
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2871


Abstract—This paper addresses minimizing the makespan of the

distributed permutation flow shop scheduling problem. In this
problem, there are several parallel identical factories or flowshops
each with series of similar machines. Each job should be allocated to
one of the factories and all of the operations of the jobs should be
performed in the allocated factory. This problem has recently gained
attention and due to NP-Hard nature of the problem, metaheuristic
algorithms have been proposed to tackle it. Majority of the proposed
algorithms require large computational time which is the main
drawback. In this study, a general variable neighborhood search
algorithm (GVNS) is proposed where several time-saving schemes
have been incorporated into it. Also, the GVNS uses the sophisticated
method to change the shaking procedure or perturbation depending
on the progress of the incumbent solution to prevent stagnation of the
search. The performance of the proposed algorithm is compared to
the state-of-the-art algorithms based on standard benchmark
instances.

Keywords—Distributed permutation flow shop, scheduling,
makespan, general variable neighborhood search algorithm.

I. INTRODUCTION

HIS paper addresses the distributed permutation flow shop
scheduling problem (hereafter DPFSP) which is extension

of the classic permutation flow shop scheduling problem
(PFSP). Since PFSP was a good approximation of production
systems, it has been studied for decades, for comprehensive
survey see [1]-[3], but nowadays due to globalization and
competitive situations, managers have to switch from
centralized production system to geographically distributed
systems to reduce production costs and increasing flexibility
to meet abrupt market changes. Each of the factories of the
distributed production system has to perform several tasks
subject to different constraints such as labor costs, local
regulations, and tax and trading policies. Hence, managing the
distributed production is more complex than single site
production site.

G. M. Komaki is with the Electrical Engineering and Computer Science

Department, Case Western Reserve university, Cleveland, OH 44106 USA
(phone: 216-368-4114; e-mail: gxk152@case.edu).

M. Mobin is with the Department of Industrial Engineering and
Engineering Management, Western New England University, Springfield, MA
01119 USA (Phone: 413-801-7845; e-mail: mm337076@wne.edu)

E. Teymourian is with the School of Mechanical, Industrial, and
Manufacturing Engineering, Oregon State University, Corvallis, OR
97331 USA (e-mail: ehsan.teymorian@gmail.com).

S. Sheikh is with the Department of Management Science at New York
Institute of Technology, New York, NY 10023 USA (e-mail:
shaya.sheikh@case.edu).

One of the important classes of the distributed production
systems with practical implication is the DPFSP, introduced
by [4]. In this system, there are identical parallel factories
(flow shops) each with serial of machines. Each job should be
allocated to one of these factories and all of the operations of
the job must be performed without preemption in the allocated
factory. The goal is finding the allocation of jobs to the
factories and the sequence of jobs of allocated to each factory
such that makespan of the latest factory is minimized. Since
minimizing the makespan of the PFSP is NP-hard, minimizing
the makespan of the DPFSP due to more constraints is NP-
Hard [4].

Naderi and Ruiz [4] investigated performance of the several
mathematical models of the DPFSP. Also, they proposed
several heuristic algorithms including SPT, LPT, and NEH
which assign an index to each job and then to assign each job
to factories two rules are suggested; (1) assign the job to the
factory with the lowest current makespan and (2) assign the
job to the factory that yields the minimum makespan after
assigning the job. Based on extensive experiments, they have
concluded that NEH using second rule, called NEH2, has the
best performance among the other developed heuristic
algorithms. They also proposed two variable neighborhood
search algorithms which both use NEH2 to generate the initial
sequence, but they are differ in term of acceptance criteria, the
first version called VND(a) accepts the new solution if it
improves the makespan of the current solution and the other
version, called VND(b) accepts the new solution if it improves
makespan of any factory. Based on experiments, they reported
that VND(a) outperforms the VND(b).

Later, this problem has been investigated by [22] and they
proposed Tabu Search (TS) algorithm. Based on experiments,
they concluded that TS outperforms VND(a) [4]. Lin et al.
[23] proposed algorithms based on iterated greedy (IG)
algorithm and the best one among them named IGvst
outperforms VND(a). Recently, [5] proposed scatter search
(SS) algorithm and it outperforms the existing algorithms. Xu
et al. [25] also addressed the DPFSP and proposed hybrid
immune algorithm (HIA) and reported several improved upper
bounds for the standard benchmark instances. Recently,
Fernandez-Viagas and Framinan [19] investigated the same
problem and proposed iterated search algorithm named BSIG
which the search is bounded by simple and effective rule.
They compared to TS [22], EDA [24], and IGvst [23] and
concluded that BSIG outperforms them.

Since the DPFSP is an extension of the classical PFSP,

G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

A General Variable Neighborhood Search Algorithm to
Minimize Makespan of the Distributed Permutation

Flowshop Scheduling Problem

T

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2872

properties of the PFSP, for instance, properties developed by
[26], and [11] can be applied to reduce the computational time
and increase the efficiency of the proposed algorithms.
Tillard’s acceleration method to compute makespan has been
applied to the DPFSP by [4] but block properties for the
classical PFSP proposed by [8], [11] has not been investigated
in the DPFSP. Using these properties, the search process can
be limited only to movements that can improve the current
solution; hence, it reduces the neighborhood size greatly
without deteriorating the search power of the algorithm. Also,
all of the proposed algorithms so far for the DPFSP use the
same neighborhood structure (and local search) to perturb the
current incumbent solution regardless of progress of the
algorithm, in another words, when using one type of
neighborhood structure for several iterations of the algorithm
cannot improve the current incumbent solution, it indicates

that the algorithm has trapped in the local solution if it is not
the global solution. The former case is more probable since the
addressed problem has many local optima solutions. In this
situation, trapping in the local optima, using the same
perturbation scheme it is unlikely to help the algorithm to
escape from the local optima; therefore, it should use stronger
perturbation. If the algorithm improves the current incumbent
solution, the perturbation scheme should use low level scheme
to give chance to investigate the neighborhood of the current
solution. In this paper, a general variable neighborhood search
(GVNS) algorithm is proposed which utilizes both of the
above mentioned concepts, i.e., it uses the perturbation
scheme depending on progress of the incumbent solution, also,
the time saving strategies based on block properties of the
PFSP are extended to the DPFSP.

