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 
Abstract—This paper addresses minimizing the makespan of the 

distributed permutation flow shop scheduling problem. In this 
problem, there are several parallel identical factories or flowshops 
each with series of similar machines. Each job should be allocated to 
one of the factories and all of the operations of the jobs should be 
performed in the allocated factory. This problem has recently gained 
attention and due to NP-Hard nature of the problem, metaheuristic 
algorithms have been proposed to tackle it. Majority of the proposed 
algorithms require large computational time which is the main 
drawback. In this study, a general variable neighborhood search 
algorithm (GVNS) is proposed where several time-saving schemes 
have been incorporated into it. Also, the GVNS uses the sophisticated 
method to change the shaking procedure or perturbation depending 
on the progress of the incumbent solution to prevent stagnation of the 
search. The performance of the proposed algorithm is compared to 
the state-of-the-art algorithms based on standard benchmark 
instances.    
 

Keywords—Distributed permutation flow shop, scheduling, 
makespan, general variable neighborhood search algorithm. 

I. INTRODUCTION 

HIS paper addresses the distributed permutation flow shop 
scheduling problem (hereafter DPFSP) which is extension 

of the classic permutation flow shop scheduling problem 
(PFSP). Since PFSP was a good approximation of production 
systems, it has been studied for decades, for comprehensive 
survey see [1]-[3], but nowadays due to globalization and 
competitive situations, managers have to switch from 
centralized production system to geographically distributed 
systems to reduce production costs and increasing flexibility 
to meet abrupt market changes. Each of the factories of the 
distributed production system has to perform several tasks 
subject to different constraints such as labor costs, local 
regulations, and tax and trading policies. Hence, managing the 
distributed production is more complex than single site 
production site. 
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One of the important classes of the distributed production 
systems with practical implication is the DPFSP, introduced 
by [4]. In this system, there are identical parallel factories 
(flow shops) each with serial of machines. Each job should be 
allocated to one of these factories and all of the operations of 
the job must be performed without preemption in the allocated 
factory. The goal is finding the allocation of jobs to the 
factories and the sequence of jobs of allocated to each factory 
such that makespan of the latest factory is minimized. Since 
minimizing the makespan of the PFSP is NP-hard, minimizing 
the makespan of the DPFSP due to more constraints is NP-
Hard [4]. 

Naderi and Ruiz [4] investigated performance of the several 
mathematical models of the DPFSP. Also, they proposed 
several heuristic algorithms including SPT, LPT, and NEH 
which assign an index to each job and then to assign each job 
to factories two rules are suggested; (1) assign the job to the 
factory with the lowest current makespan and (2) assign the 
job to the factory that yields the minimum makespan after 
assigning the job. Based on extensive experiments, they have 
concluded that NEH using second rule, called NEH2, has the 
best performance among the other developed heuristic 
algorithms. They also proposed two variable neighborhood 
search algorithms which both use NEH2 to generate the initial 
sequence, but they are differ in term of acceptance criteria, the 
first version called VND(a) accepts the new solution if it 
improves the makespan of the current solution and the other 
version, called VND(b) accepts the new solution if it improves 
makespan of any factory. Based on experiments, they reported 
that VND(a) outperforms the VND(b).  

Later, this problem has been investigated by [22] and they 
proposed Tabu Search (TS) algorithm. Based on experiments, 
they concluded that TS outperforms VND(a) [4]. Lin et al. 
[23] proposed algorithms based on iterated greedy (IG) 
algorithm and the best one among them named IGvst 
outperforms VND(a). Recently, [5] proposed scatter search 
(SS) algorithm and it outperforms the existing algorithms. Xu 
et al. [25] also addressed the DPFSP and proposed hybrid 
immune algorithm (HIA) and reported several improved upper 
bounds for the standard benchmark instances. Recently, 
Fernandez-Viagas and Framinan [19] investigated the same 
problem and proposed iterated search algorithm named BSIG 
which the search is bounded by simple and effective rule. 
They compared to TS [22], EDA [24], and IGvst [23] and 
concluded that BSIG outperforms them.  

Since the DPFSP is an extension of the classical PFSP, 
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properties of the PFSP, for instance, properties developed by 
[26], and [11] can be applied to reduce the computational time 
and increase the efficiency of the proposed algorithms. 
Tillard’s acceleration method to compute makespan has been 
applied to the DPFSP by [4] but block properties for the 
classical PFSP proposed by [8], [11] has not been investigated 
in the DPFSP. Using these properties, the search process can 
be limited only to movements that can improve the current 
solution; hence, it reduces the neighborhood size greatly 
without deteriorating the search power of the algorithm. Also, 
all of the proposed algorithms so far for the DPFSP use the 
same neighborhood structure (and local search) to perturb the 
current incumbent solution regardless of progress of the 
algorithm, in another words, when using one type of 
neighborhood structure for several iterations of the algorithm 
cannot improve the current incumbent solution, it indicates 

that the algorithm has trapped in the local solution if it is not 
the global solution. The former case is more probable since the 
addressed problem has many local optima solutions. In this 
situation, trapping in the local optima, using the same 
perturbation scheme it is unlikely to help the algorithm to 
escape from the local optima; therefore, it should use stronger 
perturbation. If the algorithm improves the current incumbent 
solution, the perturbation scheme should use low level scheme 
to give chance to investigate the neighborhood of the current 
solution. In this paper, a general variable neighborhood search 
(GVNS) algorithm is proposed which utilizes both of the 
above mentioned concepts, i.e., it uses the perturbation 
scheme depending on progress of the incumbent solution, also, 
the time saving strategies based on block properties of the 
PFSP are extended to the DPFSP. 

