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Abstract—In this study, a fuzzy integrated logical forecasting This paper investigates the FILF method and impsat/éor

method (FILF) is extended for multi-variate systetms using a
vector autoregressive model. Fuzzy time seriescésting (FTSF)
method was recently introduced by Song and Chigdd+#R] after
that Chen improved the FTSF method. Rather thanettisting
literature, the proposed model is not only compavitd the previous
FTS models, but also with the conventional timéesemethods such
as the classical vector autoregressive model. Tister optimization
is based on the C-means clustering method. An @apistudy is
performed for the prediction of the chartering sabé a group of dry
bulk cargo ships. The root mean squared error (RMf$&ric is used
for the comparing of results of methods and thepsed method has
superiority than both traditional FTS methods atsb ahe classical
time series methods.

multi-variate modeling. For that purpose, an engpirstudy is
designed for forecasting of the time-based shipgdiegght

rates and the proposed model is compared with Ghen’

algorithm and its bivariate version. Also a numbei
traditional methods such as autoregressive intedgratoving
average (ARIMA) is compared with results.

The clustering procedure is one of the major cbuatidns
of the FTS method. By applying clustering algoriththe
unusual fluctuations and outliers are eliminated dataset is
bundled in representative interval sets. Song ah&sBm
choose 1000 as the length of intervals and mardiegthave
applied this length of intervals for the FTSF witho

Keywords—C-means clustering, Fuzzy time series, Multi-variat SPECifying any reason [9]. However, the way of theosing

design

I. INTRODUCTION

FORECASTING science reached to a maturing period
contributions of many scholars and its long histamy
economic and econometric literature. Although,
conventional forecasting science has superior quaatis on
many examples, it still has limitations and gapstein the
literature. Among these limitations, uncertaintytiee most
cited problem in the forecasting research. In thgireeering
field, uncertainty exists in many automated systamd fuzzy
set theory is proposed to deal with such problednsce it is
first introduced by Zadeh, the pioneering impactuzizy logic
is unavoidable. In the last three decades, fuzgiglis applied
to many problems and fuzzy time series is one efuthique
contributions of the literature.

[1]-[2] first presented the fuzzy time series (FTBY
introducing time-invariant FTSF model. Chen [3] imoped
the existing approach and the accuracy of Chen'thodeis
found superior than Song and Chissom'’s approachri4]
presented a method for FTSF by using heuristic flinde
Duru [5] developed fuzzy integrated logical foreoas (FILF)
model which is improved the classical FTS by amgnated
approach in univariate time series and it is appide dry bulk
freight index (BDI). In addition, there are manydies have
developed and implemented the fuzzy time serieschmsting
on different study fields [6]-[13].
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effective length of intervals affects the forecagtresult and
the accuracy of forecasting. Therefore, this sfudposes the
fuzzy C-means clustering method which is widelyduss a

ustering method and applies it for the lengthndérvals of
the FTSF. Additionally, the numbers of fuzzy clustare

thdefined by using half of standard deviation.

In the literature, [14] first analyzed the relasbip between
tonnage and freight rate. [15] reported that shipes adjust
to freight and activity rates, and proposed equatio forecast
it. [16] described a theoretical model in whichigie markets
and ship markets are interdependent because #@sshigapital
asset of considerable longevity and [17]-[18] agblithis
model to the dry bulk cargo market and the tankerket.
[19] proposed the supply and demand analysis fodetimy
ship prices by using the theoretical Error Cormttmodel.
System dynamics is also applied as a forecastintpodein
maritime economics [20]-[21]. To overcome foreaagti
problems and fluctuating of freight rates in thepping
market, time series models have recently been dpedlin
the shipping literature [22]-[25]. In the study[6l, the FTS is
used for forecasting the levels of Baltic Dry Ind®Dl) and
its superiority over the previous FTS method isedot

In this paper, first order fuzzy logical relatioish are used
for pattern recognition and crisp predictions aeaeyated by
using time charter series of two ship sizes. Dataollected
from several periodicals for monthly averages. uadnsters
are based on the C-means algorithm which optimibes
shape and mid-point of the cluster. Each tonnagessmed to
be linked with the pricing of other tonnages.
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Il. METHODOLOGY

A.Fuzzy C-Means Clustering

Cluster analysis is an unsupervised learning metfood
statistical data analysis and is applied in maeid§. It is the
process of dividing all data elements into classedusters so
that objects in the same class are as similar ssilge. There
are many clustering methods used such as K-measteihg,
fuzzy C-means clustering, hierarchical clusterimgl &0 on
[26]-[27]. One of the most widely used clusteringthods is
the fuzzy C-Means (FCM) algorithm [27]-[29] in whi®ne
item of data can belong to more than one clustdralated to
each element in a set of membership levels.