Fig. 1 Gantt chart of the numerical example

TABLE I
PROCESSING TIME OF JOBS

job 1 2 3 4 5 6 7 8 9 10

Stage 1 6 6 3 3 3 8 3 7 3 10

Stage 2 10 4 9 2 4 10 3 5 4 8

Stage 3 9 2 2 9 7 2 7 6 5 7

The rest of the paper is organized as follows. Next section is
devoted to the problem description, and In Section III,
properties of the DPFSP are investigated. In Section IV, the
proposed general variable neighborhood search algorithm is
discussed; and its performance is discussed in Section V.
Finally, Section VI is devoted to conclusion and future studies.

II. PROBLEM DESCRIPTION

This paper deals with the distributed permutation flowshop
scheduling problem where there are F identical parallel
flowshops (factories) each with m serial machines. There is a
set of jobs J={1,2,..,n} and set of machines M={1,2,...,m} and
job j, j∈J, has m operations that should be allocated to one the
factories and all operations of the job should be performed
sequentially in the allocated factory. The other assumptions
are as following. Each machine at a time can process only one
job and each job at a time can be processed only by one
machine. Pre-emption is not allowed, i.e., after processing of a
job is started it cannot be stopped. The sequence of jobs in a

factory for all machines is the same. All operations of jobs
should be performed in the allocated factory.

The goal is finding assignment (allocation) of jobs to each
flowshop and their sequence such that the makespan of the
system, the completion time of the latest factory, is
minimized. Consider the following notations:
 F: the number of factories
 n: the number of jobs
 m: the number of machines of each factory f, f=1,..,F.
 pij: processing time of job j at stage (or machine) i,	݆ ∈

ሼ1, . . , ݊ሽ, ݅ ∈ ሼ1, . . , ݉ሽ
 Cij: completion time job j on machine i,

Let π=(π1, π2,…,πf,…,πF) where πf =(πf(1),πf(2),…,πf(nf))
represents the sequence of jobs allocated to factory f, 1≤ f ≤F,
and nf is the number of the allocated jobs to the factory f. It is
obvious that ∑ ௙݊

ி
௙ୀଵ ൌ ݊. Then, makespan, Cmax, can be

calculated by:

௙൯ߨ൫ݔܽ݉ܥ ൌ maxଵஸ௧భஸ௧మஸ⋯ஸ௧೘షభஸ௡೑ ቀ∑ ଵగ೑ሺ௝ሻ݌
௧భ
௝ୀଵ ൅ ∑ ଶగ೑ሺ௝ሻ݌

௧మ
௝ୀ௧భ

൅

⋯൅ ∑ ௠గ೑ሺ௝ሻ݌
௡೑
௝ୀ௧೘షభ

ቁ (1)

and

ሻߨ௠௔௫ሺܥ ൌ maxଵஸ௙ஸி ቀܥ௠௔௫൫ߨ௙൯ቁ (2)

where (1) calculates the makespan of factory f and (2)

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2873

represents the makespan of sequence π.
To be clear, consider a numerical example with 10 jobs and

2 factories each with 3 machines where the processing time of
jobs is given in Table I. Assume that π1=(6-5-7-2-10)
(sequence of jobs in the first factory) and π2=(9-1-4-8-3)
(sequence of jobs in the second factory). The Gantt chart is
presented in Fig. 1, and makespan of both factories is 45,
therefore, makespan of the system is 45.

III. PROPERTIES OF THE DPFSP

In the following, two properties of the DPFSP developed by
[19] are discussed.
Property 1[19]. Let π= (π1,π2,…,πf,…,πF) be the current jobs
sequence of the factories. Adding job j* to the current solution
of factory f, πf, will increase the Cmax(π

f) at least by mini(pij*),
i.e., Cmax(π’f)≥ Cmax(π

f)+mini(pij*).
Property 2[19]. Adding job j* to the current solution of
factory f, πf, will increase the Cmax(π

f) at most by ∑ ∗௜௝݌
௠
௜ୀଵ , i.e.,

Cmax(π’f)≤ Cmax(π
f)+	∑ ∗௜௝݌

௠
௜ୀଵ .

Properties 1 and 2 provide lower bound and upper bound of
makespan of the factory f by adding a new job to its current
partial solution, respectively.

Efficiency of algorithms highly depends on their search
ability. The total number of possible solutions of the DPFSP is

ቀ݊ െ 1
ܨ െ 1

ቁ݊! [4], which sharply increases as size of the problem

increases. Since the DPFSP is an extension of the well-studied
permutation flowshop scheduling problem, the well-stablished
properties of the flowshop problem can be benefited to tackle
the DPFSP and reduce the search space. For instance, [26]
experimentally showed the insertion-based movements
outperform the swap-based movements. Also, [11] showed
that all insertion movements do not yield a solution with better
makespan than current solution, in other words, the
movements inside the blocks do not improve the makespan.
Furthermore, they experimentally showed that movements
strongly depend on the structure of blocks, i.e., it is enough to
examine the movements to the immediately preceding and
succeeding blocks. In the following, the block properties of
the PFSP and its extension to the DPFSP are discussed.