 

 

Fig. 1 Gantt chart of the numerical example 
 

TABLE I 
PROCESSING TIME OF JOBS 

job 1 2 3 4 5 6 7 8 9 10 

Stage 1 6 6 3 3 3 8 3 7 3 10 

Stage 2 10 4 9 2 4 10 3 5 4 8 

Stage 3 9 2 2 9 7 2 7 6 5 7 
 

The rest of the paper is organized as follows. Next section is 
devoted to the problem description, and In Section III, 
properties of the DPFSP are investigated. In Section IV, the 
proposed general variable neighborhood search algorithm is 
discussed; and its performance is discussed in Section V. 
Finally, Section VI is devoted to conclusion and future studies. 

II. PROBLEM DESCRIPTION 

This paper deals with the distributed permutation flowshop 
scheduling problem where there are F identical parallel 
flowshops (factories) each with m serial machines. There is a 
set of jobs J={1,2,..,n} and set of machines M={1,2,...,m} and 
job j, j∈J, has m operations that should be allocated to one the 
factories and all operations of the job should be performed 
sequentially in the allocated factory. The other assumptions 
are as following. Each machine at a time can process only one 
job and each job at a time can be processed only by one 
machine. Pre-emption is not allowed, i.e., after processing of a 
job is started it cannot be stopped. The sequence of jobs in a 

factory for all machines is the same. All operations of jobs 
should be performed in the allocated factory.  

The goal is finding assignment (allocation) of jobs to each 
flowshop and their sequence such that the makespan of the 
system, the completion time of the latest factory, is 
minimized. Consider the following notations:  
 F: the number of factories  
 n: the number of jobs 
 m: the number of machines of each factory f, f=1,..,F. 
 pij: processing time of job j at stage (or machine) i,	݆ ∈

ሼ1, . . , ݊ሽ, ݅ ∈ ሼ1, . . , ݉ሽ 
 Cij: completion time job j on machine i,  

Let π=(π1, π2,…,πf,…,πF) where πf =(πf(1),πf(2),…,πf(nf)) 
represents the sequence of jobs allocated to factory f, 1≤ f ≤F, 
and nf is the number of the allocated jobs to the factory f. It is 
obvious that ∑ ௙݊

ி
௙ୀଵ ൌ ݊. Then, makespan, Cmax, can be 

calculated by: 
 

௙൯ߨ൫ݔܽ݉ܥ ൌ maxଵஸ௧భஸ௧మஸ⋯ஸ௧೘షభஸ௡೑ ቀ∑ ଵగ೑ሺ௝ሻ݌
௧భ
௝ୀଵ ൅ ∑ ଶగ೑ሺ௝ሻ݌

௧మ
௝ୀ௧భ

൅

⋯൅ ∑ ௠గ೑ሺ௝ሻ݌
௡೑
௝ୀ௧೘షభ

ቁ               (1) 
 
and 

ሻߨ௠௔௫ሺܥ ൌ maxଵஸ௙ஸி ቀܥ௠௔௫൫ߨ௙൯ቁ        (2) 
 

where (1) calculates the makespan of factory f and (2) 
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represents the makespan of sequence π. 
To be clear, consider a numerical example with 10 jobs and 

2 factories each with 3 machines where the processing time of 
jobs is given in Table I. Assume that π1=(6-5-7-2-10) 
(sequence of jobs in the first factory) and π2=(9-1-4-8-3) 
(sequence of jobs in the second factory). The Gantt chart is 
presented in Fig. 1, and makespan of both factories is 45, 
therefore, makespan of the system is 45.  

III. PROPERTIES OF THE DPFSP 

In the following, two properties of the DPFSP developed by 
[19] are discussed.  
Property 1[19]. Let π= (π1,π2,…,πf,…,πF) be the current jobs 
sequence of the factories. Adding job j* to the current solution 
of factory f, πf, will increase the Cmax(π

f) at least by mini(pij*), 
i.e., Cmax(π’f)≥ Cmax(π

f)+mini(pij*). 
Property 2[19]. Adding job j* to the current solution of 
factory f, πf, will increase the Cmax(π

f) at most by ∑ ∗௜௝݌
௠
௜ୀଵ , i.e., 

Cmax(π’f)≤ Cmax(π
f)+	∑ ∗௜௝݌

௠
௜ୀଵ . 

