
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1273

Abstract—From the perspective of system of systems (SoS) and

emergent behaviors, this paper describes large scale application
software systems, and proposes framework methods to further depict
systems’ functional and non-functional characteristics. Besides, this
paper also specifically discusses some functional frameworks. In the
end, the framework’s applications in system disintegrations, system
architecture and stable intermediate forms are additionally dealt with
in this in building, deployment and maintenance of large scale
software applications.

Keywords—application software system, framework methods,
system of systems, emergent behaviors

I. INTRODUCTION
PPLICATION software systems are playing an important
role in many society activities. Nowadays, more and more

functional requirements for application software systems are
being presented, while construction and maintenance jobs have
become more and more difficult. For example:

 It requires a relatively short time span to build or
rebuild in order to make quick responses to
real-time requirements;

 Functional requirements are ambitiously
expanding;

 More and more uncertain requirements have come
up, which requires adaptations in actual executions;

 Systems need to become more dynamic and more
open.

Consequently, the functions and technologies of application
software are more and more intricate and the scale accordingly
turns out to be larger. Additionally, associations among
application software systems are more and more complex,
while more systems are involved in the ultimate goal of the
whole application. With the rapid and emerging development
of SOA, cloud computing, ubiquitous networks and Ambient
Intelligence (AMI), the constructions, deployment, execution
and maintenance have been significantly changed and updated.
This garners advantages, but at the same time, there are also
emerging problems which never existed in mere monolithic

Han-hua Lu is with Nanjing University of Posts & Telecommunications,
Nanjing, Jiangsu Province 210003 China (corresponding author, phone:
+86-25-83491312; fax: +86-25-83491372; e-mail: luhh@njupt.edu.cn).

Shun-yi Zhang is with Nanjing University of Posts & Telecommunications,
Nanjing, Jiangsu Province 210003 China (e-mail: dirzsy@njupt.edu.cn).

Yong Zheng is with Nanjing University of Posts & Telecommunications,
Nanjing, Jiangsu Province 210003 China (e-mail: zy_njupt@hotmail.com).

Ya-shi Wang is with Nanjing University of Posts & Telecommunications,
Nanjing, Jiangsu Province 210003 China (e-mail: wangyashi@njupt.edu.cn).

Li-juan Min is with Nanjing University of Posts & Telecommunications,
Nanjing, Jiangsu Province 210003 China (e-mail: minlj@njupt.edu.cn).

systems. New technologies and methods are required to solve
these problems.

Applications’ functions are integrated under the context of
SOA and cloud computing, while the constituents of these
functions are required to be provided by autonomous systems.
It is a growing popular tendency in current applications. Take
actual applications for example, more and more people would
like to use meta-search engines in order to obtain better results
and better performances; more and more application integrators
are inclined to use GIS services from the Internet as position
functions for their customers’ IT systems; and more and more
enterprises are utilizing CRM based on SaaS in order to offer
support for their businesses.

Coupled with applied technologies in order to get more
convenient services and advanced efficiencies, as well as to
implement flexible services with low costs, the dependency on
these autonomous systems also gave its share of headaches. For
example:

 It is difficult to predict the applications’
performance due to the invisibility of external
autonomous systems. However, performance
problems may directly influence the application
goals when it comes to crucial situations.

 Both associations among complex systems and their
openness enable security situations to be more
intricate. Assorted attacks and misuses could
possibly destroy the whole application.

 It is difficult to control external autonomous
systems when using them. Emergent behaviors
which were not observed before and are beyond our
expectations may result in business processing
failures.

To sum up, current large scale application systems are in the
process of switching from isolated monolithic systems to the
more open process of system of systems. This characteristic has
aroused software industries’ attention. The concepts of system
of systems and emergent behaviors [1] are proposed and
introduced to figure out solutions for these problems.