Fig. 2 Grid graph of factory f of the DPFSP (modified from [6], [11])

Recall (1) which calculates the makespan of the πf, 1≤ f ≤F.

Each factory of the DPFSP can be presented by a grid graph
where the length of the longest path in the grid graph
represents the makespan of the factory. This is extension of

the grid graph presented by [11]. Fig. 2 shows a hypothetical
factory with 5 machines and 10 jobs and critical path is shown
by thin arrows.

Any path in the grid from node (1,1) to (m,nf) can be
represented by sequence of integers ݐ௙ ൌ ሺݐ଴

௙, ଵݐ
௙, … , ௠ିଵݐ

௙ , ௠ݐ
௙ ሻ

where ݐ଴
௙=1 and ݐ௠

௙ =nf and the makespan of the factory f can
be presented as:

௙൯ߨ൫ݔܽ݉ܥ ൌ maxଵஸ௧భ
೑ஸ⋯ஸ௧೘షభ

೑ ஸ௡೑
൬∑ ଵగ೑ሺ௝ሻ݌

௧భ
೑

௝ୀଵ ൅ ∑ ଶగ೑ሺ௝ሻ݌
௧మ
೑

௝ୀ௧భ
೑ ൅

⋯൅ ∑ ௠గ೑ሺ௝ሻ݌
௡೑

௝ୀ௧೘షభ
೑ ൰ (3)

Another equivalent makespan formulation can be presented

as [6]:

௙൯ߨ௠௔௫൫ܥ ൌ maxଵஸ௤భ
೑ஸ⋯ஸ௤೙೑షభ

೑ ஸ௠ ቆ∑ ௜గ೑ሺଵሻ݌
௤భ
೑

௜ୀଵ ൅ ∑ ௜గ೑ሺଶሻ݌
௤మ
೑

௝ୀ௤భ
೑ ൅

⋯൅ ∑ ௜గ೑൫௡೑൯݌
௠
௝ୀ௤೙೑షభ

೑ ቇ (4)

where sequence of integers ݍ௙ ൌ ሺݍ଴
௙, ଵݍ

௙,… , ௡೑ିଵݍ
௙ , ௡೑ݍ

௙ ሻ

represents the same path represented by ݐ௙ in (3).
As presented in Fig. 2, the path has horizontal sub-paths as

well as vertical sub-paths; each of these sub-paths represents a
block. Each path in the grid has m horizontal blocks (HB) and
nf vertical blocks (VB). Note that (3) and (4) calculate the
makespan based on HBs and VBs, respectively.

Let path uf =ሺݑ଴
௙, ଵݑ

௙, … , ௠ିଵݑ
௙ , ௠ݑ

௙ ሻ be the critical path in (3),

then horizontal blocks can be defined as ܤܪ௟
௙ = (πf(ݑ௟ିଵ

௙),

πf(ݑ௟ିଵ
௙ +1),…, πf(ݑ௟

௙)) where it represents lth horizontal block

of factory f, 1≤ l ≤m and 1≤ f≤ F, where πf(ݑ௟ିଵ
௙) and πf(ݑ௟

௙)

present the first and last jobs in ܤܪ௟
௙. Also, the last job of

௟ܤܪ
௙ is the first job of ܤܪ௟ାଵ

௙ , l=1,2,…,m-1. The number of

jobs of ܤܪ௟
௙ is |ܤܪ௟

௙ ௟ݑ =|
௙-ݑ௟ିଵ

௙ +1. Consider Fig. 2, the
horizontal blocks presented in this figure can be presented by
uf =(1,3,4 ,7,8,10).

Similarly, let vf =ሺݒ଴
௙, ଵݒ

௙, … , ௡೑ିଵݒ
௙ , ௡೑ݒ

௙ ሻ be the critical path in

(4), then the rth vertical block of the factory f can be

represented as ܸܤ௥
௙ ൌ ሺݒ௥ିଵ

௙ , ଵିଵݒ
௙ ൅ 1, … , ௥ݒ

௙ሻ where ݒ଴
௙ ൌ 1,

௡೑ݒ
௙ ൌ ݉, 1 ൑ ݎ ൑ ݊௙, and 1≤ f ≤ F. the vertical blocks of the

grid graph presented in Fig. 2 can be presented by vf = (1,1,2
,3,3,3,4,5,5,5).

Several researchers such as [8], [11], [7], and [6]
investigated the properties of the blocks in the PFSP and they
have designed effective algorithms based on these properties.
In the following, some of the properties that have been
employed in this research is presented. Since computing the
change of makespan using the vertical blocks is simpler, the
properties are presented based on the vertical blocks.
Property 3. Let v(a,b) present insertion movement where the
job in position a of factory f is removed and inserted in
position b. The change of makespan is [6]:

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2874

∆௩ሺ௔,௕ሻൌ ൜
߬ଵ				݂݅	ܽ ൏ ܾ
߬ଶ				݂݅	ܽ ൐ ܾ (5)

where
߬ଵ ൌ ∑ ሺ݌௞గ೑ሺ௔ାଵሻ െ ௞గ೑ሺ௔ሻሻ௞∈௏஻ೌ݌ ൅ ∑ ሺ݌௞గ೑ሺ௔ሻ െ గ೑ሺ௕ሻ௞ሻ௞∈௏஻್݌ ൅

௩್షభ݌
೑ గ೑ሺ௕ሻ െ ௩ೌ݌

೑గ೑ሺ௔ାଵሻ (6)

and
߬ଶ ൌ ∑ ሺ݌௞గ೑ሺ௔ିଵሻ െ ௞గ೑ሺ௔ሻሻ௞∈௏஻ೌ݌ ൅ ∑ ሺ݌௞గ೑ሺ௔ሻ െ గ೑ሺ௕ሻ௞ሻ௞∈௏஻್݌ ൅

௩್݌
೑గ೑ሺ௕ሻ െ ௩ೌషభ݌

೑ గ೑ሺ௔ିଵሻ (7)

