items was 
suitable, so the students obtained a motor mower engine, 
dismantled it, and generated a series of photographs of the 
parts in a new movie sequence. A succession of problems was 
authored to jump to, and freeze on the appropriate image. The 
manufacturing science icon set comprised simple select, drag 
and drop icons for which the author had already coded suitable 
diagnostic routines. This student project demonstrated that 
naïve programmers could easily create a set of hardware 
images and swap them into MOMUS without difficulty.  The 
screen for this version is shown in Fig. 7. 

Fig.7   Student-created MOMUS hardware including selectable translucent 
engine parts and separate photographs of an engine part. The selectable icon 
set comprises nine drag-and-drop labels, and the drop areas are defined by 

four pre-placed targets. 

C. Descriptive geometry 

The potential versatility of the Tutor as a diagnostic 
machine for 2-D graphic problems, together with the perceived 
learning difficulties for students undertaking studies in 
descriptive geometry encouraged the development of non-
modeling modules in the MOMUS Tutor. Descriptive 
geometry involves the solution of three-dimensional spatial 
problems by manipulating a series of 2-D ‘projections’. The 
projections are typically presented as abstractions that are 
usually separately ambiguous, but which make sense when 
families of these abstractions are assembled. Many students 
have difficulty in learning how to ‘read’ these projections and 
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subsequently create additional views (that may be required in 
order to solve some real or abstract problem). In its simplest 
form, students are supplied with two related views of an object 
view (classically referred to as plan and elevation, but these 
terms may have little meaning in some problem tasks), and are 
required to construct a third. MOMUS Tutor has now been 
programmed with a set of nine problems that take students 
from a simple introduction, which includes a 3-D image to aid 
visualization (Fig. 8) through to visually difficult images. In all 
cases, the solution is constructed by placing multiple copies of 
a simple drag-and-drop line component.  The lines may be 
rotated and stretched to complete the image.   

Fig. 8 MOMUS Tutor screen with an introductory problem in descriptive 
geometry 

For this series of problems, a single background grid was 
prepared, containing six, vertically aligned line drawings (the 
first two of which are seen in Fig.  8) and one 3-D image. Two 
icons were made: the single straight line that was stretchable 
and rotatable, and the datum point ‘A’ to be pre-placed onto 
the grid to define the required projected view for the problem. 
In successive problems, the ‘A’ could be positioned in one of 
three locations for the same starting images, and/or a different 
pair of line drawings could be presented in the frozen frame 

Although purpose-coded tutoring software in descriptive 
geometry has been written with an easier interface for drawing 
lines [7], the MOMUS Tutor has a special advantage. The 
coding of this task and the basic problems only required a few 
days of work, since the ‘behaviors’ of the icons and the 
versatility of being able to pre-set the hardware image and pre-
placed icons had already been coded. In the current version, 
six alternative pairs of initial views are available, with four 
alternative placements of the datum ‘A’, meaning that 24 
alternative problems are possible. Many more alternatives 
would be available by constructing other sets of starting 
images (perhaps in later ‘frames’ of the movie), and other 
types of lines could be readily added to the cast: dashed 
‘hidden’ lines and stretchable curves could readily use existing 
diagnostic options in MOMUS. 

D. Numerically-based problems 

Both faculty and students reported difficulties in learning 
how to analyze the loads on structural beams, and in particular 
how determine the effects of those loads at various positions 
along beams. Classically, this type of analysis involves the 
production of graphs showing the variations in two loading 
parameters (termed SF and BM) as functions of beam position. 
These graphs need to have correct shapes and sizes. It would 
have been quite straightforward to use the graphical 
construction tools in MOMUS to create an icon set for 
drawing these graphs, but some alternative approach was 
needed if numerical values were to be chosen by the learner, 
since this characteristic was not planned to be a diagnosable 
property in MOMUS. 

In providing a MOMUS module for learning how to analyze 
beams, the requirement for checking numerical values was 
addressed in two separate ways. The first method was to 
provide graphical axes and stretchable icons so that the size of 
a one-dimensional icon could be set to a chosen measure, and 
the second method was to provide an expandable icon with its 
computed size superimposed for feedback. In both instances, 
the actual size of the icon could be diagnosed with existing 
MOMUS codes. The screen for the first of nine ‘Beams’ 
problems is shown in Fig. 9. 

Fig. 9  MOMUS screen for the solution to the first problem in ‘Beams’.  The 
two graphs have been given, and the task requires the selection, sizing and 

replacement of three loading icons on the top diagram. 

Two copies of the ‘force’ icon have been placed (rotated to 
face in opposite directions) and stretched to be four ‘units’ 
long (this correct length can be worked out from the SFD
graph). One copy of a ‘clockwise moment’ icon has been 
selected from a pop-up pair (from the same ‘M’ icon as in Fig. 
3) and placed. This moment icon has been overlaid with a 
second icon, in which an item of text can be inserted. The 
moment icon has been made expandable by the use of lateral 
‘handles’, and the expanded size has been converted to an 
integer number, overwriting the text in its overlay. In this case 
the expanded size is correctly labeled ‘4M’ (a fact that learners 
can deduce from the BMD graph). 
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E. Remote monitoring of learner behavior 

There are two particular concerns when MOMUS is being 
prepared for a learning task: (a) what common errors will the 
learners make, so which incorrect solutions should the teacher 
code, and (b) how do we know that the feedback offered by the 
teacher in response to an anticipated error is not misleading? 