According to the concepts of system engineering, systems
with the characteristics below can be categorized as SoS
(System of Systems) [2-3] ：

 Obtain operational independence；

 Obtain managerial independence；

 Obtain geographic distribution；

 Perform emergent behavior;
 Perform evolutionary development

Han-hua Lu, Shun-yi Zhang, Yong Zheng, Ya-shi Wang and Li-juan Min

A Functional Framework for Large Scale
Application Software Systems

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1274

Emergent behaviors usually manifest the following
characteristics [4、5]: "The common characteristics are: (1) a
radical novelty (features not previously observed in systems);
(2) a coherence or correlation (meaning integrated wholes that
maintain themselves over some period of time); (3) on a global
or macro "level" (i.e. there is some property of "wholeness");
(4) the product of a dynamical process (it evolves); and (5) are
also "ostensive" (it can be perceived). For good measure,
Goldstein throws in supervenience -- downward causation."

Obviously, large scale application software systems also
have these characteristics, as they integrate autonomous
constituents. This tendency requires the following applications,
including cloud computing and SaaS to face these problems
below：

 The system can only use the function of constituents,
but cannot maintain full control；

 It is difficult to totally define constituents’ functions
as well as the predictions of functions evolution；

 The system is invisible to its constituents’ structures
and technologies, and therefore also to their
monitoring and maintenance.

Due to the fact that large scale application software owns
characteristics of SoS, and its application goals are
implemented by integrated autonomous systems, therefore,
descriptions and definitions should be conducted during both
developing and executing stages, so its constituents and the
whole system can satisfy business goals. Additionally, SoS
performs evolutionary development, so characteristics
requirements may be continuously changing in the process of
development. It requires certain abstract-leveled descriptions to
ensure the systems’ stability and consistency.

Functional abstract descriptions are further discussed in this
paper. These abstract descriptions can be continuously
specified and formulized in the processes of system building
and reconfiguration in order to guarantee functional integrity
and consistency, as well as the stability of the long-term
evolutionary development and quick responsibility towards
requirement changes for application goals.

II. BASIC REQUIREMENTS FOR SOFTWARE SYSTEMS
In order to guarantee basic application functions, a software

system is required to obtain these characteristics:
 It can meet functional requirements of application

goals；

 It can be executed stably and continuously；

 It can run with satisfactory performance；

 It can ensure security both for applications and for
data.

The characteristics above can be divided into two scopes –
functional and non-functional. For functional scopes, as
depicted by Figure 1, there are two orientations for system to
perform evolutionary development – The first one is from
abstract to detailed development in order to ultimately satisfy

systems’ functional requirements; while the other depicts
deformalization to formalization in order to ultimately satisfy
systems’ execution requirements. No matter from perspective
of the whole system and life cycle, or from a view of
constituents’ maintenance or development, it will always
perform in the same way.

Fig. 1 System’s Evolutionary

Because of the uncertainty of requirements and the changes

of systems execution architecture, the ultimate goal of these
two orientations could not be achieved at the same time. This
turns out to be significantly difficult, especially when it comes
to large scale application software systems. The specific
reasons can be listed as follows:

 Systems have a long time life cycle, and they also
need to be evolutionarily developed；

 On the condition of no controls, constituents’
emergent behaviors cannot easily coincide with the
two goals indicated above；

 Understandings of business goals are always
changing in the lifecycles of systems；

 Business goals are continuously changing through
different periods；

 Constituents are supposed to run and be maintained
independently；

 As a SoS form, its constituents’ goals are not
consistent with the scopes of the system；

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1275

 Constituents are required to be alternated or
reconfigured according to dynamic requirements；

 System environment is intricate and is frequently
subject to change.

Based on the situation and problems indicated above, we can
point out that it is difficult to totally guarantee the consistency
of the application of SoS and the entire business goals,
efficiently control and utilize the systems’ emergent behaviors,
reasonably organize systems’ functions and information, and
ensure agile business support.