Properties 1 and 2 provide lower bound and upper bound of 
makespan of the factory f by adding a new job to its current 
partial solution, respectively.  

Efficiency of algorithms highly depends on their search 
ability. The total number of possible solutions of the DPFSP is 

ቀ݊ െ 1
ܨ െ 1

ቁ݊! [4], which sharply increases as size of the problem 

increases. Since the DPFSP is an extension of the well-studied 
permutation flowshop scheduling problem, the well-stablished 
properties of the flowshop problem can be benefited to tackle 
the DPFSP and reduce the search space. For instance, [26] 
experimentally showed the insertion-based movements 
outperform the swap-based movements. Also, [11] showed 
that all insertion movements do not yield a solution with better 
makespan than current solution, in other words, the 
movements inside the blocks do not improve the makespan. 
Furthermore, they experimentally showed that movements 
strongly depend on the structure of blocks, i.e., it is enough to 
examine the movements to the immediately preceding and 
succeeding blocks. In the following, the block properties of 
the PFSP and its extension to the DPFSP are discussed.  

 

 

Fig. 2 Grid graph of factory f of the DPFSP (modified from [6], [11]) 
 
Recall (1) which calculates the makespan of the πf, 1≤ f ≤F. 

Each factory of the DPFSP can be presented by a grid graph 
where the length of the longest path in the grid graph 
represents the makespan of the factory. This is extension of 

the grid graph presented by [11]. Fig. 2 shows a hypothetical 
factory with 5 machines and 10 jobs and critical path is shown 
by thin arrows. 

Any path in the grid from node (1,1) to (m,nf) can be 
represented by sequence of integers ݐ௙ ൌ ሺݐ଴

௙, ଵݐ
௙, … , ௠ିଵݐ

௙ , ௠ݐ
௙ ሻ 

where ݐ଴
௙=1 and ݐ௠

௙ =nf and the makespan of the factory f can 
be presented as: 

 

௙൯ߨ൫ݔܽ݉ܥ ൌ maxଵஸ௧భ
೑ஸ⋯ஸ௧೘షభ

೑ ஸ௡೑
൬∑ ଵగ೑ሺ௝ሻ݌

௧భ
೑

௝ୀଵ ൅ ∑ ଶగ೑ሺ௝ሻ݌
௧మ
೑

௝ୀ௧భ
೑ ൅

⋯൅ ∑ ௠గ೑ሺ௝ሻ݌
௡೑

௝ୀ௧೘షభ
೑ ൰                            (3) 

 
Another equivalent makespan formulation can be presented 

as [6]:  
 

௙൯ߨ௠௔௫൫ܥ ൌ maxଵஸ௤భ
೑ஸ⋯ஸ௤೙೑షభ

೑ ஸ௠ ቆ∑ ௜గ೑ሺଵሻ݌
௤భ
೑

௜ୀଵ ൅ ∑ ௜గ೑ሺଶሻ݌
௤మ
೑

௝ୀ௤భ
೑ ൅

⋯൅ ∑ ௜గ೑൫௡೑൯݌
௠
௝ୀ௤೙೑షభ

೑ ቇ                                    (4) 

 

where sequence of integers ݍ௙ ൌ ሺݍ଴
௙, ଵݍ

௙,… , ௡೑ିଵݍ
௙ , ௡೑ݍ

௙ ሻ 

represents the same path represented by ݐ௙ in (3). 
As presented in Fig. 2, the path has horizontal sub-paths as 

well as vertical sub-paths; each of these sub-paths represents a 
block. Each path in the grid has m horizontal blocks (HB) and 
nf vertical blocks (VB). Note that (3) and (4) calculate the 
makespan based on HBs and VBs, respectively.  

Let path uf =ሺݑ଴
௙, ଵݑ

௙, … , ௠ିଵݑ
௙ , ௠ݑ

௙ ሻ be the critical path in (3), 

then horizontal blocks can be defined as ܤܪ௟
௙ = (πf(ݑ௟ିଵ

௙ ), 

πf(ݑ௟ିଵ
௙ +1),…, πf(ݑ௟

௙)) where it represents lth horizontal block 

of factory f, 1≤ l ≤m and 1≤ f≤ F, where πf(ݑ௟ିଵ
௙ ) and πf(ݑ௟

௙) 

present the first and last jobs in ܤܪ௟
௙. Also, the last job of 

௟ܤܪ
௙ is the first job of ܤܪ௟ାଵ

௙ , l=1,2,…,m-1. The number of 

jobs of ܤܪ௟
௙ is |ܤܪ௟

௙ ௟ݑ =|
௙-ݑ௟ିଵ

௙ +1. Consider Fig. 2, the 
horizontal blocks presented in this figure can be presented by 
uf =(1,3,4 ,7,8,10).  