The complexity of insertion movements is O(௙݊) [6],

according to this property, if ∆௩ሺ௔,௕ሻ൏ 0, the movement is
promising, otherwise it doesn’t worth to investigate the
movement. Therefore, this property can save the
computational time of the algorithm. Nowicki and Smutnicki
[11], Grabowski and Wodecki [7] and Solimanpur et al. [9]
investigated this neighborhood structure and proposed
strategies that reduce the search space further without
deteriorating the search ability of the algorithm. These
schemes are discussed in Section IV.C.
Property 4. Let v(a,b,c) present insertion movement where
three jobs in positions a, b, and c are chosen from factory f
where a<b<c or a>b>c and the job in position a is placed into
the position b and the job in the position b is placed into the
position c and finally, the job in the position c is placed into
the position a. The change of makespan of factory f is [6]:

∆௩ሺ௔,௕,௖ሻൌ ∑ ሺ݌గ೑ሺ௖ሻ௞ െ గ೑ሺ௔ሻ௞ሻ௞∈௏஻ೌ݌ ൅ ∑ ሺ݌గ೑ሺ௔ሻ௞ െ௞∈௏஻್

గ೑ሺ௕ሻ௞ሻ݌ ൅ ∑ ሺ݌గ೑ሺ௕ሻ௞ െ గ೑ሺ௖ሻ௞ሻ௞∈௏஻೎݌ (8)

The complexity of this neighborhood structure is O(݊௙
ଷ) and

checking all of them require tremendous time, but using this
property only promising movements ∆௩ሺ௔,௕,௖ሻ൏ 0 needs to be
investigated.

IV. THE PROPOSED FAST GENERAL VARIABLE

NEIGHBORHOOD SEARCH ALGORITHM

Mladenovic and Hansen [16] introduced a simple but
powerful metaheuristic algorithm called Variable
Neighborhood Search (VNS) based on idea of systematic
changing of neighborhood search algorithms. Since then, the
VNS has been applied to solve many combinatorial problems
including traveling salesman problem, scheduling problems
and so on. For a comprehensive review, readers are referred to
[18] and [17].

The VNS algorithm has two main features; shaking
procedure and local search algorithm. The shaking procedure
is a perturbation which helps the algorithm to escape from
current local optima and local search algorithm is responsible
to search the neighborhood of the current solution based on
the predefined neighborhood structures. Serval extensions of
the original VNS by changing one or two of these features
have been proposed including Variable Neighborhood
Descend (VND), Reduced VNS (RVNS), and General VNS
(GVNS) [15] and so on. Main difference of these extensions is

based on their exploration methodology or neighborhood
search algorithms which could be deterministic, random, or
mixed (combination of both random and deterministic) [15].

GVNS
Initialization: (x: Initial solution)
1. While t<tmax
2. k ← 1
3. While k<kmax
4. x'← Shake(x,k)
5. x''← VND(x')
6. If x'' is better than x, set k ← k+1
7. Else k ← 1
8. EndIf
9. EndWhile
10. t← CPU time
11. EndWhile

Fig. 3 Pseudo-code of the GVNS [15]

Proposed GVNS for the DPFSP
Initialization:
1. π← Create initial solution using NEH2 % Section IV.A%
2. πbest ← π
3. Set it = 0, and diversification level flag=0
4. While it < Itmax
5. π'←Apply Shake(π,flag) % Section IV.B%
6. k=1
7. While k<kmax
8. πꞌꞌ←Apply Local Search based on Nk(π')% Section IV.C%
9. if Cmax(πꞌꞌ)< Cmax(πꞌ)
10. k←1
11. π'← πꞌꞌ
12. if Cmax(πꞌ)< Cmax(πbest)
13. πbest← πꞌꞌ
14. endif
15. Elseif
16. k←k+1
17. Endif
18. EndWhile
19. If Cmax(πꞌ)< Cmax(πbest)
20. π← πꞌ
21. flag=1
22. Else
23. π← πbest
24. flag= flag+1
25. EndIf
26. it ← it +1;
27. EndWhile
28. Report π

Fig. 4 Pseudo-code of the proposed GVNS algorithm

The VND uses deterministic local search algorithm, the

RVNS is based on the random one, and the GVNS uses the
mixed of deterministic and random methodologies. The
random search methodology has higher diversification ability
while the deterministic search has more emphasize on the
intensification. Since the GVNS as well as the canonical VNS
use both random and deterministic search, the algorithms have
balanced intensification and diversification search [15],
therefore, they have higher chance to find the global optima.
The pseudo-code of the GVNS is presented in Fig. 3. The
main difference of the canonical VNS and GVNS is that the
first one uses local search to improve the perturbed solution

