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Abstract—In this paper we introduce the notion of protein in-
teraction network. This is a graph whose vertices are the protein’s
amino acids and whose edges are the interactions between them.
Using a graph theory approach, we identify a number of properties of
these networks. We compare them to the general small-world network
model and we analyze their hierarchical structure.
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I. INTRODUCTION

P roteins are biological macromolecules participating in

the large majority of processes which govern organisms.

The roles played by proteins are varied and complex. Certain

proteins, called enzymes, act as catalysts and increase sev-

eral orders of magnitude, with a remarkable specificity, the

speed of multiple chemical reactions essential to the organism

survival. Proteins are also used for storage and transport of

small molecules or ions, control the passage of molecules

through the cell membranes, etc. Hormones, which transmit

information and allow the regulation of complex cellular

processes, are also proteins.

Genome sequencing projects generate an ever increas-

ing number of protein sequences. For example, the Human

Genome Project has identified over 30,000 genes which may

encode about 100,000 proteins. One of the first tasks when

annotating a new genome, is to assign functions to the proteins

produced by the genes. To fully understand the biological

functions of proteins, the knowledge of their structure is

essential.

In their natural environment, proteins adopt a native com-

pact form. This process is called folding and is not fully

understood. The process is a result of interactions between

the protein’s amino acids which form chemical bonds. In this

paper we identify some of the properties of the network of

interacting amino acids. We believe that understanding these

networks can help to better understand the folding process.

The rest of the paper is organized as follows. In section II we

briefly present the main types of amino acid interactions which

determine the protein structure. In section III we introduce our

model of amino acid interaction networks. Section IV presents

two general network models, random graphs and small-world

networks. In section V we compare protein interaction net-

works to the general models and empirically characterize them

based on all protein structures available in PDB. We show how

the properties of these networks are related to the structure of
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Fig. 1. Left: an α-helix illustrated as ribbon diagram, there are 3.6 residues
per turn corresponding to 5.4 Å. Right: A β-sheet composed by three strands.

the corresponding proteins. Finally, in section VI we conclude

and give some future research directions.

II. PROTEIN STRUCTURE

Unlike other biological macromolecules (e.g., DNA), pro-

teins have complex, irregular structures. They are built up

by amino acids that are linked by peptide bonds to form

a polypeptide chain. We distinguish four levels of protein

structure:

• The amino acid sequence of a protein’s polypeptide chain

is called its primary or one-dimensional (1D) structure.

It can be considered as a word over the 20-letter amino

acid alphabet.

• Different elements of the sequence form local regular

secondary (2D) structures, such as α-helices or β-strands.

• The tertiary (3D) structure is formed by packing such

structural elements into one or several compact globular

units called domains.

• The final protein may contain several polypeptide chains

arranged in a quaternary structure.

By formation of such tertiary and quaternary structure, amino

acids far apart in the sequence are brought close together to

form functional regions (active sites). The reader can find more

on protein structure in [4].

One of the general principles of protein structure is that

hydrophobic residues prefer to be inside the protein contribut-

ing to form a hydrophobic core and a hydrophilic surface.

To maintain a high residue density in the hydrophobic core,

proteins adopt regular secondary structures that allow non co-

valent hydrogen-bond and hold a rigid and stable framework.

There are two main classes of secondary structure elements

(SSE), α-helices and β-sheets (see Fig 1).

An α-helix adopts a right-handed helical conformation with

3.6 residues per turn with hydrogen bonds between C’=O

group of residue n and NH group of residue n + 4.

A β-sheet is build up from a combination of several regions

of the polypeptide chain where hydrogen bonds can form
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between C’=O groups of one β strand and another NH group

parallel to the first strand. There are two kinds of β-sheet

formations, anti-parallel β-sheets (in which the two strands

run in opposite directions) and parallel sheets (in which the

two strands run in the same direction).

From this first division, a more detailed classification can

be done. The most frequently used ones are SCOP, Structural

Classification Of Proteins [13], and CATH, Class Architecture

Topology Homology [14]. They are hierarchical classifications

of proteins’ structural domains. A domain corresponds to a

part of a protein which has a hydrophobic core and not much

interaction with other parts of the protein.

A. SCOP

The SCOP classification is built manually from structural

information. The process of classification starts by the division

into domains of a protein. The protein is then classified on four

levels, from the more general to the more specific :

1) Class: There are 4 main classes (see above) and 7 others

with very small number of members. A class regroups

proteins whose the secondary structure composition is

similar.