Similarly, let vf =ሺݒ଴
௙, ଵݒ

௙, … , ௡೑ିଵݒ
௙ , ௡೑ݒ

௙ ሻ be the critical path in 

(4), then the rth vertical block of the factory f can be 

represented as ܸܤ௥
௙ ൌ ሺݒ௥ିଵ

௙ , ଵିଵݒ
௙ ൅ 1, … , ௥ݒ

௙ሻ where ݒ଴
௙ ൌ 1, 

௡೑ݒ
௙ ൌ ݉, 1 ൑ ݎ ൑ ݊௙, and 1≤ f ≤ F. the vertical blocks of the 

grid graph presented in Fig. 2 can be presented by vf = (1,1,2 
,3,3,3,4,5,5,5).  

Several researchers such as [8], [11], [7], and [6] 
investigated the properties of the blocks in the PFSP and they 
have designed effective algorithms based on these properties. 
In the following, some of the properties that have been 
employed in this research is presented. Since computing the 
change of makespan using the vertical blocks is simpler, the 
properties are presented based on the vertical blocks.  
Property 3. Let v(a,b) present insertion movement where the 
job in position a of factory f is removed and inserted in 
position b. The change of makespan is [6]: 
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∆௩ሺ௔,௕ሻൌ ൜
߬ଵ				݂݅	ܽ ൏ ܾ
߬ଶ				݂݅	ܽ ൐ ܾ               (5) 

 
where  
߬ଵ ൌ ∑ ሺ݌௞గ೑ሺ௔ାଵሻ െ ௞గ೑ሺ௔ሻሻ௞∈௏஻ೌ݌ ൅ ∑ ሺ݌௞గ೑ሺ௔ሻ െ గ೑ሺ௕ሻ௞ሻ௞∈௏஻್݌ ൅

௩್షభ݌
೑ గ೑ሺ௕ሻ െ ௩ೌ݌

೑గ೑ሺ௔ାଵሻ               (6) 

 
and 
߬ଶ ൌ ∑ ሺ݌௞గ೑ሺ௔ିଵሻ െ ௞గ೑ሺ௔ሻሻ௞∈௏஻ೌ݌ ൅ ∑ ሺ݌௞గ೑ሺ௔ሻ െ గ೑ሺ௕ሻ௞ሻ௞∈௏஻್݌ ൅

௩್݌
೑గ೑ሺ௕ሻ െ ௩ೌషభ݌

೑ గ೑ሺ௔ିଵሻ              (7) 

 
The complexity of insertion movements is O( ௙݊) [6], 

according to this property, if ∆௩ሺ௔,௕ሻ൏ 0, the movement is 
promising, otherwise it doesn’t worth to investigate the 
movement. Therefore, this property can save the 
computational time of the algorithm. Nowicki and Smutnicki 
[11], Grabowski and Wodecki [7] and Solimanpur et al. [9] 
investigated this neighborhood structure and proposed 
strategies that reduce the search space further without 
deteriorating the search ability of the algorithm. These 
schemes are discussed in Section IV.C.  
Property 4. Let v(a,b,c) present insertion movement where 
three jobs in positions a, b, and c are chosen from factory f 
where a<b<c or a>b>c and the job in position a is placed into 
the position b and the job in the position b is placed into the 
position c and finally, the job in the position c is placed into 
the position a. The change of makespan of factory f is [6]: 
      

∆௩ሺ௔,௕,௖ሻൌ ∑ ሺ݌గ೑ሺ௖ሻ௞ െ గ೑ሺ௔ሻ௞ሻ௞∈௏஻ೌ݌ ൅ ∑ ሺ݌గ೑ሺ௔ሻ௞ െ௞∈௏஻್

గ೑ሺ௕ሻ௞ሻ݌ ൅ ∑ ሺ݌గ೑ሺ௕ሻ௞ െ గ೑ሺ௖ሻ௞ሻ௞∈௏஻೎݌           (8) 
 

The complexity of this neighborhood structure is O(݊௙
ଷ) and 

checking all of them require tremendous time, but using this 
property only promising movements ∆௩ሺ௔,௕,௖ሻ൏ 0 needs to be 
investigated.   

IV. THE PROPOSED FAST GENERAL VARIABLE 

NEIGHBORHOOD SEARCH ALGORITHM  

Mladenovic and Hansen [16] introduced a simple but 
powerful metaheuristic algorithm called Variable 
Neighborhood Search (VNS) based on idea of systematic 
changing of neighborhood search algorithms. Since then, the 
VNS has been applied to solve many combinatorial problems 
including traveling salesman problem, scheduling problems 
and so on. For a comprehensive review, readers are referred to 
[18] and [17]. 

The VNS algorithm has two main features; shaking 
procedure and local search algorithm. The shaking procedure 
is a perturbation which helps the algorithm to escape from 
current local optima and local search algorithm is responsible 
to search the neighborhood of the current solution based on 
the predefined neighborhood structures. Serval extensions of 
the original VNS by changing one or two of these features 
have been proposed including Variable Neighborhood 
Descend (VND), Reduced VNS (RVNS), and General VNS 
(GVNS) [15] and so on. Main difference of these extensions is 

based on their exploration methodology or neighborhood 
search algorithms which could be deterministic, random, or 
mixed (combination of both random and deterministic) [15].  

