
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

810

A formatting method for transforming XML data
into HTML

Zhe JIN, and Motomichi TOYAMA, Member, IEEE

Abstract—In this paper, we propose a fixed formatting method of
PPX(Pretty Printer for XML). PPX is a query language for XML
database which has extensive formatting capability that produces
HTML as the result of a query. The fixed formatting method is to
completely specify the combination of variables and layout spec-
ification operators within the layout expression of the GENERATE
clause of PPX. In the experiment, a quick comparison shows that PPX
requires far less description compared to XSLT or XQuery programs
doing the same tasks.

Keywords—PPX, XML, HTML, XSLT, XQuery, Fixed formatting
method.

I. INTRODUCTION

AFew existing languages transforming XML data into
HTML includes XQuery [1], XSLT 1.0 [2], XSLT 2.0

[3], JAVA and C++, etc. However, it is not easy for ordinary
users to do programming [4], [5], [6].

In this paper, we propose a query language, called PPX,
which uses formatting methods to transform XML data into
HTML. This research aims to focus on the design of the layout
without considering the data structure of XML directly, so that
the layout work of the XML data can be done easily.

The PPX query language, which has fixed formatting
method and automatic formatting method for XML database,
has extensive formatting capability that produces HTML as
the result of a query. In this paper, we only discuss a fixed
formatting method. The following PPX 1 shows that XML
instance in figure 2 is layouted into HTML by fixed formatting
method in the layout expression 1 of the GENERATE clause
of PPX.

PPX 1:
GENERATE html
[$i/title ! [$j/univ , [$j/name]!
]!]!

FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

This query converts a flat list structure of searched XML
data into the nest structure of XML data by combining the
variables and the layout specification operators in the layout
expression, and generates HTML. The results are shown in
figure 1.

Zhe JIN is with the Department of Information and Computer Science, Keio
University, Hiyoshi 3–14–1, Kohoku-ku Yokohama, 223-8522, Japan (e-mail:
tetsu@db.ics.keio.ac.jp).

Motomichi TOYAMA is with the Department of Information and Computer
Science, Keio University, Hiyoshi 3–14–1, Kohoku-ku Yokohama, 223-8522,
Japan (e-mail: toyama@ics.keio.ac.jp).

1discussed at III.A section.

Fig. 1. Format results by PPX 1

paper

authorstitleid

author

addemail univ

year

name

papers

paper

authorstitleid

author

addemail univ

year

tel addname

name

author

addemail univname

Fig. 2. An XML instance

The rest of this paper is organized as follows. In Section II,
we discuss basic concepts. In Section III and Section IV, we
present PPX query language and query processing. In Section
V, we describe the implementation of the fixed formatting
method of the PPX. In Section VI, the related work is mention.
Lastly, Section VII summarizes the contributions of this paper.

II. BASIC CONCEPTS

This section introduces the path expressions [7], path ex-
pression sets and Format object of the PPX query language.

A. Path Expressions

The path expressions include absolute path expression and
relative path expression. If they need not be distinguished, they
will be abbreviated as the path expression. In this research, the
path expression is divided into a complete path expression and
an incomplete path expression.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

811

(1) The complete path expression specifies the path expres-
sion from the root node to the target text node. For example,
the following path expression shows a complete one.

Example 1: /papers/paper/title/text()
The complete path expression is connected with the path

expression used in the first FOR clause of PPX 1 and the
relative path expression used in the variable. The complete
path expression searches for the XML data, which are the
value of the title element node. The text node is omitted when
it is specified in the layout expression of the GENERATE
clause of PPX. The XML ata searched by the complete path
expression sets is the object of a fixed format.

(2) The incomplete path expression specifies the path ex-
pression from the root node to the target element node. For
example, the following path expression shows an incomplete
one.

Example 2: /papers/paper
The incomplete path expression used in the first FOR clause

of PPX 1 searches for the XML data, which are the value
of the element nodes included in a part of XML 2 that is
under the paper element nodes. The XML data searched by the
incomplete path expression sets is the object of an automatic
format.

B. Path expression sets

The path expression sets are comprised by the query path
expression set P(Q) and the XML path expression set P(X).
Each of set includes the complete path expression and the
incomplete path expression.

P(Q): This is a group of the path expressions existing in the
PPX query.

P(X): This is a group of the path expressions existing in the
layout object part of XML.

C. Format object

The following explaination is about the format object, which
is different from the relationship between two kinds of path
expression sets. The format objet includes the object of fixed
format and the object of automatic format.