For the problem set involving the ‘Doorstop-Statics’ 
problems (Fig. 3), each problem was printed on a sheet of A4 
paper and given to more than 100 students as a ‘class test’. 
Their attempts were classified, and the most common answers 
were coded into MOMUS. For example, the problem shown in 
Fig. 3 has one correct, and 13 incorrect solutions in its text 
file. This approach is effective, but somewhat laborious. 

Normal CAL materials are evaluated during the 
development phase by observing and surveying a sample of 
users. The software is then refined before it is finalized. 
However, MOMUS begins as an authoring tool, and will be 
accessed by a teacher as a ‘blank’ page. The teacher creates 
each problem task, and the feedback is coded as a reflection of 
the teacher’s personal style. The evaluation of each problem, 
and the measuring the effectiveness of the feedback comments 
would be a substantial task if it had to be done for every 
problem that was authored. 

The first of the two concerns is being addressed by using 
MOMUS to offer on-line tests. The version on the Monash 
University fileserver has an additional password option for 
authors: namely the creation of a ‘test’. The text of a test file 
has no solutions or feedback comments. In the MOMUS 
Contents screen (Fig. 1) a test problem becomes separately 
colored and contains the prefix ‘T’. If a student selects this 
file, the MOMUS screen is normal, except that the ‘HINT’ 
button is disabled and the ‘CHECK’ button becomes a 
‘SUBMIT’ button. This button sends the student’s solution 
and their personal details, to a master file. 

An on-line ‘Agent’ 8], [9] will capture student test 
submissions generated from within MOMUS Tutor, and feed 
them in a grouped form (with similar submissions grouped 
together) to the educator. Student attempts may then be 
assessed, and accessed through the ‘edit’ feature in MOMUS 
Tutor, where the feedback comments can be appended, and the 
outcome recorded as a conventional tutorial problem text file. 
When students then re-visit the test problem as a tutorial task, 
they will have the opportunity to work toward the solution in 
the established manner. 

The second concern with authored problems, namely an 
evaluation of the usefulness of any feedback comments, is 
expected to be addressed by a refinement to the ‘Agent’ used 
for collecting the test submission. In this case the modified 
Agent would capture the screen configuration (zoom, pan, and 
hint), as well as the ‘solution’ and a time stamp, and transmit 
the data to a central file every time the ‘CHECK’ button is 
pressed. This would allow the educator to follow the logic path 
taken by a learner, and to identify where the path to a solution 
appeared to deviate from the expected route. The teacher 
would then be able to add intermediate solutions to the set of 

student responses so that more efficient learning would take 
place. The overall aim of this latest MOMUS Tutor 
development effort is to reduce the gulf that exists unavoidably 
between educator and student in computer-mediated learning 
environments. 

The combination of using MOMUS to collect test 
submissions, grouping similar submissions with an Agent, 
preparing tutorial problems based on the test results, and 
monitoring tutorial work with a similar Agent is shown in Fig. 
10. 

F. Expansion beyond Mechanical Engineering 

The encouraging outcome from the evaluations has led to a 
separate project at the University of Melbourne to use the 
basic shell of the MOMUS Tutor with a special set of 
photographic images of various mechatronic devices, along 
with new drag and drop labels, to provide an introduction to 
the separate discipline of Mechatronic Engineering. There is a 
long-term plan to extend this approach into other engineering 
and non-engineering disciplines where convenient 
customization, author accessibility, and immediate student 
feedback on modeling tasks are desirable educational goals.  

This example, albeit from within an area related to the 
discipline of mechanical engineering, nevertheless illustrates 
that MOMUS Tutor is customizable to a range of graphical 
tutorial problems, and is therefore likely to find applications in 
other disciplines. 

Fig. 10  Plans for the use of Agents to collect MOMUS-based test 
submissions (right side), convert them to tutorial problems (central), and then 

monitor tutorial work (left side) to identify inadequate authoring. 
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VIII. CONCLUSION

The electronic tutor gave valuable learning experiences to 
the students who used it in the solution of classic problems in 
static equilibrium, and assisted in improving a universally 
weak skill. The expansion of the Tutor to include a wider 
range of modeling icons, more exciting machinery, and 
abstract graphical problem-solving, is under way. 

The basic diagnosable characteristic of ‘select-drag-and-
drop into position’ has been utilized by senior engineering 
students, who had no prior knowledge in MOMUS’s coding 
language, to create a wide variety of task scenarios with very 
little effort. This indicates that the basic shell of MOMUS 
Tutor might be economic for other disciplines where 2-D 
representations of tasks and solutions are appropriate, and 
where resources available for coding stand-alone CAL 
material are restricted.  

The special characteristic of MOMUS Tutor, where a 
teacher can construct a series of problems from a pre-set 
environment, and then author any number of correct and 
incorrect answers along with the most suitable feedback makes 
MOMUS a versatile tool for on-campus and remote learning 
applications. 
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