2) Fold: The secondary structure composition, the spatial

arrangement and the connexions are similar.

3) Superfamily: The structures and the functions tend to be

similar.

4) Family: Proteins have at least 30% of their sequence

identical or have very similar functions and structures.

In 2008, the SCOP classification has identified 1086 folds.

III. AMINO ACID INTERACTION NETWORKS

The 3D structure of a protein is determined by the coordi-

nates of its atoms. This information is available in Protein Data

Bank (PDB) [3], which regroups all experimentally solved

protein structures. Using the coordinates of two atoms, one can

compute the distance between them. We define the distance

between two amino acids as the distance between their Cα

atoms. Considering the Cα atom as a “center” of the amino

acid is an approximation, but it works well enough for our

purposes. Let us denote by N the number of amino acids in the

protein. A contact map matrix is a N ×N 0-1 matrix, whose

element (i, j) is one if there is a contact between amino acids i

and j and zero otherwise. It provides useful information about

the protein. For example, the secondary structure elements can

be identified using this matrix. Indeed, α-helices spread along

the main diagonal, while β-sheets appear as bands parallel or

perpendicular to the main diagonal [10]. There are different

ways to define the contact between two amino acids. Our

notion is based on spacial proximity, so that the contact map

can consider non-covalent interactions. We say that two amino

acids are in contact iff the distance between them is below a

given threshold. A commonly used threshold is 7 Å and this

is the value we use.

Consider a graph with N vertices (each vertex corresponds

to an amino acid) and the contact map matrix as incidence

matrix. It is called contact map graph. The contact map graph

is an abstract description of the protein structure taking into

Fig. 2. Protein 1DTP (left) and its SSE-IN (right).

account only the interactions between the amino acids. Now

let us consider the subgraph induced by the set of amino

acids participating in SSE. We call this graph SSE interaction

network (SSE-IN) and this is the object we study in the

present paper. The reason of ignoring the amino acids not

participating in SSE is simple. Evolution tends to preserve the

structural core of proteins composed from SSE. In the other

hand, the loops (regions between SSE) are not so important

to the structure and hence, are subject to more mutations.

That is why homologous proteins tend to have relatively

preserved structural cores and variable loop regions. Thus,

the structure determining interactions are those between amino

acids belonging to the same SSE on local level and between

different SSEs on global level. Fig. 2 gives an example of a

protein and its SSE-IN.

In [12], [5], [2], [7] the authors rely on similar models

of amino acid interaction networks to study some of their

properties, in particular concerning the role played by certain

nodes or comparing the graph to general interaction networks

models. Thanks to this point of view the protein folding

problem can be tackled by graph theory approaches.

IV. GENERAL MODELS OF NETWORKS

Many systems, both natural and artificial, can be represented

by networks, that is, by sites or vertices bound by links.

The study of these networks is interdisciplinary because they

appear in scientific fields like physics, biology, computer

science or information technology. These studies are lead with

the aim to explain how elements interact with each other inside

the network and what are the general laws which govern the

observed network properties.

From physics and computer science to biology and social

sciences, researchers have found that a broad variety of

systems can be represented as networks, and that there is

much to be learned by studying these networks. Indeed, the

studies of the Web [6], [1], of social networks [16] or of

metabolic networks [11] contribute to put in light common

non-trivial properties of these networks which have a priori

nothing in common. The ambition is to understand how the

large networks are structured, how they evolve and what are

the phenomena acting on their constitution and formation.

In this section we present two classes of interaction net-

works by describing their specific properties. We introduce

some empirical measures which will be used in the next

section in order to study SSE-INs.
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A. Random Graphs

The random graph models are one of the oldest network

models, introduced in [15] and further studied in [8], [9].

These works identify two different classes of random graphs,

called Gn,m and Gn,p and defined by the following connection

rules:

• Gn,m regroups all graphs with n vertices and m edges. To

generate a graph sampled uniformly at random from the

set Gn,m, one has to put m edges between vertex pairs

chosen randomly from n initially unconnected vertices.

• Gn,p is the set of all graphs consisting of n vertices,

where each vertex is connected to others with inde-

pendent probability p. To generate a graph sampled

randomly, one has to begin with n initially unconnected

vertices and join each pair by an edge with probability p.