III. SYSTEM ABSTRACTION AND FUNCTIONAL FRAMEWORK
We can consider an application software system as a

Discrete Event Dynamic System (DEDS) [6], whose inner
status and outputs can be described by functions related to past
status and inputs. From this view, we can describe these
software systems in such a way: these systems will accept
inputs or stimuli, then create their own outputs and change their
status. This behavior can be depicted in the formulas below:

() ((), ())oO n F I n S n= (1)

() ((), (1))sS n F I n S n= − (2)
In the formulas above, O, I and S are all vectors:

1 2(, , ...,)iO o o o= (3)

 1 2(, ,...,)jI i i i= (4)

1 2(, , ...,)kS s s s= (5)

 Specifically, O stands for inputs, while I for outputs, and S
equals to the internal status of systems. These vectors and their
components are all time sequences; FO represents the functions
which can be observed outside the system, FS stands for
processing functions for the system’s permanent data storage;
subscript ‘n’ signifies the current value of discrete series, while
‘n-1’ stands for the last value. The system abstractions are
depicted in Figure 2.

Fig. 2 System abstractions for application software

 Furthermore, if FS and FO’s processes towards S can be
combined to formulate an information object SF, and represent
the separated FO as F, then the whole system can be depicted by
Figure 3 which is an object-oriented representation. In this
view, a software system can be represented by the input vector
(I), the output vector (O), the inner status vector (SF) and outer
behaviors (F) [7].

F

SF

Input Output

Fig. 3 System’s object-oriented representation

In the case of SoS, though there may be complex constructs

within the boundaries of the whole system, we can still define
the framework with these abstractions from the perspective of
business functional requirement satisfactions. Ideally, we can
consider the results of SF concretion and formulizations as the
systems’ basic components or constituents, while viewing F as
the orchestration or composition of these basic components or
constituents, and assume F to be stateless.

Ideally, both F and SF should be fully established according
to business requirements, to meet these requirements.
However, when it comes to large scale application software
systems, this ideal condition does not exist, due to the following
reasons:

 System requirements cannot be totally scheduled in
the process of constructing. Growing evolutionary
development is needed to satisfy dynamic business
requirements；

 The structures of S and SF change frequently along
with the development of requirements or
technologies, during the whole life cycle of the
system；

 Understandings of business requirements are
always changing as well. We cannot schedule a
long-term stable system according to current
temporary requirements；

 As a SoS, a large scale information system always
relies on the functions or services of different
autonomous systems, while the goals of these
autonomous systems may not coincide with those of
SoS.

Therefore, the continuous reconfiguration according to
dynamic business requirements and computing environments is
required, and this reconfiguration should not interfere with
system operation.

In order to attain these goals, we can make an effort to make
use of system association techniques [8], to reconfigure the
system rapidly, in accordance with system specification
guidelines, and use the specification in system development
and maintain activities, to get system stabilities and greater
processing consistency.

Regarding the system function, popular techniques used for
reconfiguration are workflow technologies, generalized
programming, rules engine and strategies technologies,
machine learning, and resource discovery, etc. All the
techniques largely improve systems’ flexibilities. However,
when it comes to large scale application software systems, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1276

precondition of the application of these techniques is the full
understanding of systems’ short-term and long-term goals, and
knowledge of the flexible controls of systems’ evolutionary
developments. The description from abstractions to
specifications is required in order to achieve this criterion.
Functional framework here is the corresponding abstract
description for system functions.
 In reference [7], we proposed a framework architecture
composed with functional requirement framework based on
enterprise or organization processes, application framework
abstractly depicted system’s behaviors, and the information
framework describing systems’ information, which can be
depicted in Figure 4.

Business
Goal

Appli-
cation

Infor-
mation

Application
Supports
Business

Information
Describes
Business

Application
Processes
Business

Fig. 4 Systems’ Functional Framework

Comparing this framework architecture with previous
indicated abstractions, application framework is for system
behaviors (F) abstraction, while information the frameworks
for Inputs (I), Outputs (O) and System Status (SF), and the
business framework are requirements for applications.

The ultimate function of these frameworks is to specify
system functions. These specifications can be executed in the
system planning phase, analysis and design phases, as well as in
the maintenance phase. There are two functions for these
specifications:

 Targeted objects classifications. For example,
through business frameworks, collected
requirements can be classified into specified
process catalogues, to standardize these
requirements. These classifications can guarantee
system functional consistency in the whole life
cycle.

