
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

769

A Formal Property Verification for Aspect-Oriented
Programs in Software Development

Moustapha Bande, Hakima Ould-Slimane, Hanifa Boucheneb

Abstract—Software development for complex systems requires
efficient and automatic tools that can be used to verify the
satisfiability of some critical properties such as security ones. With
the emergence of Aspect-Oriented Programming (AOP), considerable
work has been done in order to better modularize the separation of
concerns in the software design and implementation. The goal is to
prevent the cross-cutting concerns to be scattered across the multiple
modules of the program and tangled with other modules. One of the
key challenges in the aspect-oriented programs is to be sure that all
the pieces put together at the weaving time ensure the satisfiability
of the overall system requirements.

Our paper focuses on this problem and proposes a formal property
verification approach for a given property from the woven program.
The approach is based on the control flow graph (CFG) of the
woven program, and the use of a satisfiability modulo theories (SMT)
solver to check whether each property (represented par one aspect)
is satisfied or not once the weaving is done.

Keywords—Aspect-oriented programming, control flow graph,
satisfiability modulo theories, property verification.

I. INTRODUCTION

ASPECT-ORIENTED PROGRAMMING (AOP) [17] has

emerged as a programming paradigm that aims to

improve the separation of concerns in software development.

In AOP, the system is divided into two parts: the base

program containing the main functionality of the system and

the aspect program that is composed by the cross-cutting

functionality [10]. This technique has brought along with it

new mechanisms and concepts for implementing crosscutting

concerns in a modular manner. Among those crosscutting

concerns, security requirements are considered to be more

representative since they tend to scatter and tangle with other

concerns of a software system. AspectJ [16] is the most

popular AOP language and is based on the Java language.

It adds the following new concepts to the Java language:

• Aspect. It is a module for handling cross-cutting

concerns. It can be seen as a class-like construct.

• Join point. It is a well-defined point within a class where

a concern is going to be attached during the execution of

the program (e.g. method calls, exception thrown,...).

• Advice. It is the action taken by an aspect at a particular

join point. An advice is implemented as a method of the

Moustapha Bande is with the Department of Computer Engineering,
Ecole Polytechnique de Montreal, Montreal (Qc), Canada (e-mail:
moustapha.bande@polymtl.ca).

Hakima Ould-Slimane is with the Department of Electrical Engineering,
École de Technologie Supérieure, Montreal (Qc), Canada (e-mail:
cc-hakima.ould-slimane@etsmtl.ca).

Hanifa Boucheneb is with the Department of Computer Engineering,
Ecole Polytechnique de Montreal, Montreal (Qc), Canada (e-mail:
hanifa.boucheneb@polymtl.ca).

aspect class. This method is executed before or after the

join point is reached. It may also be executed around the

join point.

• Pointcut. It is a group of join points that need to be

matched before running an advice.

• Weaving.. It is the process of executing the relevant

advice at each join point. This is achieved by a key

component called the aspect weaver. This component

takes the core modules and the aspects and then composes

the final program also known as ”woven program”.

AOP technique helps developers to gain in modularity and

ease to maintain because this approach isolates crosscutting

concerns into aspects. However, in software testing, AOP

brings along with it new issues [1] and summarized as follows.

• Aspects identity and existence. They do not have

independent existence since they usually depend on the

context of other classes and also the execution context.

• Weaving time. Aspects also tightly linked to the classes

they are woven during the execution time. Any change

to one of the these classes could have an impact on the

aspects.

• Data and control dependencies between aspects and
classes. During the weaving process, the resulting control

flow nor the data flow structure of the woven program is

not obvious for the developer.

• Emergent behavior. Many faults occur because of the

implementation of a given class or aspect, or a side effect

of the weaving process of multiple aspects.

• Changes in normal and exceptional control flow.

Advices containing statements that possibly throw an

exception might cause an implicit modification in the

system control flow [7].

With the increasing size and complexity of software

systems, most of software development teams need tools

or techniques that may help them to detect errors or to

find inconsistencies in the source code. Among the various

functionality of a program, security modules are more critical

because their violation may lead to enormous loss for

enterprises. In AOP, it is not accurate to assume that the

successful testing in isolation of the base program and each

aspect implies the consistency of the overall system, since

interactions and interference usually happen between them and

changes in one aspect may have significant impacts on the

whole execution of the AOP program.