In Gn,m the number of edges is fixed whereas in Gn,p the

number of edges can fluctuate but its average is fixed. When

n tends to be large the two models are equivalent.

Definition 1: The degree of a vertex v, kv , is the number

of edges incident to v. The mean degree, z, of a graph G is

defined as follows:

z =
1

n

∑

v∈V

kv =
2m

n
= p(n − 1)

B. Small-world Networks

This network model was introduced in [18] as a model of

social networks. It has been since adopted to treat phenomena

in physics, computer science or social sciences. The model

comes from the observation that many real-world networks

have the following two properties:

1) The small-world effect, meaning that most pairs of

vertices are connected by a short path through the

network. This phenomenon has two explanations. First,

the concept of “shortcuts” through a network allows to

join two distant vertices by a small number of edges

[17]. Second, the concept of “hubs”, vertices whose con-

nectivity is higher than others provide bridges between

distant vertices because most vertices are linked to them.

2) High “clustering”, meaning that there is a high proba-

bility that two vertices are connected one to another if

they share the same neighbor.

To determine if a network is a small-world, one can use

the measures described below and compare them to the

corresponding measures of a random graph.

Definition 2: The characteristic path length [17], denoted

L, of a graph G is the median of the means of the shortest

path lengths connecting each vertex v to all other vertices.

More precisely, let d(v, u) be the length of the shortest path

between two vertices v and u and let d(v) be the average of

d(v, u) over all u ∈ V . Then the characteristic path length is

the median of {d(v)}.

This definition applies when the graph consists of single

connected component. However, the SSE-IN we consider in

the next section may have several connected components. In

this case, when we calculate the mean of the shortest path

TABLE I
STRUCTURAL FAMILIES STUDIED FOR THE SMALL-WORLD PROPERTIES.
WE CHOOSE ONLY FAMILIES WHICH COUNT MORE THAN 100 PROTEINS,

FOR A TOTAL OF 18294 PROTEINS.

Class Family Protein
Number Number

All α 12 2968
All β 17 6372
α/β 18 5197
α + β 16 3757

lengths d(v) we take into account only the vertices u which

are in the same connected component as v.

Since the mean and the median are practically identical for

any reasonably symmetric distribution, the characteristic path

length of a random graph is the mean value of the shortest

path lengths between any two vertices. The characteristic path

length of a random graph with mean degree z is

LRG =
log n

log z

It increases only logarithmically with the size of the network

and remains therefore small even for large systems.

Definition 3: The local clustering coefficient [17], Cv , of a

vertex v with kv neighbors measures the density of the links

in the neighborhood of v.

Cv =
|E(Γv)|

(

kv

2

)

where |E(Γv)| is the number of edges in the neighborhood

of v and
(

kv

2

)

is the number of all possible edges in this

neighborhood. The clustering coefficient C of a graph is the

average of the local clustering coefficients of all vertices:

C =
1

n

∑

v∈V

Cv

The clustering coefficient of a random graph with mean

degree z is

CRG =
z

n − 1

Watts and Strogatz [18] defined a network to be a small-

world if it shows both of the following properties:

1) Small world effect: L ∼ LRG

2) High clustering: C ≫ CRG

V. EXPERIMENTAL RESULTS

The first step before studying the proteins SSE-IN is to

select them according to their SSE arrangements. Thus, a

protein belongs to a SCOP fold level iff all its domains

are the same. We have worked with the SCOP 1.7.3 files.

We have computed the measures from the previous section

for the four mains classes of the hierarchical classification

SCOP (see Table I). Thus, each class provides a broad sample

guarantying more general results and avoiding fluctuations.

Moreover, these four classes contain proteins of very different

sizes, varying from several dozens to several thousands amino

acids in SSE.
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Fig. 3. Size distribution of proteins SSE-IN and small-world networks ratio
for All α class.
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Fig. 4. L/LRG (left) and C/CRG (right) ratios as a function of SSE-IN size.

As described in the previous section, a small-world network

(SWN) is characterized by two main properties, the small

world effect and a high clustering. These measures are com-

puted by evaluating the ratio between a graph and a random

graph whose mean degree and size are the same. We consider

that a protein SSE-IN is small world iff L/LRG ≤ 1.5 and

C/CRG ≥ 2.