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2875

while the former one uses the VND.
In this study, the GVNS is applied to tackle the DPFSP

which some improvements are incorporated into the proposed
algorithm based on properties of the DPFSP, see Fig. 4. The
proposed GVNS starts with an initial solution generated by the
NEH2 [4] and generates a new solution using shake
procedure. Majority of studies have suggested the same shake
procedure at each iteration of the algorithm, for instance [21]
and [4]. Intuitively, when the algorithm is trapped in the local
optima, a stronger perturbation is needed to escape from the
local optima [12]-[14], if it was successful, then the algorithm
should focus on intensification, exploring the neighborhood of
the current solution to find the (local) optimal, otherwise
another stronger perturbation needs to be applied until the
global optimal is found. This concept has been applied to VNS
by [15] and [13], [14]. In this study, the GVNS is based on the
same concept, i.e., the severity of the shake procedure depends
on the statues of the current solution and it is determined by
parameter flag. If flag=0, it represents that the shake procedure
will not be applied, but if the outer iteration of the algorithm,
lines 4-27, was unsuccessful for a predefined number of
iterations to improve the current incumbent solution, πbest, an
stronger perturbation procedure will be applied. The local
search algorithm uses the neighborhood search based on
insertion which is simple and fast neighborhood, and as the
number of the iteration, k, gets closer to the iteration limit
(kmax) of the inner loop, lines 7-18, it uses more complicated
neighborhood search.

In the following subsections, the initial solution, shaking
procedure and local search algorithm are discussed.

A. The Initial Solution

Several researches have pointed out the importance of the
effect of the initial solution of the metaheuristic algorithms on
the quality of the algorithm. As pointed out earlier, NEH2 [4]
outperforms the developed constructive heuristic algorithms,
hence, this algorithm is used to generate the initial solution of
the proposed GVNS. In Fig. 5, steps of NEH2 are presented.

NEH2

1. Compute ݐ௝ ൌ ∑ ௜௝݌
௠
௜ୀଵ for j=1,2,...,n

2. Sort ݐ௝ in non-decreasing order, let S be the sequence of jobs and
set πf = ϕ for f=1,2,...,F

3. For f=1:F
4. Assign ௦݆ ൌ ܵሺ1ሻ to factory f, i.e., ߨ௙={ ௦݆}, S←S\ ௦݆
5. EndFor
6. For j=1: n-ܨ
7. For f=1:F
8. For k=1:nf
9. Insert job S(j) into position k of factory f
10. EndFor
11. EndFor
12. Select the best sequence
13. EndFor

Fig. 5 Pseudo code of NEH2

B. Shaking Procedure

The ultimate goal of the shaking procedure is finding the
better neighborhood of the current solution. Most of studies

use the same shaking procedure at any iteration of the
algorithm. This may lead the algorithm to the local optima.
Here, different shaking procedures depending on the statues of
the algorithm is used, i.e., if an iteration of the algorithm was
successful in term of improving the current incumbent
solution, the algorithm uses low level shaking procedure to
lead the solution to the better neighborhood of the current
solution, if the algorithm was not successful then another
stronger shaking procedure is used to help the algorithm
escape from the current local optima. This idea has been
suggested by [15] and applied to minimize total tardiness of
the classical PFSP by [13], [14] and the result was astonishing.

In this study, the following shaking procedures are defined.
 Shake(π,1): This shaking procedure is low level shake

and it is applied on factory or factories with the latest
makespan. Here, we suggest 2-Opt operator in which two
jobs from two different (horizontal) blocks are selected
and their position is changed and the sequence of jobs
between these two jobs is reversed. If the two jobs are
from the same horizontal block, the shaking procedure is
not strong enough since there is high chance to be undone
by the local search algorithm presented in the next
subsection.

 Shake(π,2): Since the algorithm for an iteration (using all
possible movements defined) was unsuccessful to
improve the current incumbent solution, a higher shaking
level needs to be applied. In this procedure, the jobs from
the factory with the latest completion time is randomly
chosen and inserted into the sequence of the factory with
the earliest completion time. In case of tie, i.e., there is
more than one factory with the latest (or earliest)
completion time, chose randomly.

 Shake(π,flag≥3): Since the algorithm was not able to find
the better neighborhood in the previous iterations,
extremely strong shaking procedure is needed to be
applied. Here, cyclic exchange is suggested where some
jobs from each factory are randomly selected and inserted
in other factory. In other words, the selected jobs from
factory 1 are randomly inserted to the factory 2, and jobs
picked up from factory 2 are inserted in factory 3, as so
on. Finally, the jobs selected from factory F is inserted in
factory 1.

It is well-established that in scheduling problems the
majority of time of any algorithm is spent on calculating the
objective function, for instance [11] reported that 80-95% of
their proposed algorithm is consumed to calculate the
makespan of the neighborhood of the current solution. Hence,
to design more efficient and fast algorithm one needs to use
acceleration methods to reduce the computational time. There
are two possible options; the first one is limiting the
neighborhood search to the most promising movements, as
discussed in the next section, the second strategy is
accelerating the calculation of the makespan after any change
on the current solution. In this study, the advanced
implementation of [11] is used. Since Shake(π,1) is applied on
the factory fmax, and sequence of jobs of the other factories
remains unchanged, one need to update the completion time of

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2876

jobs affected by the shaking procedure. Similarly, for other
shaking procedures, only the completion times of the affected
jobs in each factory should be considered. This simple strategy
can save a lot of time.

C. Local Search Algorithm

Local search algorithm is responsible to search the feasible
area to find the better solution than the current solution. The
basic concept of the VND (and VNS) is using local search
algorithm with different neighborhood structures which
switches systematically from one to another neighborhood
structure. This strategy helps the algorithm to escape from
local optima. When the local search algorithm with a
neighborhood structure is unable to find the better solution, to
prevent stagnation of the search procedure the algorithm
should apply the stronger neighborhood structure.

Similar to the shaking procedure explained in the previous
subsection, the local search algorithm starts with a simple
neighborhood structure and improves the current incumbent
solution until it not further improvement cannot be found, then
another stronger neighborhood structure is applied and it
improves the current incumbent solution until it cannot
improve it further. This procedure continues until all
predefined neighborhood structures have been tried as
presented in Fig. 4, lines 6-18.