The problem of detecting errors or inconsistencies during

the weaving time has been variously tackled by aspect-oriented

community. Some of the previous work have focused on

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

770

finding approaches and tools for aspect-oriented program

testing, using Unified Modeling Language (UML) models

[20], [3], [2] or graph-based testing [12], [25], [5]. In this

work, we present another approach that combines some of the

existing approaches for verifying the satisfiability of properties

covered in a woven aspect-oriented program. Every time, one

critical aspect related to a specific property is added to the

program, it may be possible to check if all the properties

being covered by the program remain satisfied. Indeed, such

critical requirements need to be handled with accuracy and

only an automatic tool that can explore all the necessary states

of the program execution could help to avoid the software

misbehavior.

The main contribution of this paper is an automatic

misbehavior detection of a given property at the weaving time.

It is an integrated approach that uses the control flow graph

(CFG) of the woven program and then, by transforming the

derived CFG into Z3-SMT solver model, we can easily verify

the satisfiability of any property. This work can be extended to

any new added aspect and also used in collaborative software

development in order to automatically verify whether the

woven program still satisfies a given property.

The remainder of this paper is organized as follows.

In Section II, we present our formal property verification

approach for aspect-oriented programs. Section III deals with

our model simulation results and Section IV is dedicated to

some previous work in AOP software testing. Section V finally

concludes the paper and gives some future work.

II. FORMAL PROPERTY VERIFICATION IN AOP PROGRAMS

For our design purpose, we use an automatic teller machine

(ATM) transaction management system.

A. Experimental Example: An ATM Transaction
Management

As we can see, this example refers to an ATM transaction

management in an AspectJ program.

The listing 1 shows the Java class BankAccount which

simulates the functionality of a bank account and represents

the base program. The aspect defined in Listing 2 is used to

monitor the access to a bank account by a user. This aspect

captures the authentication access control. We define another

aspect in Listing 3 that captures transaction checking (e.g.

being sure that an account has enough money for a withdrawal

transaction). Our experimental source code example consists

of one class (BankAccount) and two aspects (authentication

and transaction checking).

• Class BankAccount. This class records user’s account

information: user name, account ID, pin code and account

balance. It also defines methods such as withdrawal and

deposit.

• Aspect AspectAuthentication. This aspect implements

authentication goal. That is giving access to authorized

users to their account information. The goal that keeps the

information secret from unauthorized people is almost the

most common one in information security. In the context

of ATM transaction management, violation of such an

Fig. 1 Our approach design

information security property may be crucial for the bank

reputation.

• Aspect AspectChecking. It implements a transaction

requirement checking. We use a before advice to check

whether a withdrawal transaction is possible or not

considering the target account balance. It also includes

a after advice that simply displays the target account

balance after the transaction has been successfully

completed.

Given an aspect-oriented program and any property that

may be verified through the execution of this program, we

build a fully integrated approach that verifies if the property

is satisfied or not during the weaving time.

B. Our Design Approach

Our framework in Fig. 1 uses an existing algorithm that

aims to generate the control flow graph of the program and a

formal system verification tool that is used to derive a SMT

solver from the generated CFG and also to verify that some

properties can be automatically verified.

For our design purpose, we use the algorithm proposed by

[21] to generate the CFG of our program. In their work, the

authors implemented a tool called AJcFgraph Builder that

automatically derives an aspect-oriented control flow graph

(AOCFG) giving an AOP program. Based on their algorithm,

Fig. 2 shows the CFG of our AOP program and displays

the case an access is granted to a user account for doing

his transactions. In order to make the graph more readable,

we annotate the nodes with the character B followed by

the line number of the source code for the Base program

and A followed by the line number of the source code for

the AspectAuthentication program and C for AspectChecking
program . The small b added to the node B78b and B79b
stands for before advice, whereas small a added to node B79a
is used for after advice. We also add (in yellow color) nodes

and edges that denote the case where the pin code is not valid

(A8 =⇒ A11 =⇒ A12) and the one where account balance

is less than the withdrawal amount (C7 =⇒ C8 =⇒ C9).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

771

Listing 1: Class BankAccount

1

2 package example;
3 import example.BankAccount;
4 import java . io .∗;
5 import java . util . Properties ;
6