The object of a fixed format is defined as follows.
Definition 1 (The object of fixed format) The group of path

expression set in the intersection of XML path expression set
P(X) and complete query path expression set P(Qc)

is a complete XML path expression set P(Xc), and the value
of these text nodes becomes the object of a fixed format.

The object of an automatic format is defined as follows.
Definition 2 (The object of automatic format) The group of

the path expression set in the part where complete query path
expression set P(Qc) is excluded from XML path expression
set P(X)

is an incomplete XML path expression set P(Xi), and the value
of the text nodes included in a part of XML becomes the object
of an automatic format.

2A part of XML between start tag and end tag of all the element nodes in
XML

III. PPX

The basic structure of PPX query language consists of
GENERATE, FOR, and WHERE clauses etc.

GENERATE
FOR
WHERE
In the GENERATE clause, the output media (HTML, XML,

etc.) and the layout expression are specified. By the layout
expression, the output of the media with all kinds of structures
can be realized. In this paper, we only discuss the HTML
output medium. Due to the usage similarity of FOR, WHERE
clauses etc. in both PPX and XQuery, the explaination of them
is omitted, only the GENERATE clause is explained here.

A. Layout Expressions

In the layout expressions can be specified a fixed formatting
method that is combination of variables and layout specifica-
tion operators.

1) Variables: The variables represent the searched XML
data obtained by path expressions. They consist of the variable
name and the relative path expression. It is shown as follows.

Variable ::= ”$”+VariableName/Relative PathExpression
In case of a completely specified format, we use a complete

path expression in which the relative path expression specified
in the variable is connected with the path expression specified
in the FOR clause.

2) Layout Specification Operators: The layout specification
operators are extension of operators of SuperSQL [8]. They
comprise omissible operators and existing connect operators,
repeat operators and decorative operators.

(1) Connect Operators
There are horizontal (,), vertical (!) and depth (%) operators

which connect the objects generated as their operands horizon-
tally, vertically and in the depth direction, respectively. In case
of generating HTML, the depth connect operator specifies the
hyper link in a hypertext (figure 3).

(2) Repeat Operators
There are horizontal([],), vertical([]!), and depth([]%)

operators. In a pair of brackets, the layout expression is
specified. The multiple instances generated by the inner layout
expression are connected repeatedly in each direction. When
a subexpression of repeat operator is connected to one or
more primary items, the latter are used to group repeating
items. In this way, redundant display of grouping items can
be suppressed (figure 4).

(3) Decorative Operators
Decorative operators are supported to designate decorative

features of outputs, such as font size, table border, width,
image directory, in the form of @ follows a layout expres-
sion, and decorative expressions are in a pair of braces(

), which are separated by comma. Each is
. A decorative operator is described as below.

< >@
(4) Omissible Operators
Omissible operators include the &- operator and the &+

operator. The &- operator expresses XList form without tags
and the &+ operator expresses XList form with tags, for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

812

Fig. 3. Connct operators Fig. 4. Repeat operators and grouping

PPX

Query Parser

Tree Constructor

Code Generator

Layout Expression

Path Expression

XML Query System

Tree Structure
Data

HTML, XML etc.

Flat List
Structure Data

XML

Fig. 5. System architecture

the searched XML data included in a part of XML by an
incomplete path expression.

B. System architecture

This system consists of the query parser, the list constructor
and the code generator as shown in Figure 5. The PPX query
is divided into the layout expression and the path expression in
the query parser. The path expression searches for XML data.
The searched XML data of flat list structure is reconstructed
by layout expression in the tree constructor. Finally, the
reconstructed XML data is transformed into HTML with a
variety of table structures in the code generator.

C. Overview of fixed formatting method

The XML data format which transform XML data into
HTML with the formatting method is divided into two steps
as shown in Figure 6.

1) Step 1: Reconstructing XML Data: Here, the XML data
with the searched flat list structure is reconstructed. That is,
the structure is converted into a tree structure different from
the structure of original XML according to specifications of
variable location change, variable addition, or grouping of
element node by layout specification operators etc. in the
layout expression as shown in Figure 6(2).

2) Step 2: Tagging: Here, the reconstructed XML data is
tagged and transformed into HTML. In addition, the HTML
is decorated according to the decorative operators when it is
produced, as shown in Figure 6(3).

IV. QUERY PROCESSING

In this section, we will have a brief discussion on how
the formatting method of PPX queries layout XML data into
HTML.

Fig. 7. Format results by PPX 2

A. Structure convert and layout

For example, the following PPX 2 specifies the formatting
method that layout XML data into HTML based on the layout
expression of PPX 1.

PPX 2:
GENERATE html
[$j/univ ! [$j/name , [$i/year ,
[$i/title]!
]!]!]!

FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

In this query, the name is grouped with the univ, the year is
grouped with the name and the title is grouped with the year.
The results are shown in figure 7, in which the structure is
different from the structure in figure 1.

These PPX examples show that the extracted XML data
structure is converted and layouted according to the variable
location changes, variable addition, grouping of element node
using layout specification operators in the layout expression.

Moreover, the following PPX 3 specifies the formatting
method that using the % operators based on the layout
expression of PPX 2.

PPX 3:
GENERATE html
[$j/univ % [$j/name , [$i/year ,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

813

univ

name

name

authors

paper

title

year

paper

authorstitleid

author

addemail univ

year

tel addname

name

papers

(1) Instance XML Data

Structural change Tagging

(2) STEP 1 (3) STEP 2

author

authors

Fig. 6. Overview of fixed formatting method

Fig. 8. Format results by PPX 3

[$i/title %
[$n/conf , $n/volume , $n/pages !

$n/pdf],
]!]!]!]!

FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author,
FOR $n in db(’paper.xml’)/papers/paper
WHERE $n/title = $i/title

PPX 3 shows that the variable $j/univ and the variable
$i/title which are on the left of depth connect operator(%)
become two anchors, and unite with the subpage groups
generated on the right side, by the hyperlink. The results are
shown in figure 8.

In addition, the XML data can be decorated when HTML is
generated by specifying the decoration operators. For example,
the following PPX 4 generates decorated HTML as shown in
figure 9.

PPX 4:
GENERATE html
[$j/univ@{font-style=oblique, color=red} !
[$j/name@{color=blue} ,
[$i/year@{color=blue} !
[$i/title@{color=green}]!

]!]!]!
FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

Fig. 9. Format result by PPX 4

B. Express by XList form

Besides, the following PPX 5 specifies the formatting
method using the &- operator based on the layout expression
of PPX 1.

PPX 5:
GENERATE html
[$i/title !
[$i/year , &-($i/authors)]!
]!

FOR $i in db(’paper.xml’)/papers/paper

The XML data included in a part of XML is searched by
an incomplete path expression, whose relative path expression
specified in the variable was connected with the path expres-
sion specified in the FOR clause, and express XList form that
without tags in the HTML as shown in figure 10. Moreover,
the searched XML data can express XList form with tags by
changing the &- operator to the &+ operator.

V. EXPERIMENTAL EVALUATION

In this section, we have implemented the proposed fixed
formatting method and comparison of the proposed PPX

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

814

Fig. 10. Format results by PPX 6

and existing XQuery, XSLT 1.0, XSLT 2.0, etc. is shown,
concerning the description amount and the effectiveness of
transformation abilities. Moreover, discuss the problem of
this fixed formatting method encountered when experimenting
which should be resolved.

A. Experimental Environment

We implemented the fixed formatting method using Java
and used XML data (table I) of UW XML repository [9] to
generate HTML. The DB2 Version 9 is used for PPX and
XQuery. The XMLSpy [10] is used for XSLT 1.0 and XSLT
2.0.

TABLE I
THE TEST DATA DETAILS

file name element max-depth avg-depth size

psd7003.xml 21305818 7 5.15147 683MB
dblp.xml 3332130 6 2.90228 127MB
sigmod.xml 11526 6 5.14107 467MB
treebank e.xml 2437666 36 7.87279 82MB

B. Comparison of description amount

PPX transforms XML data into HTML with a small descrip-
tion amount as shown in the previous section. On the other
hand, XQuer, XSLT 1.0, XSLT 2.0 do the same transformation
as PPX but need large description amount.

1) XQuery: For example, the following XQuery does the
same transformation as PPX 1. This XQuery describes HTML
tags directly in the query sentence to transforming XML data
into HTML with the same table structure in figure 1 in section
I.

XQuery:
FOR $i in
db2-fn:xmlcolumn(’paper.xml’)//paper
RETURN

<table border="1">
<tr>
<td>{$i/title/text()}</td>
</tr>
<tr>{
FOR $j in $i//authors
RETURN
<td>{
FOR $l in distinct-values ($j//univ)
RETURN
<table border="1"><tr>
<td>{$l}</td>
<td>
<table border="1">{
FOR $k in $j/author[univ = $l]
RETURN
<tr>
<td>{$k/name/text()}</td>
</tr>
}</table>
</td>
</tr></table>
}</td>
}</tr>
</table>;

In this query, larger amount of description is required than
with PPX and the initial query can not be recycled, it needs
to be rewritten.

2) XSLT: For example, the following XSLT 2.0 does the
same transformation as PPX 1. This XSLT describes HTML
tags directly in the style sheet sentence to transforming XML
data into HTML with the same table structure in figure 1 in
section I.