Due to the structure of the DPFSP, two types of
neighborhood structures are needed to be defined; the
neighborhood that changes the sequence of the jobs of a
factory (with the latest makespan) and another one that
changes jobs across factories. The proposed local search
algorithms for the DPFSP are mainly based on swap and
insertion within a factory and also across factories, for
instance, see [4], [5]. The swap movement across factories is
based on selection of two factories which one of them has the
latest makespan and then the randomly selected jobs are
swapped. In the insertion movement, one job is selected from
the factory with the latest makespan and inserted in a random
position of jobs sequence of another factory.

In this study, the following neighborhood structures are
considered.
 N1(π): This neighborhood structure is based on insertion

of a job on the factory or factories with the latest
completion time, i.e., the job in position a is randomly
chosen and inserted in position b that gives the best
possible sequence. This neighborhood structure has been
applied by [4] and [5] which use full search meaning that
all possible movements are tried while it is not necessary.
Nowicki and Smutnicki [11] experimentally showed
movements inside of (horizontal) blocks do not improve
the makespan. Furthermore, [9] and [7] concluded that it
is enough to investigate only the immediate preceding and
following blocks of a block of jobs. In other words, for
each job there are two possible positions to insert, right
after the last job of its block and right before the first job
of its block, see Fig. 6 which shows the possible
movements based on the N1(π) neighborhood structure
where the dark circles represent the boundary of block

and white circles represent the jobs inside each block.
Note that the jobs inside of the first block and the last
block are not allowed to perform leftward moves and
rightward moves, respectively.

Fig. 6 Possible movements defined by N1(π)

TABLE II
AVERAGE RPD OF THE ALGORITHMS BASED ON N×M

n×m GVNS BSIG1 TS EDA IGvst VND(a)

20×5 0.1531 0.1064 3.9570 0.9045 0.2919 5.3859

20×10 0.1864 0.0880 3.0521 0.8364 0.1669 4.0749

20×20 0.0771 0.0553 2.1839 0.6602 0.1284 2.7800

50×5 0.4130 0.4263 3.0883 3.1043 0.8581 4.1931

50×10 0.8962 0.8769 4.1410 3.3479 1.3246 5.3762

50×20 0.9338 0.8642 3.6033 2.8207 1.1563 4.6535

100×5 0.3104 0.2568 1.3438 3.3870 0.5418 2.3327

100×10 0.8344 0.7141 2.4741 3.9441 1.0511 3.7668

100×20 0.7375 0.8804 2.5502 2.9112 1.1105 3.8512

200×10 0.6777 0.6367 1.5329 2.7425 0.8481 2.7675

200×20 0.8935 0.8622 1.8742 4.9287 0.9587 3.1120

500×20 1.0310 1.0687 1.8494 7.0186 1.2804 2.6916

Ave. 0.5953 0.5697 2.6375 3.0505 0.8097 3.7488

1- Stopping criteria is n · m · F · 2ms.

Recall property 3 presented in Section III, according to this

property only those movements with ∆ேభሺగሻ<0 need to be
investigated. This helps to further reduce the search space and
thus the computational time of the algorithm will reduce
without deteriorating the search power of the algorithm.
 N2(π): In this neighborhood structure, three jobs in

positions a, b, and c are randomly chosen from the factory
with the latest makespan where a<b<c or a>b>c and the
job in position a is placed into the position b and the job
in the position b is placed into the position c and finally,
the job in the position c is placed into the position a. The
complexity of this neighborhood structure is O(݊௙

ଷ). If all
of the selected jobs are from the same block, then
according to the property 3, it is not a promising
movement, hence, the selected jobs should be from
different (horizontal) blocks, or at least one of them
should be from different (horizontal) block. In order to
reduce the computational time required to examine all
space of this neighborhood structure, the focus should be
only on the promising movements which can be identified
by the property 4 presented in Section III. According this
property, only the promising movements, i.e., ∆ேమሺగሻ<0
needs to be investigated which help to reduce the search
space and thus the computational time of the algorithm
will reduce.

 N3(π): In this neighborhood structure, a job in position a

௝ାଵݑ௙ሺߨ
௙ ሻߨ௙ሺݑ௝ିଵ

௙ ሻ

௝ݑ௙ሺߨ
௙ሻ

௝ିଵݑ௙ሺߨ
௙ ൅ 1ሻ

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2877

of the factory f1 with the latest makespan is selected and
reinserted in a random position b of factory f2 which is
randomly selected.

The properties 1 and 2 presented in the Section III provide
lower and upper bounds of inserting a job into current solution
of the factory. Therefore, it can be incorporated to reduce the
computational time of the search algorithm. Assume the
makespan of current solution is Cmax, and the job in position a
of the factory f1 is going to be inserted into sequence of factory
f2, if min௜ሺ݌௜గ೑భሺ௔ሻሻ ൅ ௙మሻߨ௠௔௫ሺܥ ൑ ௠௔௫, then the movement isܥ
promising movement and can be tested, otherwise it doesn’t
worth to investigate the movement.
 N4(π): In this neighborhood structure, a job in position a

of the factory f1 with the latest makespan is selected and
swapped with the job in position b of factory f2.