The definition of the number of clusters is an imanot
question in FTS clustering since the results mangk due to
the number of clusters. In this study, the clusteesstructured
in the half of standard deviation. An increment &anapplied
to the value of the half of standard deviationdoroothing by
either a reduction or an increase.

B.Fuzzy Time Series

[1]-[2] first introduced the FTSF method. In thiethod, all
historical data transformed to fuzzy numbers. FTISS
superiority than the traditional forecasting mettsoth as not
involving non-stationary, limited number of obsedfeas and
non-linearity. Chen [3] improved the FTSF method by

FCM that is based on minimization of the objectivgerforming simple calculations and his study gaupesior

function is defined as follows:

2
=Xy uwlx-gf 1=mse

i=1 j=1

@)

result than the one [2] suggested.
The definitions of Chen’s FTSF method are as falow
Definition 1Y (t) (t=..., 1, 2, 3,...) is a subset of real
numbers (R). Let Y(t) be the universe of discoutséned by

Where any real number is greater thanyl,is the degree of the fuzzy setui(t). If F(t) includes ofpi(t)(i=1,2,...), F(t) is
membership ok in the cluste, x; is theith of d-dimensional called a fuzzy time series on Y(t).
measured data; is the d-dimensional center of cluster, and Definition 2 If there exists a fuzzy relationship R (t-1, t)

||*|| is any norm expressing the similarity between an§uch that F () = F(t-1)°R(t-1, t), where ° is gpecator, then

measured data and the center.

In the second step, the membership functiois appointed
randomly and the center of clustej) s computed by:

U = [u;] matrix, U°

)

According to the center of clustets®is calculated again by
using Eg. 3 and this iteration will stopmax;
(k+1) _

(|Ui,- qjk|) < ¢ Wheree is a termination criterion between

0 and 1, wheredsare the iteration steps.

1
U, = (3
l i(”)ﬁ _q”)(mz—l)
k=1 ”)ﬁ _Q<"

In this study, the fuzzy C-means clustering mettsodsed
to determine the lengths of intervals for the VAR
method and the termination criterion,is defined as 0.001.
However, the determination of the initial centertloé cluster
is still uncertain in the fuzzy C-means clusteringthod and

the number of clusters has an important impact loa t

performance of the FTSF. Song and Chissom app&®d hs
the length of the intervals and this scale is usedimost all
FTS forecasting (FTSF) studies [3]-[4]. Huarng [Pfoposed
two different methods which are the average of fingt

differences of data and the distribution-based tlengethod
for choosing the first length of intervals for FT.SFolcu [30]

improved Huarng’'s method with a proposed methocdas
a single variable constrained optimization.

F(t) is said to be caused by F(t-1). The relatigndletween
F(t) and F(t-1) can be denoted by F(L)(t).

Definition 3 Suppose F(t) is computed by F(t-1)yrdnd
F(t) = F(t-1)°R(t-1, t). For any t, if R(t-1, t) dependent of t,
then F(t) is considered a time—invariant fuzzy tiseries.
Otherwise, F(t) is time variant.

Definition 4 Suppose F(t-1) = Ai and F(t) = Aj,fazzy
logical relationship can be defined as-AiAj, where Ai and
Aj are called the left-hand side (LHS) and righttiaside
(RHS) of the fuzzy logical relationship (FLR), restively.

C.Vector Autoregressive Fuzzy Integrated Logical
Forecasting (Filf)
The classical FILF model is characterized with a

differencing operation and the last value contrirutFor that
purpose, additional definitions are given as fokklow

Definition 5The lag, or a backward linear function for raw
data that defines the first order differences of triginal
series, is as follows:

A Y() = Y()- Y(t-1) 5)

Definition 6 is an adjustment coefficient that defines the
combination function of the last actual value o fluzzified
data set and the forecasted valuetfefl. The fuzzified data
can be the raw time series data, the first diffeeeindata or the
second differenced set as well.

FR(t+1) = Y(t) * f+ F(t+1)(1-)
A—10,1]

Property The adjustment coefficien® can be defined by
experimental studies, and can also be calculatedaby
simulation of the function to minimize errors iretestimation
period of the data.