XSLT 2.0:
<xsl:stylesheet version="2.0">
<xsl:output method="html"
encoding="Shift_JIS"/>
<xsl:template match="/">
<html><table border="1">
<xsl:apply-templates select="*"/>
</table></html>
</xsl:template>
<xsl:template match="papers">
<xsl:for-each-group
select="paper" group-by="title">
<xsl:sort select="title"/>
<tr><td>
<table border="1">
<tr><td>
<xsl:value-of
select="current-group()/title"/>
</td></tr>
</table>
</td></tr>
<tr><td>
<xsl:apply-templates select="authors"/>
</td></tr>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

815

</xsl:for-each-group>
</xsl:template>
<xsl:template match="authors">
<xsl:for-each-group
select="author" group-by="univ">
<xsl:sort select="univ"/>
<table border="1">
<tr><td>
<xsl:for-each select="univ">
<xsl:value-of select="."/>
</xsl:for-each>
</td><td>
<table border="1">
<xsl:for-each select="current-group()">
<tr><td>
<xsl:value-of select="name"/>
</td></tr>
</xsl:for-each>
</table>
</td></tr>
</table>
</xsl:for-each-group>
</xsl:template>
</xsl:stylesheet>

However, the style sheet requires also larger amount of
description than with XQuery and it is not possible to recycle
the initial style sheet, it is necessary to rewrite it.

C. Comparison of transformation abilities

PPX can easily transform XML data into HTML by recon-
structing the tree structure by combining the layout specifica-
tion operators. Moreover, according to changes in the variables
and the layout specification operators, the conversion of nest
structure, generating more HTML tables which hyperlink to
one HTML table, data decoration and expressing the searched
XML data included in a part of XML by XList form, can be
easily performed.

XQuery, XSLT etc. transform the XML data into HTML
by describing HTML tags directly in the program sentences
or the searched XML data can be converted into HTML by
using XSL-FO(CSS).

In this case, XQuery for extracting XML data uses a lot of
FOR clauses and LET clauses will be nested in the RETURN
clause, and the condition which child element is in which
element should be specified in detail.

In this case, XSLT includes XSLT 1.0 and XSLT 2.0. As
for XSLT 1.0, one of the greatest problems is that it can
not execute SELECT DISTINCT directly for node groups.
For this kind of conversion, all nodes whose element names
become group objects are selected and sorted according to
their element names. In addition, it is necessary to distinguish
whether the element name, after using the xsl:if block and
processing, is the same as the element name of the nodes
or not. Besides, it is complex to use the Muenchian method
because it does not support making the group, and consumes
more memory. The XSLT 2.0 uses xsl:for-each-group to group

nodes based on some standards, and it processes for every
group formed by selection processing.

Moreover, XSLT is intuitively difficult to describe and to
edit, since the users doing these programmings need to under-
stand the transformation process based on the rival cancellation
between template rules to convert the conversion originally
specified by the pattern matching is demanded.

In addition, XQuery and XSLT does not provide easy meth-
ods that can express XList form for the searched XML data
included in a part of XML by an incomplete path expression.

D. Examination of formatting method

In the following section, we will discuss the problem of this
fixed formatting method encountered when experimenting and
that should be resolved.

1) Irregular element nodes: the fixed formatting method
annnot easily process the irregular element nodes. For exam-
ple, in the XML instance as figure 2, we know that the first
author’s univ element node has the text node, but the second
author’s first univ element node has several element nodes. To
layout the XML data of the univ element nodes, it is required
to specify the format in the layout expression as shows in PPX
6.

PPX 6:
GENERATE html
[$i/title ! [$j/name ,
[$j/univ]!

]!]!
!
[$k/title ! [$l/name ,
[$l/univ/name ! $l/univ/add]!

]!]!
FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author,
FOR $k in db(’paper.xml’)/papers/paper,
FOR $l in $k/authors/author

In this query, as the layout of the output table becomes
complex, the description amount increases as well. To solve
this problem, we introduce the IF-THEN-ELSE sentence as
described in the layout expression of PPX. Then, the layout
of the XML data can be done with a minimum description
amount. Also, the specification of irregular element node as
the univ element node can be easily done as in following PPX
7.

PPX 7:
GENERATE html
[IF ($j/univ/text())

THEN ($j/univ)
ELSE ($j/univ/name ! $l/univ/add) !

[$j/name ,
[$i/year ,
[$i/title]!

]!]!]!
FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

816

2) Empty element nodes: Having introduced the IF-THEN-
ELSE sentence, processing empty element node has become
easy. For example, the following PPX 8 test whether the univ
element nodes is empty element and if it is the case uses
another method to process it.