 Targeted objects associations. Association
relationships among the three parts of functional
framework will be taken advantage of in order to
establish associations among targeted objects. For
example, associations between application
framework and business framework can help make
sure which application units can support classified
business units to which the requirements is referred.
These associations can guarantee the orderliness
and coherence in the process of development and
maintenance, in order to further guarantee resource
reusages and the growing evolutionary
development, and also prevent components and
codes from unreasonable expansion.

The specifications of this framework enable us to obtain
descriptions of system requirements, applications and
information. The pith of the framework is to establish different
levels of abstractions and apply them to diverse scopes, such as
industrial, entrepreneur or organizational, either with project or
system planning, all of which need more specific maintenance.

IV. DISINTEGRATION AND SPECIFICATION BASED ON
FRAMEWORKS

Layered-structure is an efficient solution to fix complexity
problems. However, in case of SoS, it is difficult to realize
layering towards system controls, due to the autonomous
characteristic of its constituents. Therefore,
layered-abstractions are useful especially when facing system
complexity problems. And the process from abstractions to
specifications does well to system implements.

Specifying functional implements is the main function of
framework. Specifically, in the process of system builds and
maintenance activities, framework is used to specify
requirements, classifications and associations between
information and applications. Specifications and formalizations
are also conducted under the guidance of frameworks. In order
to realize this goal, disintegration and specification based on
frameworks should be further researched on.

The disintegration here is on the basis of system abstractions
in the Figure 3, that is:
 (,)O F SF I= (6)

O, SF and I are all discrete time series vectors.
As indicated before, F is stateless. It integrates SF and I, and

then creates outputs. Therefore, disintegrations based on
frameworks firstly emerge on the disintegration of SF.
SF can be disintegrated into several sub-vectors:

21(, , ...,)nSF sf sf sf= (7)

And then there are two methods to proceed.
1) Consider sf1, sf2, …, sfn as atom vectors which cannot be

further disintegrated. Then integrate them according to certain
rules to formulate information system (as Figure 5 described):

1

m

i
i

SF SF
=

=U (8)

 1 2(, , ..., , ...,),i i i ij ik ijSF sf sf sf sf sf SF= ∈ (9)

iSF SF⊆ (10)
The combined sets formulated by SFi could be orthogonal,

which means:
,i j kSF SF SF j k∀ → ∩ = ∅ ≠ (11)

Of course, these combined sets can be not fully orthogonal
also:

, ,j k j kSF SF SF SF j k∃ ∩ ≠ ∅ ≠→ (12)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1277

 Fig. 5 SF’s disintegration and integration

2) Due to that SF contains data and its processing, we can
consider sf1, sf2, …, sfn as a lower-layer system, and further
conduct disintegrations. In case of every sf, we can also use its
inputs (Isf), outputs (Osf), behaviors (Fsf) and status (SFsf) to
describe, which can be depicted by Figure 6. What should be
noticed is that, Fsf is stateless, while SFsf stands for its status
：

(,)Osf Fsf SFsf Isf= (13)
This kind of disintegration can be continued continuously

until a required specific extent is achieved.

 Fig. 6 SF’s disintegration

Method 1) is mainly used in system integrations. According
to certain rules, system information SF will be divided into
different constituents (SFi), then functional units defined by
framework will be classified to include in these constituents.
The only parts for implement are combinations and invoking
sequence processed by SF. Ideally, F can be realized by
generalized programming, such as workflow and rules, etc.
Web Services programming using BPEL can be viewed as one
of these implements.

Method 2) is applied in system functions analysis and
implements. We can further disintegrate information of sf to
develop its information processing functions and algorithms.
These disintegrations can be designed as recursive ones. The
disintegration results can be used for deeper-layered
framework descriptions, and also can be implement model and
design for further integrations. These disintegrations are the
specifying process indicated in chapter one. Traditional
object-oriented software development can be considered as the
implement of these disintegration processes.

If object-oriented approach is used to describe business
requirements and business process, then business goals
framework can be conducted through similar disintegrations
and specifications.

V. SYSTEM ARCHITECTURE AND FRAMEWORK METHODS
As indicated before, one of the most important

characteristics of SoS is the autonomy of its constituents.
Reference [9] pointed out that higher-leveled SoS can only
pose influences on these constituents, but cannot control them.
This is the most significant difference between system and SoS.