Here, we develop the following property where compute the
change of makespan of each factory as:

∆ேర
௙భ ൌ ∑ ሺ݌గ೑మሺ௕ሻ௞ െ గ೑భሺ௔ሻ௞ሻ௞∈௏஻ೌ݌

೑భ (9)

∆ேర
௙మ ൌ ∑ ሺ݌గ೑భሺ௔ሻ௞ െ గ೑మሺ௕ሻ௞ሻ௞∈௏஻್݌

೑మ (10)

where ∆ேర
௙భ and ∆ேర

௙మ represent the change of the makespan of

factory f1 and f2 due to apply N4(π), respectively. According to

this property, if both ∆ேర
௙భ and ∆ேర

௙మ are positive then the

movement is not promising, but if one of them is negative, it is
considered as promising movement.

TABLE III

AVERAGE RPD OF THE ALGORITHMS BASED ON F

F GVNS BSIG TS EDA IGvst VND(a)

2 0.8110 0.8082 2.1402 2.8234 0.9964 3.2591

3 0.8270 0.8124 2.5537 3.3619 1.0495 3.9059

4 0.6150 0.6018 2.6707 3.4470 0.8860 3.8746

5 0.4380 0.4107 2.7706 3.4973 0.6805 3.8897

6 0.4810 0.4350 2.8715 3.5977 0.6952 3.9428

7 0.3970 0.3500 2.8184 3.4907 0.5508 3.6207

Ave. 0.5948 0.5697 2.6375 3.3697 0.8097 3.7488

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed GVNS, we
conducted experiments based on available standard
benchmark problems at http://soa.iti.es. In this set of
problems, the number of jobs is n={20,50,100, 200, and 500}
and the number of machines is m={5,10, and 20}, and the
number of factories is F={2,3,4,5,6, and 7}, totally, there are
720 instances.

The proposed GVNS is compared to BSIG [10], TS [22],
EDA [24], VND(a) [4] and IGvst [23]. All algorithms are
coded in C++ compiled with g++ (on awin7/64bit OS), and
run on PC with Intel® Core™ i7-2600@ 3.4 GHz and 8 GB
memory. The only parameter of the proposed GVNS is Itmax,
maximum iteration of the algorithm, and based on initial
experiments it is set to 120. Due to random nature of the
algorithm, the algorithm is run 5 times for each instance. The
Relative Percentage Deviation (RPD) is measured as:

ܦܴܲ ൌ
݈݋ܵݐݏ݁ܤെ݈݋݈ܵ݃ܣ

݈݋ܵݐݏ݁ܤ
ൈ 100 (11)

where ݈݃ܣௌ௢௟ and ݐݏ݁ܤௌ௢௟ represent the solution of any
algorithm and the best known solution, respectively. The
average RPD of the algorithms are presented in Tables II and
III based on n×m and the number of factories (F),
respectively. As can be observed, generally BSIG outperforms
all algorithms including GVNS but there are cases that GVNS
has better performance than BSIG, for instance for problems
50×5, 100×20, and 500×20 as bolded in Table II. In average,
BSIG has the best performance, then GVNS, followed by
IGvst. This conclusion is verified by Table III as well as Fig. 8.
In term of computational time, stopping criteria of all
algorithms except the GVNS is 2×n×m×F ms and the average
computational time of the GVNS is based on number of
factories is compared to the stopping criteria of other
algorithms in Fig. 7. As can be observed, the computational
time of the GVNS is much less than the other stopping
condition while its performance is comparable to other
algorithms.

(a) Based on F

(b) Based on n×m

Fig. 7 Comparing computational time of algorithms

VI. CONCLUSION

This paper addresses the distributed permutation flow shop
scheduling problem (DPFSP) where there are identical parallel
factories with series of machines. The goal is allocating jobs to
the factories and finding the sequence of jobs allocated to each
factory such that the completion time of the last processed job
of the latest factory is minimized. Since the problem is NP-
Hard, we proposed General Variable Neighborhood Search
Algorithm (GVNS) which has two important features; (1) the
shaking procedure depending on statues of the algorithm
changes, if the algorithm has trapped in the local optima, a
stronger shaking procedure is applied and if the algorithm is
successful to improve the solution, a slight perturbation

0

10

20

30

2 3 4 5 6 7

ti
m

e
(m

s)

number of factories (F)

2n×m×F
GVNS

0

20

40

60

80

100

ti
m

e
(m

s)

n×m

2n×m×F

GVNS

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:8, 2015

2878

scheme will be applied, (2) in the local search of the algorithm
the search space is reduced to save computational time using
properties of the addressed problem such as horizontal and
vertical block properties, also an acceleration method to
compute the makespan is incorporated.

The performance of the GVNS is compared to the state-of-
the-art algorithms and it revealed the GVNS has very good
performance and even in some instance its performance is
better than all of them. In term of computational time, the
proposed GVNS needs much less computational time.

The DPFSP recently gain attention and there are a lot of
possible directions of research. In this study, we only consider
the well-known neighborhood structures; one can investigate
the other neighborhood structures to improve the performance
of the proposed GVNS. Also, developing constructive
metaheuristic algorithms such Ant Colony Optimization and
Intelligent Water Drops algorithm due to great performance in
solving combinatorial problems as reported in the literature
can be an interesting direction of research.

As another direction of research, one can study the DPFSP
with different criteria and different constraints, for instance
one can consider the DPFSP with no-wait constraint and use
the properties of the no-wait flow shop available in the
literature such as [20].

Fig. 8 Means plot and 95% confidence level

ACKNOWLEDGMENT

The first author thanks Professor Bahman Naderi for
sharing the best solutions of the instances as well as Professor
Victor Fernandez-Viagas for sharing the detail of his
experiments.

REFERENCES
[1] J. M. Framinan, J. N. Gupta, R. Leisten, “A review and classification of

heuristics for permutation flow-shop scheduling with makespan
objective,” J. Oper. Res. Soc., vol. 55, no. 12, pp. 1243-1255, July 2004.