Definition 7A FILF algorithm is described by its order:

FILF (i, d, B)

i: number of fuzzy sets.

d: order of differencing operaton{ Y(t)).

(6)
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B: value of adjustment coefficient.

Example 1If the FILF algorithm is specified with 6 fuzzy
numbers ,(\,-, i =1, 2,... 6), the first order differenced series ~
(d=1), and the adjustment coefficient is 0&({.5), then the A = Oluy+0/uz+...+O0lum 5+0/Unm 2+0.5 ki 1+ 1uy,
specification is FILF (6,1,0.5).

Programl. The FILF procedure

Step 1Define the universe of discouréé If the original
data is differenced, the differenced data will leéired by the
universe of discourse.

Step Divide U into intervals according to linguistic terms.

Step 3Define the fuzzy sets dd, and fuzzify the historical
data.

Step 4Derive the FLRs based on the historical data.

Step SClassify the derived FLRs into groups.

Step 6Utilize three defuzzification rules to calculateet
forecasted values.

Step 7 Regulate the forecasted values by the catitin
function of the latest actual value of fuzzifiedtalsset and
forecasted value.

A vector autoregressive FILF model is a particdase of
bivariate FTS modeling. Rather than a single matiel VAR-
FILF is based on two models of two variables. Thetate
FTS is explained in the following definitions.

Definition 8 Let PanamaxP, and HandymaxH, be two
fuzzy time series. Suppose thalP(t-1)=A, H(t-1)=Ni, and ey 1jes. Assume the bivariate inputs at tirdeis A;, N,
P(t)=A.. A bivariate FLR is defined a&, Ny — A , whereA, Rule 1IF the FLRG ofA, N, does not existA, Ny —

N, are referred to as the LHS amy as the RHS of the e TR k@
bivariate FLR. THEN the value ofFv; is A (Naive result), and calculate

The current fuzzy time series models utilize diterfezzy —Ccentroid of the fuzzy sek;, which is located on midpoint, for

sets to define their fuzzy time series. Their digefuzzy sets inference point forecast. . B
are defined as follows: Rule 2IF the FLRG ofA;, N¢ is A, Ny — A, THEN the

Assume there are intervals, which aren, = [di,ds], u, = Vvalue ofFvis A, and calculates centroid of the fuzzy Agt
[0,], Us = [dda], Us = [das]ses Uns = [dmasOimal, Umz = [dry,  WhiCh is located on midpoint, for inference poiatefcast.
2,0ma]s Una = [Ama, 0, @ndUn, = [, O] Rule 3IF the FLRG ofA, Ny is A, Ny — Ag, A, Ny — Ac,

Let A, A,..., Abe fuzzy sets which are linguistic values of ¥ Nk = Aoy A Ne = Ag, and THEN the value dfy, is
K calculated as follows:

A, = O+ +Oky +0.5ip 2+ Lty +0. 51,

follows:

Step 1Collect and arrange the historical data. Define th
universe of discoursd. Find the mea®.,,and the standard
deviatione.

Step 2Calculate fuzzy sets which are in the half of the
standard deviations. Mean of data is located inntiddle of
fuzzy set and upper bound and lower bound is itadee of
al4.

Step 3The transformation of data from crisp to fuzzysset
by the C-means clustering simulation.

Step 4Define the bivariate FLRs. For all fuzzified data,
derive the FLRs according to Definition 5 such as

v Agy Np — Ap; Az, Np — A, ...

Step 50rganize the bivariate FLRs into groups of same
LHS fuzzy sets named the FLR Group (FLRG). LHSs of
groups indicate input value of one period previdaga. RHS
is variety of outputs that experienced in estinraperiod.

Step 6 Calculate the prediction outputs. The forecasted
value at timet, Fv, is determined by the following three IF-

the data set. Define fuzzy sefs, A, ..., A on the universe of A +A +.+A
—_ p
discoursel as follows: Fv, = p e
A= ay/urtanlupta/ust ... +au Un, and calculate centroid of the resulting fuzzy sétich is the

arithmetic average ofng, Mgy,...My, the midpoints ofuy,,
Uizr- . Ukpr FESPECtively.
Step 7The adjustment of the forecasted value is perfdrme
A(:akl/u1+ak2lu2+ak3lus+---+aknlumy by minimizing the error metrics (See the next saqti The
Wherea;L1[0,1], 1<i <k and 1< i < m. The value of, adjustment coefficienf, is calculated.
indicates the grade of membershipwfin the fuzzy sef . D. Error Metrics

The degree of each data is found out accordingher t ~ The performance verification of the proposed meti®d

membership grade to fuzzy sets. When the maximufyaluated by using the root mean squared error ®@Maich
frequently used in forecasting science. The RMSErime

gives an average deviation interval, and increa$tests of
asA . The fuzzy setsA, A ,..., A are defined by larger errors by squares of them. Eq. (8) indict#tesRMSE
function.