7 public class BankAccount
8 {
9 private String accountOwner;

10 private String accountNumber;
11 private String accountPin ;
12 private double balance ;
13

14 public BankAccount(String owner, String account , String pin , double balance) // BankAccount constructor
15 {
16 this .accountOwner = owner;
17 this .accountNumber = account;
18 this . accountPin = pin ;
19 if (balance > 0.0)
20 this . balance = balance ;
21 }
22

23 public void deposit (double depositAmount) // method for deposits
24 {
25 balance = balance + depositAmount; // update the balance
26 }
27

28 public void withdrawal(double withdrawalAmount) // method withdrawal
29 {
30 balance = balance − withdrawalAmount; // update the balance
31 }
32

33 public double getBalance ()
34 {
35 return balance ;
36 }
37

38 public void setAccount(String account)
39 {
40 this .accountNumber = account;
41 }
42

43 public void setOwner(String owner)
44 {
45 this .accountOwner = owner;
46 }
47 public void setPin (String pin)
48 {
49 this . accountPin = pin ;
50 }
51 public String getOwner()
52 {
53 return accountOwner;
54 }
55

56 public String getAccount()
57 {
58 return accountNumber;
59 }
60 public String getPin ()
61 {
62 return accountPin ;
63 }
64

65 public boolean authenticate (String userName, String pin) throws Exception{
66

67 File userFile = new File(”D:/ eclipse /workspace/users . txt ”) ;
68 FileInputStream in = new FileInputStream(userFile) ;
69 Properties properties = new Properties () ;
70 properties . load(in) ;
71 String storedPassword = properties . getProperty (userName);
72 in . close () ;
73 return pin . equals (storedPassword) ;
74 }
75

76 public static void main(String [] args)
77 {
78 BankAccount account = new BankAccount(”Toto”,”120541263”,”789”,500);
79 account . deposit (500) ;
80 account .withdrawal(300) ;
81 }
82 }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

772

Fig. 2 The derived CFG of our program

Listing 2: Aspect user’s authentication

1 package org.example.aop;
2 import example.BankAccount;
3 public aspect AspectAuthentication {
4 pointcut authentication (BankAccount b, double x): (call (∗ BankAccount.withdrawal (..)) || call (∗ BankAccount.deposit (..))) && target(b) && args(x);
5

6 before (BankAccount b, double x) : authentication (b,x) {
7 try {
8 if (!b. authenticate (b.getOwner(),b. getPin ()))
9 {

10 System.out . println (”Access denied ... Incorrect pin”) ;
11 System. exit (0) ;
12 }
13 } catch (Exception e) {
14 System.out . println (”Error ... ”) ;
15 }
16 }
17 }

Listing 3: Aspect transaction checking

1 package org.example.aop;
2 import example.BankAccount;
3 public aspect AspectChecking {
4 pointcut checking(BankAccount b, double x): call (∗ BankAccount.withdrawal (..)) && target(b) && args(x);
5

6 before (BankAccount b, double x) : checking(b, x) {
7 if (b.getBalance () < x) {
8 System.out . println (”Sorry Your account does not have. $” + x + ” to withdrawn ... ”) ;
9 System. exit (0) ;

10 }
11 }
12

13 after (BankAccount b, double x): checking(b, x) {
14 System.out . println (” Transaction successfully done!!! Your current balance is : $” + b.getBalance ()) ;
15 }
16 }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

773

After the generation of the CFG graph, we build our model

by deriving Z3 SMT model from the CFG graph.

C. Our Z3 Model Design
Satisfiability Modulo Theories (SMT) is the Satisfiability

of formulas with respect to some background theory [4].

According to the authors in [8], Z3 is an new SMT solver

tool from Microsoft Research. This tool aims at checking the

satisfiability of logical formulas over one or more theories and

is based on first-order logic. A given formula φ is said to be

satisfiable if there exists an interpretation that makes φ true.

A formula is said to be valide if it is true under all structures.

For example, x+ y > 3 is satisfiable under the interpretation

x �→ 1 and y �→ 3. We report in this paper only some relevant

Z3 constructs that we use in our model due to the limit of the

paper length. For our model design purpose, we use Z3Py, a

Python interface for Z3 solver.