PPX 8:
GENERATE html
[IF ($j/univ/text() = NULL)

THEN ("$j/univ")
ELSE ($j/univ) !

[$j/name , [$i/year , [$i/title]!
]!]!]!

FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

However, if the element node ”$j/univ” is empety, it does
not group the name element nodes together.

3) Automatic formatting method: If there is an important
part of XML under the univ element node, the specification
of formatting method becomes redundant. Therefore, we are
developing an automatic layout operator to automatically for-
mat XML data included in a part of XML. For example, the
following PPX 9 using combinations of the & operator and the
variable $j/univ in the layout expression, can be automatically
format XML data included in a part of XML is under the univ
element nodes.

PPX 9:
GENERATE html
[& ($j/univ) !
[$j/name , [$i/year , [$i/title]!

]!]!]!
FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

VI. RELATED WORK

Three methods to transform XML data into HTML are
categorized in this section.

A. By using HTML tags

Generic programming languages, such as JAVA, PERL,
PHP, and C++ are used to convert searched XML data tags
into HTML tags with DOM or SAX and to display in Web
browser. Besides, this is also possible with languages such as
XQuery, XSLT 1.0, XSLT 2.0, and XDuce [11], etc. provided
the HTML tags in the program sentence.

B. By using XSL-FO(CSS)

The query language, the converting language and the
stylesheet language give formatting information such as
the margin, the color, and the font size, etc. for the
searched/extracted XML data in order to display it in Web
browser by using XSL-FO [12] or CSS[13].

C. By using TFE

The proposed PPX, which can layout XML data into HTML
by using TFE, offers an easy description method. SuperSQL
also uses TFE [14] to structurize the output result of the
relational database and treats the output to HTML, XML and
PDF, but can not be treated as XML data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a fixed formatting method of PPX,
which is to completely specify the combination of variables
and layout specification operators within the layout expression
of the GENERATE clause to layout XML data into HTML.
In the experiment, the results show that with fixed formatting
method, the XML data can be formatted correctly.

We are currently working on developing automatically for-
matting XML data that does not only express XList form,
but also layout into HTML without completely specifies the
formatting method. Moreover, we are developing a method to
convert PPX query into equivalent XSLT generated automati-
cally.

REFERENCES

[1] W3C: XML Query Language (XQuery). http://www.w3.org/TR/.
[2] J. Clark, editor, XSL Transformations (XSLT), Version 1.0, W3C Rec-

ommendation 16 November 1999. W3C, 1999.
[3] M. Kay, editor, XSL Transformations (XSLT), Version 2.0, W3C Rec-

ommendation 27 January 2007. W3C, 2007.
[4] Ramin Firoozye, XML and XSL from servers to cell-phones, a new

Internet content model, Proceedings of XML Europe2000, Paris, france,
2000.

[5] Volker Turau, A Caching System for Web Content Generated from XML
Sources Using XSLT, OOIS 2002 Workshops, LNCS 2426, 2002, pp.197-
207.

[6] M. Rys, XQuery in Relational Database Systems, XML 2004 Conference,
Washington DC, Nov 2004.

[7] W3C: XML Path Language (XPath).
http://www.w3.org/TR/.

[8] M. Toyama, SuperSQL: An Extended SQL for Database Publishing and
Presentation, Proc. ACM SIGMOD, 1998, pp.584-586.

[9] UW XML repository: http://www.cs.washington.edu/research/xmldatasets.
[10] www.Altova.com/XMLSpy.
[11] H. Hosoya and B. C. Pierce, XDuce: A Statically Typed XML Process-

ing Language, ACM Transactions on Internet Technology, 2003, pp.117-
148.

[12] Pawson, D, XSL-FO: Making XML Look Good in Print, O’Reilly,
United States, 2002.

[13] Lie. H., Bos, B, Lilley, C. and Jacobs, I., Cascading Style Sheets, Level
2. W3C: www.w3.org/TR/.

[14] T. Seto, T. Nagafuji, M. Toyama, Generating HTML Sources with
TFE Enhanced SQL, ACM Symposium on Applied Computing(SAC’97),
ACM(1997), pp.96-105.

Zhe JIN received the M.E. degree in computer science from keio university
in 2004. He is a member of IPSJ and IEICE. His research interests include
XML and database.

Motomichi TOYAMA received the B.E., M.E. and Ph.D. degrees in computer
science from keio university in 1979, 1981 and 1984, respectively. His
research interests include database. He is a member of IEEE Computer
Society, ACM, IPSJ and IEICE.