Az = Ay/Uy+ap)lUp+apy/ Ust ... 480/ Un,

membership grade is existed/:ip, the fuzzified data is treated

A= 1u,+0.50,+0/us+0/ug+...+Oliy, - -
> (Y(-Fy)

n

A, = 0.5+ 1/u,+0.5k15+O/ug+..+ Ol RMSE= (i=1,2...n) ®)

A, = 0luy+0.5k1+1/ug+0.5k1+...+ Oy,

The detailed application steps can be described as
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Il.  EMPIRICAL STUDY AND APPLICATION

The VAR-FILF model is used to forecast the timertdra
rates of Panamax and Handymax bulk carriers. Thpgsed
method is applied to the first order differencingraw data
because it ensures stationary of data [5] .Theegifmn of the
VAR-FILF model is applied step by step as follows.

Step 1Data of time charter rates between January-2064 a
December-2010 is collected and the first differengiel) of
the sample period are computed (Table I). Stateuttieerse
of discourse ofU. Let Dy,in and Dyay be theminimum time-
charter rate and maximum time-charter rate of kndinst
differences of data. The universe of discoldsis defined by
U= [Dmin-D1, DmaxtD2], whereD; andD, are two appropriate
small numbers. Th®,; andD, are based on the round-down
and round-up process respectively in three deciméabft.

Upanamax= [-20813-187, 8895+105] = [-21000, 9000]

Unanpymax = [-14363-637, 13250+750] = [-15000, 15000]

TABLE |
RAw DATA OF TIME CHARTER RATES AND THEIR FIRST DIFFERENCES

The termination criterion is defined as the 0.001 in the
C-means optimization; the midpoints of each clusterthe
Panamax and Handymax are as follows:

For the Panamaxm,=-19131,m,=-13225,m;=-8493, my=-
5074, mg=-3413, mg=-2006, m;=-964, mg=-195, my=244,
m, =884, my;=1420, m;»=2013, m;3=3997, m,=7870 and
H]15:3000.

For the Handymax;m=-12879, m,=-11309, m;=-6786,
m,=-4509, ms=-2969, mg=-1205, n,=-660, mg=67, ny=1126,
my=1766, my;=1766, m;;=2531, m3=3975, m,=7631 and
ms=12748.

Step 4 & SClassify the FLRs into groups. The LHSs of the
groups indicate the input value, which is the fireder
differencing of one period of previous data. TheSRHs the
variety of the outputs that were exposed in theedasting
period. Table 1l shows FLRGs for Panamax and Hamady
respectively.

Step 6 Calculate the forecasting outputs of the first
difference series based on the rules in the StEftite Section
2.3. The forecasted raw data is calculated by ughmy
forecasted value of the first difference datasdoksws:

9)

FVt (raw) = Y(t)+ FVt (differenced data)

TABLE Il
Fuzzy LOGICAL RELATIONSHIP GROUPSBASED ON THE FIRST ORDER
DIFFERENCING

Date PANAMAX Time charter HANDYMAX Time chaet
Raw data d=1 Raw data d=1
Jan-04 45719 29828
Feb-04 46875 1156 32094 2266
Mar-04 43219 -3656 31391 -703
Oct-10 22313 -1688 19500 -1188
Nov-10 21063 -1250 18688 -813
Dec-10 19000 -2063 17875 -813

Step 2In Table Il, the descriptive statistics of timeacter
data of the first order differenced PANAMAX and
HANDYMAX series are indicated. Standard deviation i
calculated and the half of the standard deviatidricky is