However, from actual perspective, these influencing and
controlling relationships between SoS and its constituents are
relative, which means that there are different
leveled-influences, and there is gradient processes between
influences and controls, instead of absolute separated ones. To
integrate as a SoS, there exists parts totally be controlled, as
well as parts totally be autonomous. Of course, parts interposed
in these two situations are also allowed.

In case of large scale application software system, it is
impossible to fully not include controlled parts. For example,
An order management system is required to communicate with
products supplier systems, in order to perform a full functions
including product ordering and product applications. We can
consider this system as a SoS, while product supplier system
and geographical information system can be view as the
autonomous constituents. However, order management system
requires essential status management and controls, such as
customer information and product information, which may be
provided by outer systems, but whose inner status is controlled
by the enterprise. In other words, these constituents are owned
by the enterprise.

Based on this situation, as well as the processing method 1)
indicated in chapter four, we can separate sf into two types – the
first one is being controlled constituents SFC, while the second
one is constituents without controls SFU:

U CSF SF SF= + (14)

1 2 ,...,(, , ...,)U U U Ui UmSF sf sf sf sf= (15)

1 2 ,...,(, , ...,)C C C Cj CmSF sf sf sf sf= (16)

As a SoS for large scale software system, these two parts
need difference processes to proceed.

Regarding SFU, it can be processed by method 1) indicated in
chapter four, due to its unknown inner structures. It is a method
which only integrates outer functions to formulate all the
required functions for the whole system. It is the common
approach applied in SOA and cloud computing. In this way,
functions integrated by sf and its integrations are views as
stateless ones whose outer functions are only our focused
attentions on. The very problems about processing of sfU and its
integrations are not the basic functions implements, but the
special problems come up from SOA and cloud computing.
These problems can be listed as follows:

 How to define and discover functions or services；

 How to notice changes of current functions；

 How to ensure system’s stability when changes
emerge in outer autonomous constituents；

 How to guarantee business supports during system
recombination；

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1278

 How to process outer service errors and exceptions；

 How to guarantee the security and performance of
outer services, as well as the quality of services；

 …
Additional functions and structures, such as Web Service,

SCA and structures mentioned in reference [1] are required to
solve these problems.

Problems are not that obvious when it comes to SFC. Instead,
the attention should be paid on function implements, inner
status maintenance and guarantees which can be processed by
tradition approaches. Method 2) pointed out in chapter four is
suitable for these problems. Specifications of sfC should be
conducted until we get the required functions. Due to that it
belongs to the normal software engineering scope, this paper
will not indicate more about that.

VI. STABLE INTERMEDIATE FORMS AND FRAMEWORK
METHODS

Because of the dynamic changes of context and
requirements, in macro-view, changes are always continuous
during the life cycle of large scale software systems. That how
to keep stability and decrease the risk brought by changes turns
out to be a crucial issue for large scale application software
systems.

Due to the complexity of large scale SoS and the uncertainty
of context, if Stable Intermediate Forms (SIF) [10-11] can be
established in the process of builds and maintenance, and
further be developed in a revolutionary way, it will facilitate the
overall goals’ achievements. Iterative and incremental
developments are all outcomes of these methods. In case of SoS
composed by several autonomous systems, SIF has been
involved in not only development jobs, but also executions and
maintenance stages.

When establishing SIF, constructed SIF requires evaluations
in order to grasp the development and maintenance progresses
and the overall situations. Based on this purpose, framework
can be viewed as the most efficient tool for these evaluations.
Therefore, functions evaluations are recommended to conduct
from perspective of framework disintegrations.

Regarding the evaluation contents, functions coverage and
functions specifications can be the main two orientations.