 
GVNS 
Initialization: (x: Initial solution)  
1. While t<tmax 
2.     k ← 1  
3.     While k<kmax  
4.         x'← Shake(x,k) 
5.         x''← VND(x') 
6.         If  x'' is better than x, set  k ← k+1        
7.         Else k ← 1 
8.         EndIf 
9.      EndWhile 
10.   t← CPU time 
11. EndWhile 

Fig. 3 Pseudo-code of the GVNS [15] 
 

Proposed GVNS for the DPFSP 
Initialization: 
1. π← Create initial solution using NEH2 % Section IV.A% 
2. πbest ← π  
3. Set it = 0, and diversification level flag=0  
4. While it < Itmax  
5.     π'←Apply Shake(π,flag) % Section IV.B% 
6.     k=1 
7.    While k<kmax 
8.          πꞌꞌ←Apply Local Search based on Nk(π')% Section IV.C% 
9.          if Cmax(πꞌꞌ)< Cmax(πꞌ) 
10.              k←1 
11.              π'← πꞌꞌ 
12.             if Cmax(πꞌ)< Cmax(πbest) 
13.                  πbest← πꞌꞌ 
14.            endif 
15.          Elseif 
16.              k←k+1 
17.          Endif 
18.     EndWhile 
19.       If Cmax(πꞌ)< Cmax(πbest) 
20.          π← πꞌ  
21.          flag=1 
22.       Else 
23.          π← πbest  
24.          flag= flag+1  
25.       EndIf  
26.      it ← it +1; 
27. EndWhile 
28. Report π

Fig. 4 Pseudo-code of the proposed GVNS algorithm  
 
The VND uses deterministic local search algorithm, the 

RVNS is based on the random one, and the GVNS uses the 
mixed of deterministic and random methodologies. The 
random search methodology has higher diversification ability 
while the deterministic search has more emphasize on the 
intensification. Since the GVNS as well as the canonical VNS 
use both random and deterministic search, the algorithms have 
balanced intensification and diversification search [15], 
therefore, they have higher chance to find the global optima. 
The pseudo-code of the GVNS is presented in Fig. 3. The 
main difference of the canonical VNS and GVNS is that the 
first one uses local search to improve the perturbed solution 
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while the former one uses the VND. 
In this study, the GVNS is applied to tackle the DPFSP 

which some improvements are incorporated into the proposed 
algorithm based on properties of the DPFSP, see Fig. 4. The 
proposed GVNS starts with an initial solution generated by the 
NEH2 [4] and generates a new solution using shake 
procedure. Majority of studies have suggested the same shake 
procedure at each iteration of the algorithm, for instance [21] 
and [4]. Intuitively, when the algorithm is trapped in the local 
optima, a stronger perturbation is needed to escape from the 
local optima [12]-[14], if it was successful, then the algorithm 
should focus on intensification, exploring the neighborhood of 
the current solution to find the (local) optimal, otherwise 
another stronger perturbation needs to be applied until the 
global optimal is found. This concept has been applied to VNS 
by [15] and [13], [14]. In this study, the GVNS is based on the 
same concept, i.e., the severity of the shake procedure depends 
on the statues of the current solution and it is determined by 
parameter flag. If flag=0, it represents that the shake procedure 
will not be applied, but if the outer iteration of the algorithm, 
lines 4-27, was unsuccessful for a predefined number of 
iterations to improve the current incumbent solution, πbest, an 
stronger perturbation procedure will be applied. The local 
search algorithm uses the neighborhood search based on 
insertion which is simple and fast neighborhood, and as the 
number of the iteration, k, gets closer to the iteration limit 
(kmax) of the inner loop, lines 7-18, it uses more complicated 
neighborhood search. 

In the following subsections, the initial solution, shaking 
procedure and local search algorithm are discussed.  

A. The Initial Solution 

Several researches have pointed out the importance of the 
effect of the initial solution of the metaheuristic algorithms on 
the quality of the algorithm. As pointed out earlier, NEH2 [4] 
outperforms the developed constructive heuristic algorithms, 
hence, this algorithm is used to generate the initial solution of 
the proposed GVNS. In Fig. 5, steps of NEH2 are presented.  

 
NEH2 

1. Compute ݐ௝ ൌ ∑ ௜௝݌
௠
௜ୀଵ  for j=1,2,...,n 

2. Sort ݐ௝ in non-decreasing order, let S be the sequence of jobs and 
set πf = ϕ for f=1,2,...,F  

3. For f=1:F 
4.      Assign  ௦݆ ൌ ܵሺ1ሻ to factory f, i.e., ߨ௙={ ௦݆}, S←S\ ௦݆ 
5. EndFor 
6. For j=1: n-ܨ   
7.    For f=1:F  
8.        For k=1:nf 
9.                  Insert job S(j) into position k of factory f 
10.    EndFor  
11. EndFor 
12. Select the best sequence   
13. EndFor 