PanamaxA
AL, N — A
AL Ko — Ay
As, Ns — Ag, Ag
A, R — @

Ass, @13 => 515

. . - . Ags, Nis— Ag
approximately 2000 is used for finding the firshdeh of the Fus Rhs @0
. ) —>
interval of the Panamax and the Handymax (Table I1) ik '
HandymaxN
TABLE Il No, A Ao
RAwW DATA OF TIME CHARTER RATES AND THEIR FIRST DIFFERENCES Ny, Ao— ¢
T diff. of PANAMAX 15 diff. of HANDYMAX L
Minimum value -20813 -14363 Ns, As — Ns, N
Maximum value 8895 13250 Ns, As— Ne, N
No of data 84 84
Standard dev. 4751 4228 Ris, Aiz— Q
1 1 1 lev Altl_’ ¢
Step 3Determine the first length of interval for the fyzC-
means clustering. In this case, there are fiftaggrvals for the N, As— @

time charter rates for Panamax and Handymax buikecs.
The initial intervals of the Panamax are defined ugs[-
21000,-19000], u,=[-19000,-17000], uz=[-17000, -15000],
u,=[-15000, -13000]us=[-13000,-11000]us=[-11000, -9000],
u,=[-9000, -7000], ..., u;5=[3000,5000], uy,=[5000,7000],
u;s=[7000,9000]. The initial intervals of the Handymare
calculated as=[-15000,-13000],u,=[-13000,-11000],us=[-
11000, -9000],u,=[-9000, -7000], us=[-7000,-5000], us=[-
5000, -3000], u,=[-3000, -1000], ..., u;3=[9000,11000],
u1,~[11000,13000]u;5=[13000,15000].

Step 7Estimate the adjustment process. Breoefficient is
calculated by minimizing the error metrics. Fortb®anamax
and Handymax series, thecoefficient is estimated as 0.05
(in-sample) which indicates the series are broadlgpendent
from the current fluctuations.

A.The Application of Benchmark Methods

For the comparative analysis, a group of benchmark
methods are selected from the conventional timdeser
analysis. The Box-Jenkins type autoregressive iated
moving average (ARIMA) and vector autoregressivelet®
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(VAR) are performed to the intended data and tleei@cy of
these approaches is also presented. As a basednblaive |
results are also introduced.

Table IV indicates descriptive statistics for thanBmax
and Handymax time charter rates. The standard timvja
kurtosis and the coefficient of variation indicatbat datasets
are relatively stabilized and a volatility modehist required.

TABLE IV
DESCRIOTIVESTATISTIC OFHANDYMAX AND PANAMAX TIME CHARTER
SERIES(2004M01-2010M12)

Granger causality-Block exogeneity Wald test isqrened
for the VAR models. Panamax series is found a gtron
Granger-cause of Handymax series while Handymaerssés
a weak Granger-cause of Panamax series. From these
indications, causality is found stronger from upfm@rnage to
lower tonnages (Table VII).

TABLE VI
DESCRIOTIVESTATISTIC OF HANDYMAX AND PANAMAX TIME CHARTER
SERIES(2004M01-2010M12)

OLS 2004M01-2010M12

Handymax TC Panamax TC
Mean 28722.69 33928.13
Median 23940.63 26618.75
St. Dev. 14652.50 18936.20
Maximum 66687.50 79625.00
Minimum 10887.50 11687.50
Skewness 1.280 1.213
Kurtosis 3.552 3.310
C.V.* 0.510 0.558
*Coefficient of variation

For the stationarity testing, the conventional Aegited
Dickey-Fuller [31] process is applied and Both egrarel (1)
and further analysis is performed with the firstder
differenced series.

For the lag order selection in VAR model, cumulatiest
statistics are calculated by E Views 6.0 softwdrable V
introduces the results of VAR lag order test angr@aup of
statistics is indicated. Akaike information critami (AIC) [32],
Schwarz Bayesian information criterion (SBIC) [33@hd
Hannan-Quinn (HQ) [34] test statistics stronglyioade that

ARIMA (2,1,0) VAR (2)
Regressor  dHTC dPTC dHTC dPTC
dHTC (-1) 0.79* (7.61) - 0.330* (2.68) -0.14(60)
dPTC (-1) 5 1.14%(11.89) 0.61* (4.93) 1.281(85)
dHTC (-2) -0.35%(-3.42) - -0.33*%(-2.74) 0.21%1.866)
dPTC (-2) - -0.49*(-5.11) -0.10 (-0.76)-0.63%(766)
S.E. 3248.11 2669.67 2778.20 2624.58
R-squared 0.42 0.69 0.59 0.71
Log-Likelihood -768.87 -752.98 -755.17 -T50.
AIC? 19.03 18.64 18.74 18.63
SBIC 19.09 19.70 18.86 18.74
DW° 1.93 1.96 2.01 2.00
White? (p) 17.40[0.00] 3.36[0.02] 12.65[0.00] 9.1B]O]
Breusch-Godfrey tefp) 0.40 [0.66] 0.17 [0.83] 0.08 [0.92] 0.33[0}72

Figures in parenthesis under estimated coefficiargg-statistics. * and **
refer to the significance at the 5% and 10% levefpectively. Figures in
brackets arg-values.