Currently, the normal coverage detection method is on the
basis of Petri Nets which will be established according to
mapping of requirements [7] and peer-to-peer process flow of
requirements. The established net system N is as follows:

(, ;)N P T F=

(17)
P stands for the system status SF, while T for the system

function F.
Regarding status, we have disintegrated as follows:

{ }, 1, 2, ..., ;iP SF sf i n= = = (18)
In order to establish Petri Nets, F is also required to be

integrated:
{ }, 1, 2, ..., ;jT F f j m= = = (19)

In the formula above, fj equals to the No. j step in the whole
process. As indicated before, on ideal conditions, system does

not exist the entity of F which is actually an integration of steps.
Every step integrates several sf, and then conducts processing
to implement corresponding functions. In real SOA practice,
BPEL defined sets using for node processing can be viewed as
F, while all Web Service sets revoked by it can be considered as
SF. Through these static analyses, it can be used for functional
coverage evaluations for the system.

What is worthy of noticing is that, Petri Nets indicated above
represent relationships between processing steps and
information processing instead of the whole process, though
Petri Nets are established for peer-to-peer processes. These
relationships are reflected by Pre-sets and Post-sets. If sfi is the
essential information depended by fj processing, then sfi
belongs to fj’s Pre-set. If sfi’s status is changed after fj’s
processing, then sfi belongs to fj’s Post-set. It is similar to the
concepts of data flow graph. But its targeted object is not data.
Figure 7 gives an example of Petri Nets representation.

Fig. 7 Petri Net Representation

In this example:

1 2 3{ , , }P sf sf sf= (20)

1 2{ , }T f f= (21)

1 1 2 2 3 1 1 2 2 3{(,), (,), (,), (,), (,)}F P T T P sf f sf f sf f f sf f sf= × ∪ × =

 (22)
There are two processing steps in this figure – f1 and f2. The

Pre-set of f1 (Cf1) is:

f1 1 3C { , }sf sf= (23)
The Pre-set of f2 (Cf2) is:

f2 2C { }sf= (24)
In Figure 7, f1’s processing depends on sf1, sf2 and sf3. It

requires revoking sf1 and sf2 to obtain relevant information.
After that, the status of sf3 will be changed accordingly.

In this representation, a place without pre-sets means the
processing of the whole process poses no influences on its
status. If no sf owns pre-sets in the whole processing graphs,
then this sf can be member of SFU indicated before, because
there are totally no influences on its status, not to mention
controls; on the contrary, if a sf owns pre-sets and also tends to
be a member of SFU, other conditions, especially mainly on
semantics will be required.

Additionally, characteristics below can be also concluded
from this representation:

 A f without pre-sets only relies on inputs to
complete processing functions, which has nothing
to do with system status；

 The implement of a f without post-sets mainly

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1279

equals to output processing；

 A sf without post-sets is independent information
for system. And it only provides interfaces for other
systems.

The conclusions above are the observation results of the
whole system processing.

Based on these representations, assorted analysis methods in
Petri Nets can be applied to evaluate the implement levels of
peer-to-peer processes functions in systems. When it comes to
that some sf are unavailable or incomplete, it can be used to
further evaluate the specific influences of peer-to-peer
processes in systems. These evaluations can be viewed as the
basis for establishing stable intermediate forms, and further be
used to judge the status of functional implements.

The building of N does not rely on the design and implement
of sf. Instead, it only depends on the descriptions of
information processing functions which is the main jobs of
frameworks.

On the condition of incomplete sf, method 2) mentioned in
chapter 4 which needs sf subdivisions will be required to
provide more precise evaluations. The scope of this job is the
part in Fsf related to complete set of processes. The specific
method is similar to previous indicated ones. Besides, there are
two points worth noticing:

 Through subdivisions, we can get the quantitative
values of system-defined abstraction levels. After
weight processing, we can make sure the extent of
applicable implement of current system functions,
which will further provide references for building
stable intermediate status；

 The net system indicated above can be concluded
from Petri Nets for system processes. Subdivision
can also be implemented by Petri Nets methods. If
cross-layers are in need, the concepts of sub nets
could be applicable. Reference [13] provided an
approach for master-slave workflow system.
Layered-dyeing in this approach will be also
beneficial for subdivision jobs.

VII. CONCLUSION
This paper discusses normal concepts of framework methods

for large scale application software systems, and specifically
introduces the principles and constituents of functional
frameworks. The functions of this functional framework on
system disintegrations and integrations, system architecture
under SOA and cloud environment, and stable intermediate
form buildings are also discussed in this paper.