Fig. 5 Pseudo code of NEH2 

B. Shaking Procedure  

The ultimate goal of the shaking procedure is finding the 
better neighborhood of the current solution. Most of studies 

use the same shaking procedure at any iteration of the 
algorithm. This may lead the algorithm to the local optima. 
Here, different shaking procedures depending on the statues of 
the algorithm is used, i.e., if an iteration of the algorithm was 
successful in term of improving the current incumbent 
solution, the algorithm uses low level shaking procedure to 
lead the solution to the better neighborhood of the current 
solution, if the algorithm was not successful then another 
stronger shaking procedure is used to help the algorithm 
escape from the current local optima. This idea has been 
suggested by [15] and applied to minimize total tardiness of 
the classical PFSP by [13], [14] and the result was astonishing.  

In this study, the following shaking procedures are defined.  
 Shake(π,1): This shaking procedure is low level shake 

and it is applied on factory or factories with the latest 
makespan. Here, we suggest 2-Opt operator in which two 
jobs from two different (horizontal) blocks are selected 
and their position is changed and the sequence of jobs 
between these two jobs is reversed. If the two jobs are 
from the same horizontal block, the shaking procedure is 
not strong enough since there is high chance to be undone 
by the local search algorithm presented in the next 
subsection. 

 Shake(π,2): Since the algorithm for an iteration (using all 
possible movements defined) was unsuccessful to 
improve the current incumbent solution, a higher shaking 
level needs to be applied. In this procedure, the jobs from 
the factory with the latest completion time is randomly 
chosen and inserted into the sequence of the factory with 
the earliest completion time. In case of tie, i.e., there is 
more than one factory with the latest (or earliest) 
completion time, chose randomly.  

 Shake(π,flag≥3): Since the algorithm was not able to find 
the better neighborhood in the previous iterations, 
extremely strong shaking procedure is needed to be 
applied. Here, cyclic exchange is suggested where some 
jobs from each factory are randomly selected and inserted 
in other factory. In other words, the selected jobs from 
factory 1 are randomly inserted to the factory 2, and jobs 
picked up from factory 2 are inserted in factory 3, as so 
on. Finally, the jobs selected from factory F is inserted in 
factory 1.  

It is well-established that in scheduling problems the 
majority of time of any algorithm is spent on calculating the 
objective function, for instance [11] reported that 80-95% of 
their proposed algorithm is consumed to calculate the 
makespan of the neighborhood of the current solution. Hence, 
to design more efficient and fast algorithm one needs to use 
acceleration methods to reduce the computational time. There 
are two possible options; the first one is limiting the 
neighborhood search to the most promising movements, as 
discussed in the next section, the second strategy is 
accelerating the calculation of the makespan after any change 
on the current solution. In this study, the advanced 
implementation of [11] is used. Since Shake(π,1) is applied on 
the factory fmax, and sequence of jobs of the other factories 
remains unchanged, one need to update the completion time of 
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jobs affected by the shaking procedure. Similarly, for other 
shaking procedures, only the completion times of the affected 
jobs in each factory should be considered. This simple strategy 
can save a lot of time.  

C. Local Search Algorithm 

Local search algorithm is responsible to search the feasible 
area to find the better solution than the current solution. The 
basic concept of the VND (and VNS) is using local search 
algorithm with different neighborhood structures which 
switches systematically from one to another neighborhood 
structure. This strategy helps the algorithm to escape from 
local optima. When the local search algorithm with a 
neighborhood structure is unable to find the better solution, to 
prevent stagnation of the search procedure the algorithm 
should apply the stronger neighborhood structure.  

Similar to the shaking procedure explained in the previous 
subsection, the local search algorithm starts with a simple 
neighborhood structure and improves the current incumbent 
solution until it not further improvement cannot be found, then 
another stronger neighborhood structure is applied and it 
improves the current incumbent solution until it cannot 
improve it further. This procedure continues until all 
predefined neighborhood structures have been tried as 
presented in Fig. 4, lines 6-18.  

Due to the structure of the DPFSP, two types of 
neighborhood structures are needed to be defined; the 
neighborhood that changes the sequence of the jobs of a 
factory (with the latest makespan) and another one that 
changes jobs across factories. The proposed local search 
algorithms for the DPFSP are mainly based on swap and 
insertion within a factory and also across factories, for 
instance, see [4], [5]. The swap movement across factories is 
based on selection of two factories which one of them has the 
latest makespan and then the randomly selected jobs are 
swapped. In the insertion movement, one job is selected from 
the factory with the latest makespan and inserted in a random 
position of jobs sequence of another factory. 