2 Akaike Information Criterion.

® Schwarz Bayesian Information Criterion.

¢ Durbin-Watson statistics.

4Test of residual heteroschedasticity.

the second order lag is the most significant stmact TABLE VII
VAR GRANGER CAUSALITY -BLOCK EXOGENEITY WALD TEST (2004MO01-
TABLE V 2010M12)

UNIT ROOT TEST OFTHE HANDYMAX AND PANAMAX TIME CHARTER SERIES Excluded Chi-sq dfp

(2004mM01-2010M12) dPTC 30.98 2 0.000 (Depended variattéTC)
Lag Log likelihood ~ AIC SBIC HQ dHTC 4.74 2 0.093 (Depended variath&TQ
1 -1416.95 37.39 37.51 37.44
2 -1396.89 36.97* 37.21* 37.06* The traditional FTS methods are applied accordmghe
i :iggg:gj g;:gg g;:gg g;éé related literature and the results are presented tfie

*Minimum of the column.

Table VI presents the model estimations for ARINEAL(O)
and VAR(2) functions. The order of AR and MA termae
based on the partial autocorrelations and autdedioes.
Most of the explanatory variables are significanb% except
dHTC(-1) in VAR model ofdPTC,dPTC(-2) in VAR model

univariate FTS (cFTS) and bivariate FTS (Bi-cFTSB)cure.

IV. RESULTS

Table VIl shows the RMSE results of the final misddhe
results explicitly indicate that the VAR-FILF modes
superior in both series. The classical VAR (2) noite
relatively better than other benchmark methodsirfesample

of dHTC anddHTC(-2) is significant at 10% in VAR model of accuracy. The classical FTS method of Chen doeperfdrm
dPTC. Panamax models are relatively more accura@e thbetter than the classical time series methods. Mbtie FTS

Handymax models according to higher levelsRa$quared
statistics. Standard errors are around 1-1.5 tiofestandard
deviation which exposes the weakness of the motlélste

[35] test for heteroscedasticity and Breusch-Godfgs]-[37]

serial correlation tests confirm the randomnessesfduals.
Since the models are in autoregressive form, thebibu
Watson (DW) [38]-[39] statistics are just for infoation
(Durbin-Watson statistics also confirms the whitese
principle in residuals). Breusch-Godfrey test ressare more
robust and preferable for the intended model.

studies do not compare its accuracy among the ictdss
econometrical methods and just focus on accura¢y@rFTS
literature. However, the presented results stromglicate that
the FTS method must be checked with the classioal $eries
approach; otherwise FTS methods are unnecessarggses.
The VAR-FILF model can be used in automatic clustgr
reasoning and extrapolation mode. The number of \/Ad®
can also be defined by optimization of the sum auiased
errors or RMSE metric itself. Pre-condition testels as the
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automated |ag order selection by AIC and SBIC are aso time-
saving and robust alternatives.

TABLEVIII
COMPARISION OF THE RM SE ACCURACY FOR HANDYMAX AND PANAMAX
TIME CHARTER RATES (2004M 01:2010M 12).

Handymax TC Panamax TC
VAR-FILF 1458.58+* 1167.85**
Bi-cFTS 3805.29 7880.39
cFTS 4577.67 4732.06
ARIMA (2,1,0) 3207.76 2636.51
NAIVE | 4205.86 4733.57
VAR (2) 2708.74*2 2558.96*2

*1 Minimum of the column. *2 The second minimum of the column.

The possible reason of this outcome is depending on the
consistency of causality which is discussed in the previous
section. While the Panamax series is a strong cause of the
Handymax series, the opposite direction is weakly consistent.
Therefore, the Bi-cFTS model obtains an additional accuracy
by reducing the squared errors.

V. CONCLUSION

In this study, the classical fuzzy time series forecasting
method is extended by used VAR-FILF methods to improve
the accuracy of forecasting. In addition, the C-means
clustering method is proposed to optimize the distributions of
the cluster sets and the half of the standard deviation is
implemented for the initial intervals of the C-means clustering.
The forecasting results of the VAR-FILF approach are
compared with mostly used FTS methods and traditional time
series analysis and the VAR-FILF method has found superior
than benchmark methods.

The empirical study is related to Handymax and Panamax
time charter rates as they play significant roles in the shipping
economy [40].
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