• Sorts. Z3 allows users to declare new data types called

sorts (e.g. a = DeclareSort(′a′)).
• Constants. They are functions that take no argument (e.g.

b = Const(′b′, a)).
• Quantifiers. Universal quantifier is represented by

ForAll and existential one by Exists.

• Solver(). We can use it to create a given solver instance

(e.g. s = Solver()).
• Add(). We can use this method to add constraints to the

solver (e.g. s.add(x <= 8))
• Check(). We can call this method to check the

satisfiability of all constraints that are associated to the

solver (e.g. s.check()) and the result returned is either

sat (satisfiable), or unsat (unsatisfiable).

In order to derive the Z3 model from the CFG of the woven

program, we use the rules summarized in Table I.

• We declare in Z3Py a graph that is a representation of

the CFG derived from the woven program. We then add

the following attributes to nodes and edges to capture

data information during the simulation of the model:

– Node: this attribute captures the name of a node in

the graph.

– ExecStatus: this attribute captures the execution

status of an edge in the graph.

– isJoinPoint: this attribute return true if the node is a

join point node and false otherwise.

– isAspectWeavingEdge: this attribute return true if the

edge is an aspect-weaving edge and false otherwise.

– isPointcutEdge: this attribute return true if the edge

is an pointcut edge and false otherwise.

• We define the function isAuth(u, p) that returns true
if the user u enters a valid pin p and false otherwise,

giving the attributes of the edge and nodes being

traversed in the graph. This corresponds to the advice

of the aspect program. It is declared using isAuth =
Function(′isAuth′, IntSort(), IntSort(), BoolSort()).

• For our simulation purpose, we define an array variable

that contains 3-tuple of user, his pin code and his

account balance. In this array variable, are stored random

generated triples of user, pin and balance.

Fig. 3 The model checking output with constraint (1)

III. PROPERTIES VERIFICATION

We recall that the goal of our model is to automatically

verify properties for an AOP program. Based on the parameters

used to run the main method, we verify whether an

unauthorized user could access or not the ATM system. After

building our Z3 model, we add some constraints into it and

then check its satisfiability.

First of all, we add the constraint

s.add(ForAll([ui, pi], Implies(Not(isAuth(ui, pi)),

g.es[11][”ExecStatus”]))).
(1)

The checking of the solver using print(s.check()) outputs

the result Sat meaning that our model is satisfiable. This

shows that for any given user ui and his pin code pi, if the pin

code is not valid then we do have an edge between nodes A11
and A12. The attribute ”ExecStatus” of this edge is then True
corresponding to the edge whose index is 11. Consequently,

the access is denied and the end node is A12. We output only

the part of the graph with edges having their execution status

at true in Fig. 3.

We also add to the solver this constraint

s.add(ForAll([ui, pi, bi, x], Implies(And(isAuth(pi, fi)

, x <= bi), g.es[32][”ExecStatus”]))).
(2)

Then, we run the model using check() method and the

output result of the model checking is Sat, that is the user ui

has entered a valid code pin and the withdrawal amount is less

than his account balance, so that the transaction is successfully

completed. Thus, the attribute ”ExecStatus” of the edge whose

index is 32 is True. Consequently, the end node in the output

in Fig. 4 is C14.

Finally, We add to the solver the following constraint that

verifies whether the user do not enough money to make his

withdrawal transaction.

s.add(ForAll([ui, pi, bi, x], Implies(And(isAuth(pi, fi),

x > bi), g.es[27][”ExecStatus”]))).
(3)

Then, we run the model using check() method and the

output result of the model checking is Sat, that is, the user

has access to the ATM system but his account balance is

not enough to make his withdrawal transaction. Thus, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

774

TABLE I
FROM CFG TO Z3 - TRANSFORMATION RULES

CFG Z3
1 Set of nodes Nd Nd = DeclareSort(’Nd’)
2 A node nd1 ∈ Nd nd1 = Const(’nd1’,Nd)
3 Set of edges Eg Nd = DeclareSort(’Eg’)
4 An edge eg(ndi, ndj) ∈ Nd×Nd ed = Function(’ed’, Nd, Nd, BoolSort())
5 isPointCut(ndi) isPointCut = Function(’isPointCut’, Nd, BoolSort())
6 isWeavingEdge(ndi, ndj) isWeavingEdge = Function(’isWeavingEdge’, Nd, Nd,

BoolSort())
7 isJointPointEdge(ndi, ndj) isJointPointEdge = Function(’isJointPointEdge’, Nd, Nd,

BoolSort())

Fig. 4 The model checking output with constraint (2)

attribute ”ExecStatus” of the edge whose index is 27 is True.