In this study, the following neighborhood structures are 
considered. 
 N1(π): This neighborhood structure is based on insertion 

of a job on the factory or factories with the latest 
completion time, i.e., the job in position a is randomly 
chosen and inserted in position b that gives the best 
possible sequence. This neighborhood structure has been 
applied by [4] and [5] which use full search meaning that 
all possible movements are tried while it is not necessary. 
Nowicki and Smutnicki [11] experimentally showed 
movements inside of (horizontal) blocks do not improve 
the makespan. Furthermore, [9] and [7] concluded that it 
is enough to investigate only the immediate preceding and 
following blocks of a block of jobs. In other words, for 
each job there are two possible positions to insert, right 
after the last job of its block and right before the first job 
of its block, see Fig. 6 which shows the possible 
movements based on the N1(π) neighborhood structure 
where the dark circles represent the boundary of block 

and white circles represent the jobs inside each block. 
Note that the jobs inside of the first block and the last 
block are not allowed to perform leftward moves and 
rightward moves, respectively.  

 

 

Fig. 6 Possible movements defined by N1(π) 
 

TABLE II 
AVERAGE RPD OF THE ALGORITHMS BASED ON N×M 

n×m GVNS BSIG1 TS EDA IGvst VND(a)  

20×5 0.1531 0.1064 3.9570 0.9045 0.2919 5.3859 

20×10 0.1864 0.0880 3.0521 0.8364 0.1669 4.0749 

20×20 0.0771 0.0553 2.1839 0.6602 0.1284 2.7800 

50×5 0.4130 0.4263 3.0883 3.1043 0.8581 4.1931 

50×10 0.8962 0.8769 4.1410 3.3479 1.3246 5.3762 

50×20 0.9338 0.8642 3.6033 2.8207 1.1563 4.6535 

100×5 0.3104 0.2568 1.3438 3.3870 0.5418 2.3327 

100×10 0.8344 0.7141 2.4741 3.9441 1.0511 3.7668 

100×20 0.7375 0.8804 2.5502 2.9112 1.1105 3.8512 

200×10 0.6777 0.6367 1.5329 2.7425 0.8481 2.7675 

200×20 0.8935 0.8622 1.8742 4.9287 0.9587 3.1120 

500×20 1.0310 1.0687 1.8494 7.0186 1.2804 2.6916 

Ave. 0.5953 0.5697 2.6375 3.0505 0.8097 3.7488 

1- Stopping criteria is n · m · F · 2ms. 
 
Recall property 3 presented in Section III, according to this 

property only those movements with ∆ேభሺగሻ<0 need to be 
investigated. This helps to further reduce the search space and 
thus the computational time of the algorithm will reduce 
without deteriorating the search power of the algorithm.  
 N2(π): In this neighborhood structure, three jobs in 

positions a, b, and c are randomly chosen from the factory 
with the latest makespan where a<b<c or a>b>c and the 
job in position a is placed into the position b and the job 
in the position b is placed into the position c and finally, 
the job in the position c is placed into the position a. The 
complexity of this neighborhood structure is O(݊௙

ଷ). If all 
of the selected jobs are from the same block, then 
according to the property 3, it is not a promising 
movement, hence, the selected jobs should be from 
different (horizontal) blocks, or at least one of them 
should be from different (horizontal) block. In order to 
reduce the computational time required to examine all 
space of this neighborhood structure, the focus should be 
only on the promising movements which can be identified 
by the property 4 presented in Section III. According this 
property, only the promising movements, i.e., ∆ேమሺగሻ<0 
needs to be investigated which help to reduce the search 
space and thus the computational time of the algorithm 
will reduce. 

 N3(π): In this neighborhood structure, a job in position a 

௝ାଵݑ௙ሺߨ
௙ ሻߨ௙ሺݑ௝ିଵ

௙ ሻ

௝ݑ௙ሺߨ
௙ሻ 

௝ିଵݑ௙ሺߨ
௙ ൅ 1ሻ
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of the factory f1 with the latest makespan is selected and 
reinserted in a random position b of factory f2 which is 
randomly selected.  

The properties 1 and 2 presented in the Section III provide 
lower and upper bounds of inserting a job into current solution 
of the factory. Therefore, it can be incorporated to reduce the 
computational time of the search algorithm. Assume the 
makespan of current solution is Cmax, and the job in position a 
of the factory f1 is going to be inserted into sequence of factory 
f2, if min௜ሺ݌௜గ೑భሺ௔ሻሻ ൅ ௙మሻߨ௠௔௫ሺܥ ൑  ௠௔௫, then the movement isܥ
promising movement and can be tested, otherwise it doesn’t 
worth to investigate the movement.  
 N4(π): In this neighborhood structure, a job in position a 

of the factory f1 with the latest makespan is selected and 
swapped with the job in position b of factory f2.  

Here, we develop the following property where compute the 
change of makespan of each factory as:  

 

∆ேర
௙భ ൌ ∑ ሺ݌గ೑మሺ௕ሻ௞ െ గ೑భሺ௔ሻ௞ሻ௞∈௏஻ೌ݌

೑భ           (9) 

 

∆ேర
௙మ ൌ ∑ ሺ݌గ೑భሺ௔ሻ௞ െ గ೑మሺ௕ሻ௞ሻ௞∈௏஻್݌

೑మ              (10) 

 

where ∆ேర
௙భ  and ∆ேర

௙మ  represent the change of the makespan of 

factory f1 and f2 due to apply N4(π), respectively. According to 

this property, if both ∆ேర
௙భ  and ∆ேర

௙మ  are positive then the 

movement is not promising, but if one of them is negative, it is 
considered as promising movement.  