Fig. 3 shows the size distribution of one class of studied

SSE-IN (other classes providing similar results, we limit

ourselves to one plot). We can see that near 60% of the proteins

have SSE-IN of size between 100 and 500 amino acids. The

small-world properties are satisfied mainly when the size of

the network does not exceed 500 amino acids and there are

about 13.74% small-world networks among all studied SSE-

IN.

Fig. 4 explains the reason for this low rate. One can see

that although highly clustered, most SSE-IN do not satisfy the

first small-world property.

To explain the results presented on Fig. 4, note that the mean

degree z is not very different from one SSE-IN to another

and is generally independent from the size. When the mean

degree is fixed, the characteristic path length of a random

graph grows like log n and its clustering coefficient has n−1

behavior. We can see that there is no clear relationship between

the characteristic path length and the SSE-IN size. There

are proteins with close sizes but very different path lengths.

However, in general it grows faster than logarithmically with

the size. The figure also shows that SSE-IN are very highly

clustered. The C/CRG has clearly linear behavior, hence the

clustering coefficient (like the mean degree) is independent

from the size.

In the rest of this section we lead an upward analysis

of the network following its hierarchical structure. We start

by low-level subnetworks corresponding to single SSE. At

intermediate level, we are interested in SSE-IN topological
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constitution, notably connected components. Finally, we go

back to macroscopic level to put in highlight the conditions

under which a given SSE-IN is small world.

The first step consists in describing the subnetworks cor-

responding to secondary structure elements, α-helices and β-

sheets. We observe that these secondary structure motifs are

practically all small-world networks, whatever their size (see

Fig. 5). The explanation of this fact is the high residue density

and the big number of interactions in these compact structures.

The second step concerns the study of connected compo-

nents. Their size distribution (see Fig. 6) shows that when

their size is higher than a threshold, here estimated at 100

residues, the small-world properties are no longer satisfied. To

explain this fact, let us consider the edges whose extremities

belong to different SSEs (see Fig. 7). These “shortcuts”

represent the interactions between different SSEs and they

determine the tertiary protein structure. They provide short

paths between different network regions and bigger number of

shortcuts implies smaller characteristic path length. The ratio

of shortcuts is shown on Fig. 8. We can see that the small-

world networks have almost the same ratio of shortcuts as the

other networks. Although the ratio grows slightly after size

of 100, this is not sufficient to decrease the characteristic path

length. Consequently, a connected component is a small world

network only if its size does not exceed 100 residues.

The third step relies on the previous observations and

generalizes them on protein level. Computing the average

connected component size, we observe that this size does

not exceed 100 for the small-world networks (see Fig. 9).

Thus, average connected component size less than 100 is a

necessary condition for SSE-IN to be small world. Once again,

the shortcut ratio is comparable for the small-world networks

and the other networks (see Fig. 9). This ratio is bounded and

does not exceed 25%, its the consequence of the excluded

volume effect, since the number of residues that can physically
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Fig. 7. Protein 1DTP SSE-IN. Shortcut edges are plotted in green.
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Fig. 8. Shortcut edges / all edges ratio as a function of connected component
size. Left: All α class, right: α/β class

reside within a given radius is limited.

VI. CONCLUSION AND PERSPECTIVES

In this paper we introduce the notion of interaction network

of amino acids of a protein (SSE-IN) and study some of

the properties of these networks. The main advantage of

this model is that it allows to cope with different biological

problems related to protein structure using graph theory tools.

Ignoring details, such as the type and the exact position of

each amino acid, this abstract and compact description allows

to focus on the interactions’ structure and organization. We

have shown that the subnetworks corresponding to secondary

structure elements satisfy the properties of the small-world

network model. Small-world networks are widely studied and

their properties are well identified. These properties can give

insight on the formation of SSEs. On the other hand, the links

between these subnetworks describe the interactions between

different SSEs, which determine the tertiary protein structure.

A short term perspective is to give a finer characterization

of shortcut edges in order to better understand how different

SSEs are linked to each other. As a long term perspective,
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Fig. 9. Average connected component size (left) and shortcut ratio (right)
as a function of protein SSE-In size.

the characterization we propose constitutes a first step of a

new approach to the protein folding problem. The properties

identified here, but also other properties we plan to study, can

give us an insight on the folding process. They can be used

to guide a folding simulation in the topological pathway from

unfolded to folded state.
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