Consequently, the end node in the output in Fig. 5 is C9.
We note that the increase of the number of users does

not affect the size of our model since the system follows

the execution of the main() method. In addition, it is also

possible to define other types of properties and add them to

the model and let Z3-SMT solver checks the satisfiability of

the whole system. In Z3, it is possible to handle function

composition, that is a function call in the CFG that also calls

other functions. We could also add this kind of constraint to the

model and check the solver satisfiability. That helps to make

modular verification and also incremental one. Our model is

flexible and could be used whenever a developer adds a new

aspect that captures a specific concern. It can be extended

to a collaborative environment where developers together add

components in a base program.

IV. RELATED WORK

Many researches have focused on software testing using

several formal methods and tools to detect faults and errors

Fig. 5 The model checking output with constraint (3)

during compilation or running time. These approaches can be

classified into three categories:

The first category is related to those approaches that

use model checking to verify whether a given property

is verified or not. Among them, in [13], the authors

proposed an aspect-oriented Petri net with Aspect-Oriented

Software Development (AOSD) mechanisms. They developed

an automated approach for formally analyzing the software

design using the model checking technique and analysis tool

PROD. In [27], Xu et al. presented a framework called

Model-based Aspect/class Checking and Testing (MACT) that

aims to test the conformance of aspect-oriented programs

against their aspect-oriented state model. The framework also

uses model checking for test generation from counterexamples.

Fradet et al. [11] proposed a formal framework to enforce

availability properties on services sharing resources. The

authors used timed automata in order to express and enforce

properties on execution time. In [24], they defined an

automatic verification approach using model checking that

verifies the correctness of AOP-based programs. In order to

check the correctness of the woven program, they defined a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

775

property in Computation Tree Logic (CTL) and represent this

property by an aspect that is finally used for the property

verification. In [9], Denaro et al. proposed an approach

based on analyzing aspect-based software components in order

to verify safety properties. The aspects are modeled using

a PROMELA process template and the derived model is

analyzed with the model checker SPIN in order to verify

the deadlock problem of the synchronization policy. Another

state-based approach has been proposed in [26] for modeling

the specification of an aspect-oriented design. In this paper, the

authors used a Labeled Transition System Analyzer (LTSA)

model checker to verify the generated finite state processes

against the desired properties. In [22], a runtime verification

framework for Java programs has been proposed. They

instrumented Java bytecode with Linear-time Temporal Logic

(LTL) formula and for the properties verification purpose,

they used an automaton-based approach where transitions are

implemented and triggered using aspects. They also developed

a prototype called Java Logical Observer (JLO) that gives

a way to derive a verification aspect from the formula. The

technique used in this paper, however, implies injecting aspects

in order to verify a specific property. That can become more

challenging while the number of properties being verified

grows. These papers did not, however, describe a modular

verification methodology or most of them use source code

instrumentation for the verification purposes.

The second category of related work is data-flow

or control-flow based testing approaches. In [18], a

pointcut-based coverage analysis approach using structural

model based on Java bytecode has been proposed. In their

approach, the authors used a control and data flow graph for

their testing criteria. They also proposed a series of control

flow and data flow testing criteria based on a PointCut-based

Def-Use (PCDU) graph. However, they did not mention the

data flow between integrated units among their testing criteria.

In [28], the author proposed a data-flow-based unit testing

approach in which three levels of testing are performed:

intra-module, inter-module and inter-aspect or inter-class

testing. The model is based on modeling a control graph

flow for only the program classes and is extended to the

woven program. Finally, the program issues are analyzed

by computing def-use pairs of a class or an aspect. This

work, however, does not focus on the advice interactions.

Fradet et al. [11] proposed a formal framework to enforce

availability properties on services sharing resources. The

authors used timed automata in order to express and enforce

properties on execution time for preventing denial of service

attacks. However, they did not consider any change that may

occur in the source code. In [19], a derivation of control

flow and data flow based testing criteria for aspect-oriented

programs has been defined. This model is used to support

structural testing to unit testing of AspectJ programs. The key

problem with existing dataflow test criteria is the difficulty

in covering all types of data flow interactions for AOP

programs. Harlem et al. [14] proposed an aspect-oriented

declarative security policy specification language for in-lined

reference monitoring. This language called SPOX (Security

Policy XML) is an XML-based security policy specification in

which policies denote an aspect-oriented security automaton.