Of course, functions of framework are not limited to these
ones. Except from what we have pointed out, it also plays an
important role in software engineering processes and system
specifications, which we have introduced in references [7, 12].

Current research contents towards framework methods also
include:

 Research on methods for system characteristics sets
descriptions. How to formally represent the overall
and separated functions will be the main theme.

 The applications of functional framework in the
service discovery areas. Based on characteristics
sets, clustering algorithms will be applied to find
suitable services.

 Quantitative measurement towards the mapping
relationship among business application goals,
system applications and system information.
Through this quantitative measurement, the support
extents for business goals can be precisely
evaluated.

 Mapping and measurement relationships among
business goals, application and information units in
functional framework.

 Structures and descriptions of security and
performance frameworks.

The ultimate goal of these research jobs is to enable a large
scale application software system owing SoS characteristics to
better satisfy business requirements; be able to conduct quick
recombination according to dynamic changes of requirements
and contexts; and also guarantee stable executions during the
long-term evolutionary developments.

ACKNOWLEDGMENT
This paper is supported by National Key Technology R&D

Program in the 11th Five year Plan of China
(No.2007BAH17B04), National High-Tech Research and
Development Plan (863) of China (No. 2009AA01Z212,
2009AA01Z202), Natural Science Foundation of Jiangsu
Province (No.2007BK603), High-Tech Research Plan of
Jiangsu Province (No.BG2007045) and Talent Introduction
Foundation of Nanjing University of Posts &
Telecommunications (No.NY2007044). At the same time,
thanks to the support of Fujian Fujitsu Communication
Software Co., Ltd. (FFCS). With their support, this study works
well and is processed in a smooth way.

REFERENCES
[1] Radu Calinescu and Marta Kwiatkowska, Software Engineering

Techniques for the Development of Systems，In Proc. 15th Monterey
Workshop on Foundations of Computer Software, pages 86--93.
September 2008

[2] Sage, A.P. and C.D. Cuppan, On the Systems Engineering and
Management of Systems of Systems and Federations of Systems,
Information, Knowledge, Systems Management, Vol. 2, No. 4, 2001, pp.
325-345.

[3] Maier, M.W., “Architecting Principles for System of Systems”, Systems
Engineering, Vol. 1, No. 4, 1998, pp. 267-284

[4] Corning, Peter A. (2002), "The Re-Emergence of "Emergence": A
Venerable Concept in Search of a Theory"，Complexity, Vol. 7, No.4,
2002, pp.18-30

[5] Goldstein, Jeffrey (1999), "Emergence as a Construct: History and
Issues", Emergence: Complexity and Organization 1 (1): 49–72

[6] Xi-Ren Cao （Editor-in-Chief）, Discrete Event Dynamic Systems, Theory
and Applications, ISSN: 0924-6703, Springer, 2008

[7] Lu Hanhua, Wang Yashi and Min Lijuan, Framework Method Used for
Large Scale Application Information Systems, INC2010，May 2010

[8] Lu Hanhua, Zheng min, Component and Service Integrating Technologies
in OSS, Chinese Journal of Telecommunications Science, No.9, 2006,
pp.42-46

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1280

[9] David A. Fisher, An Emergent Perspective on Interoperation in Systems
of Systems, CMU/SEI-2006-TR-003 ESC-TR-2006-003, March 2006

[10] Kevlin Henney. Stable intermediate forms: A foundation pattern for
derisking the process of change. In Proceedings of the Ninth European
Conference on Pattern Languages of Programs, 2004.

[11] H.A. Simon. The Sciences of the Artificial. MIT Press, 1996.
[12] Lu Hanhua, Wang Yashi, Min Lijuan, Huang Zhenqi, OSS/BSS

Framework Based on NGOSS, Chinese Journal of Telecommunications
Science, No.10, 2009, pp.57-62

[13] Lu Hanhua, Min Lijuan, Wang Yashi, Approach to master-slave
workflow system and its Petri-net modeling, Chinese Journal on
Communications, Vol. 31, No.1, 2010, pp.92-99