[2] S. R. Hejazi, S. Saghafian, “Flowshop-scheduling problems with
makespan criterion: a review,” Int. J. Prod. Res., vol. 43, no. 14, pp.
2895-2929, 2005.

[3] J. N. Gupta, E.F. Stafford, “Flowshop scheduling research after five
decades,” Eur. J. Oper. Res., vol. 169, no. 3, pp. 699-711, March 2006.

[4] B. Naderi, R. Ruiz, “The distributed permutation flowshop scheduling
problem,” Comput. Oper. Res., vol. 37, no. 4, pp. 754–768, April 2010.

[5] B. Naderi, R. Ruiz, “A scatter search algorithm for the distributed
permutation flowshop scheduling problem,” Eur. J. Oper. Res., vol. 239,
no. 2, pp. 323-334, December 2014.

[6] B. Ekşioğlu, S. D. Ekşioğlu, P. Jain, “A tabu search algorithm for the
flowshop scheduling problem with changing neighborhoods,” Comput.
Ind. Eng., vol. 54, no. 1, pp. 1-11, February 2008.

[7] J. Grabowski, M. Wodecki, “A very fast tabu search algorithm for the
permutation flow shop problem with makespan criterion,” Comput.
Oper. Res., vol. 31, no. 11, pp. 1891-1909, September 2004.

[8] E. Nowicki, C. Smutnicki, “Some aspects of scatter search in the flow-
shop problem,” Eur. J. Oper. Res., vol. 169, no. 2, pp. 654-666, 2006

[9] M. Solimanpur, P. Vrat, R. Shankar, “A neuro-tabu search heuristic for
the flow shop scheduling problem,” Comput. Oper. Res., vol. 31, no.
13,pp. 2151-2164, November 2004.

[10] V. Fernandez-Viagas, J. M. Framinan, “A bounded-search iterated
greedy algorithm for the distributed permutation flowshop scheduling
problem,” Int. J. Prod. Res., vol. 53, no. 4, pp. 1111-1123, 2015.

[11] E. Nowicki, C. Smutnicki, “A fast tabu search algorithm for the
permutation flow-shop problem,” Eur. J. Oper. Res., vol. 91, no. 1, pp.
160-175, September 1996.

[12] X. Dong, M. Nowak, P. Chen, Y. Lin, “Self-adaptive Perturbation and
Multi-neighborhood Search for Iterated Local Search on the Permutation
Flow Shop Problem,” Comput. Ind. Eng., vol. 87, pp. 176–185,
September 2015.

[13] R. M’Hallah, “Minimizing total earliness and tardiness on a permutation
flow shop using VNS and MIP,” Comput. Ind. Eng., vol. 75, pp. 142-
156, September 2014.

[14] R. M’Hallah, “An iterated local search variable neighborhood descent
hybrid heuristic for the total earliness tardiness permutation flow shop,”
Int. J. Prod. Res., vol. 52, no. 13, pp. 3802-3819, 2014.

[15] J. Sánchez-Oro, J. J. Pantrigo, A. Duarte, “Combining intensification
and diversification strategies in VNS. An application to the Vertex
Separation problem,” Comput. Oper. Res., vol. 52, pp. 209-219,
December 2014.

[16] N. Mladenovic, P. Hansen, Variable neighborhood search, Comput.
Oper. Res., 24 (1997) 1097–1100.

[17] P. Hansen, N. Mladenović, “Variable neighborhood search: Principles
and applications,” Eur. J. Oper. Res., vol. 130, no. 3,pp. 449-467,2001.

[18] P. Hansen, N. Mladenović, J.A.M. Pérez, “Variable neighbourhood
search: methods and applications,” 4OR, vol. 6, no. 4, pp. 319-360,
2008.

[19] V. Fernandez-Viagas, J. M. Framinan, “A bounded-search iterated
greedy algorithm for the distributed permutation flowshop scheduling
problem,” Int. J. Prod. Res., vol. 53, no. 4, pp. 1111-1123, 2015.

[20] X. Li, Q. Wang, C. Wu, “Heuristic for no-wait flow shops with
makespan minimization,” Int. J. Prod. Res., vol. 46, no. 9, pp. 2519-
2530, 2008.

[21] R. Ruiz, T. Stützle, “A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem,” Eur. J. Oper. Res.,
vol. 177, no. 3, pp. 2033-2049, March 2007.

[22] J. Gao, R. Chen, W. Deng, “An efficient tabu search algorithm for the
distributed permutation flowshop scheduling problem,” Int. J. Prod.
Res., vol. 51, no. 3, pp. 641-651, 2013.

[23] S. W. Lin, K. C. Ying, C. Y. Huang, “Minimising makespan in
distributed permutation flowshops using a modified iterated greedy
algorithm,” Int. J. Prod. Res., vol. 51, no. 16, pp. 5029-5038, 2013.

[24] S. Y. Wang, L. Wang, M. Liu, Y. Xu, “An effective estimation of
distribution algorithm for solving the distributed permutation flow-shop
scheduling problem,” Int. J. Prod. Econ., vol.145, no. 1, pp. 387-396,
September 2013.

[25] Y. Xu, L. Wang, S. Wang, M. Liu, “An effective hybrid immune
algorithm for solving the distributed permutation flow-shop scheduling
problem,” Eng. Optim., vol. 46, no. 9, pp. 1269-1283, 2014.

[26] E. Taillard, “Some Efficient Heuristic Methods for the Flow Shop
Sequencing Problem.” Eur. J. Oper. Res., vol. 47,no. 1, pp.65–74, 1990.

VND(a)MIGEDATSBSIGGVND

4

3

2

1

0

RP
D