In the first category of the aforementioned work, the authors

instrumented the source code by injecting pieces of code (e.g.

aspects) in order to verify a specific property. In the second

category, testing criteria are defined on control flow without

taking into account the data flow or the core program and the

aspects are tested separately. Unlike the above work, our paper

focuses on verifying a security property (e.g. authentication,

privacy, etc.) encapsulated in an aspect for a woven program

and also captures the interactions between the base program

and the aspects.

The third category is UML-based transformation using

sequence diagrams. Hossain et al. [15] proposed a

transformation technique called ”Zigzag transformation” to

introduce aspects at the architecture level in order to verify

properties of the old architecture versus the ones introduced

by the aspects. Bowles et al. [6] introduced a novel formal

automated technique for weaving aspects using Z3-SMT

solver. Their technique is based on UML sequence diagrams

to capture the base and the advice and pointcut models are

transformed into equivalent representations using Labelled

Event Structures (LES). They also compared the performance

using Z3 with their earlier work that used Alloy [6] for

sequence diagram composition. Tahara et al. [23] proposed a

tool called ”CAMPer” that uses Maude specification language

to express dynamic aspect weaving. This tool takes an input

UML class diagram, sequence diagrams and a Linear Temporal

Logic (LTL) formula and automatically verifies the models.

Unlike the aforementioned work, our approach combines

control flow graph generation and a SMT solver to check the

satisfiability of properties by deriving a Z3 SMT model from

the CFG.

V. CONCLUSION AND FUTURE WORK

In this paper, a formal verification of properties in

aspect-oriented programming is proposed. The main idea of

our approach is to generate a control flow graph from a

giving woven aspect-oriented program and to derive Z3-SMT

model in order to verify some critical properties such as

confidentiality. Our approach is flexible and can be extended

to both AOP programs with many aspects that encapsulate

security property or specific requirement and collaborative

software development environments where many developers

can collaborate in the same project. In such an environment,

this formal verification technique could be used to verify

critical properties whenever any developer adds or modifies

a piece of code (e.g. aspects, base program).

As future work, we are planning to extend this work to

a collaborative software development including dealing with

many aspects. Finally, we will look into building a tool that

can automatically generate Z3-SMT model from the CFG.

REFERENCES

[1] Roger T Alexander, James M Bieman, and Anneliese A Andrews.
Towards the systematic testing of aspect-oriented programs. Rapport
technique, Colorado State University, 2004.

[2] Chitra Babu and Harshini Ramnath Krishnan. Fault model and test-case
generation for the composition of aspects. ACM SIGSOFT Software
Engineering Notes, 34(1):1–6, 2009.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:9, 2018

776

[3] Mourad Badri, Linda Badri, and Maxime Bourque-Fortin. Generating
unit test sequences for aspect-oriented programs: towards a formal
approach using uml state diagrams. In Information and Communications
Technology, 2005. Enabling Technologies for the New Knowledge
Society: ITI 3rd International Conference on, pages 237–253. IEEE,
2005.

[4] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, Cesare Tinelli,
et al. Satisfiability modulo theories. Handbook of satisfiability,
185:825–885, 2009.

[5] Mario L Bernardi. Reverse engineering of aspect oriented systems
to support their comprehension, evolution, testing and assessment. In
Software Maintenance and Reengineering, 2008. CSMR 2008. 12th
European Conference on, pages 290–293. IEEE, 2008.

[6] Juliana KF Bowles, Behzad Bordbar, and Mohammed Alwanain.
Weaving true-concurrent aspects using constraint solvers. In Application
of Concurrency to System Design (ACSD), 2016 16th International
Conference on, pages 35–44. IEEE, 2016.

[7] Mariano Ceccato, Paolo Tonella, and Filippo Ricca. Is aop code
easier or harder to test than oop code. In First Workshop on Testing
Aspect-Oriented Program (WTAOP), Chicago, Illinois, 2005.