 
TABLE III 

AVERAGE RPD OF THE ALGORITHMS BASED ON F 

F GVNS BSIG TS EDA IGvst VND(a) 

2 0.8110 0.8082 2.1402 2.8234 0.9964 3.2591 

3 0.8270 0.8124 2.5537 3.3619 1.0495 3.9059 

4 0.6150 0.6018 2.6707 3.4470 0.8860 3.8746 

5 0.4380 0.4107 2.7706 3.4973 0.6805 3.8897 

6 0.4810 0.4350 2.8715 3.5977 0.6952 3.9428 

7 0.3970 0.3500 2.8184 3.4907 0.5508 3.6207 

Ave. 0.5948 0.5697 2.6375 3.3697 0.8097 3.7488 

V. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed GVNS, we 
conducted experiments based on available standard 
benchmark problems at http://soa.iti.es. In this set of 
problems, the number of jobs is n={20,50,100, 200, and 500} 
and the number of machines is m={5,10, and 20}, and the 
number of factories is F={2,3,4,5,6, and 7}, totally, there are 
720 instances.  

The proposed GVNS is compared to BSIG [10], TS [22], 
EDA [24], VND(a) [4] and IGvst [23]. All algorithms are 
coded in C++ compiled with g++ (on awin7/64bit OS), and 
run on PC with Intel® Core™ i7-2600@ 3.4 GHz and 8 GB 
memory. The only parameter of the proposed GVNS is Itmax, 
maximum iteration of the algorithm, and based on initial 
experiments it is set to 120. Due to random nature of the 
algorithm, the algorithm is run 5 times for each instance. The 
Relative Percentage Deviation (RPD) is measured as:  

ܦܴܲ ൌ
݈݋ܵݐݏ݁ܤെ݈݋݈ܵ݃ܣ

݈݋ܵݐݏ݁ܤ
ൈ 100        (11) 

 
where ݈݃ܣௌ௢௟ and ݐݏ݁ܤௌ௢௟ represent the solution of any 
algorithm and the best known solution, respectively. The 
average RPD of the algorithms are presented in Tables II and 
III based on n×m and the number of factories (F), 
respectively. As can be observed, generally BSIG outperforms 
all algorithms including GVNS but there are cases that GVNS 
has better performance than BSIG, for instance for problems 
50×5, 100×20, and 500×20 as bolded in Table II. In average, 
BSIG has the best performance, then GVNS, followed by 
IGvst. This conclusion is verified by Table III as well as Fig. 8. 
In term of computational time, stopping criteria of all 
algorithms except the GVNS is 2×n×m×F ms and the average 
computational time of the GVNS is based on number of 
factories is compared to the stopping criteria of other 
algorithms in Fig. 7. As can be observed, the computational 
time of the GVNS is much less than the other stopping 
condition while its performance is comparable to other 
algorithms.  

 

 

(a) Based on F 
 

 

(b) Based on n×m 

Fig. 7 Comparing computational time of algorithms 

VI. CONCLUSION 

This paper addresses the distributed permutation flow shop 
scheduling problem (DPFSP) where there are identical parallel 
factories with series of machines. The goal is allocating jobs to 
the factories and finding the sequence of jobs allocated to each 
factory such that the completion time of the last processed job 
of the latest factory is minimized. Since the problem is NP-
Hard, we proposed General Variable Neighborhood Search 
Algorithm (GVNS) which has two important features; (1) the 
shaking procedure depending on statues of the algorithm 
changes, if the algorithm has trapped in the local optima, a 
stronger shaking procedure is applied and if the algorithm is 
successful to improve the solution, a slight perturbation 
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scheme will be applied, (2) in the local search of the algorithm 
the search space is reduced to save computational time using 
properties of the addressed problem such as horizontal and 
vertical block properties, also an acceleration method to 
compute the makespan is incorporated.  

The performance of the GVNS is compared to the state-of-
the-art algorithms and it revealed the GVNS has very good 
performance and even in some instance its performance is 
better than all of them. In term of computational time, the 
proposed GVNS needs much less computational time.  

The DPFSP recently gain attention and there are a lot of 
possible directions of research. In this study, we only consider 
the well-known neighborhood structures; one can investigate 
the other neighborhood structures to improve the performance 
of the proposed GVNS. Also, developing constructive 
metaheuristic algorithms such Ant Colony Optimization and 
Intelligent Water Drops algorithm due to great performance in 
solving combinatorial problems as reported in the literature 
can be an interesting direction of research.  

As another direction of research, one can study the DPFSP 
with different criteria and different constraints, for instance 
one can consider the DPFSP with no-wait constraint and use 
the properties of the no-wait flow shop available in the 
literature such as [20].  

 

 

Fig. 8 Means plot and 95% confidence level 
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