[8] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[9] Giovanni Denaro and Mattia Monga. An experience on verification of
aspect properties. In Proceedings of the 4th international workshop on
Principles of software evolution, pages 186–189. ACM, 2001.

[10] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl Lieberherr, and
Harold Ossher. Discussing aspects of aop. Communications of the ACM,
44(10):33–38, 2001.

[11] Pascal Fradet and Stéphane Hong Tuan Ha. Aspects of availability:
Enforcing timed properties to prevent denial of service. Science of
Computer Programming, 75(7):516–542, 2010.

[12] Ivan Gustavo Franchin, Otávio Augusto Lazzarini Lemos, and
Paulo Cesar Masiero. Pairwise structural testing of object and
aspect-oriented java programs. In The 21th Software Engineering
Brazilian Symposium, Joao Pessoa, PB, Brazil, 2007.

[13] Yujian Fu, Junhua Ding, and Phil Bording. An approach
for modeling and analyzing crosscutting concerns. In Service
Operations, Logistics and Informatics, 2009. SOLI’09. IEEE/INFORMS
International Conference on, pages 91–97. IEEE, 2009.

[14] Kevin W Hamlen and Micah Jones. Aspect-oriented in-lined reference
monitors. In Proceedings of the third ACM SIGPLAN workshop on
Programming languages and analysis for security, pages 11–20. ACM,
2008.

[15] Md Nour Hossain, Wolfram Kahl, and Tom Maibaum. A
graph transformation approach to introducing aspects into software
architectures.

[16] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G Griswold. An overview of aspectj. In ECOOP
2001Object-Oriented Programming, pages 327–354. Springer, 2001.

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. Springer, 1997.

[18] Otávio Augusto Lazzarini Lemos and Paulo Cesar Masiero. A
pointcut-based coverage analysis approach for aspect-oriented programs.
Information Sciences, 181(13):2721–2746, 2011.

[19] Otávio Augusto Lazzarini Lemos, Auri Marcelo Rizzo Vincenzi,
José Carlos Maldonado, and Paulo Cesar Masiero. Control and data
flow structural testing criteria for aspect-oriented programs. Journal of
Systems and Software, 80(6):862–882, 2007.

[20] Philippe Massicotte, Mourad Badri, and Linda Badri. Generating
aspects-classes integration testing sequences a collaboration diagram
based strategy. In Software Engineering Research, Management and
Applications, 2005. Third ACIS International Conference on, pages
30–37. IEEE, 2005.

[21] Reza Meimandi Parizi and Abdul Azim Abdul Ghani. Ajcfgraph-aspectj
control flow graph builder for aspect-oriented software. International
Journal of Computer Science, 3:170–181, 2008.

[22] Volker Stolz and Eric Bodden. Temporal assertions using aspectj.
Electronic Notes in Theoretical Computer Science, 144(4):109–124,
2006.

[23] Yasuyuki Tahara, Akihiko Ohsuga, and Shinichi Honiden. Formal
verification of dynamic evolution processes of uml models using aspects.
In Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2017 IEEE/ACM 12th International Symposium on, pages
152–162. IEEE, 2017.

[24] Naoyasu Ubayashi and Tetsuo Tamai. Aspect-oriented programming

with model checking. In Proceedings of the 1st international conference
on Aspect-oriented software development, pages 148–154. ACM, 2002.

[25] Fadi Wedyan and Sudipto Ghosh. A dataflow testing approach for
aspect-oriented programs. In High-Assurance Systems Engineering
(HASE), 2010 IEEE 12th International Symposium on, pages 64–73.
IEEE, 2010.

[26] Dianxiang Xu, Izzat Alsmadi, and Weifeng Xu. Model checking
aspect-oriented design specification. In Computer Software and
Applications Conference, 2007. COMPSAC 2007. 31st Annual
International, volume 1, pages 491–500. IEEE, 2007.

[27] Dianxiang Xu, Omar El-Ariss, Weifeng Xu, and Linzhang Wang. Testing
aspect-oriented programs with finite state machines. Software Testing,
Verification and Reliability, 22(4):267–293, 2012.

[28] Jianjun Zhao. Data-flow-based unit testing of aspect-oriented programs.
In Computer Software and Applications Conference, 2003. COMPSAC
2003. Proceedings. 27th Annual International, pages 188–197. IEEE,
2003.

