
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

122

Abstract—Multi-agent system is composed by several agents

capable of reaching the goal cooperatively. The system needs an agent
platform for efficient and stable interaction between intelligent agents.
In this paper we propose a flexible and scalable agent platform by
composing the containers with multiple hierarchical agent groups. It
also allows efficient implementation of multiple domain presentations
of the agents unlike JADE. The proposed platform provides both
group management and individual management of agents for
efficiency. The platform has been implemented and tested, and it can
be used as a flexible foundation of the dynamic multi-agent system
targeting seamless delivery of ubiquitous services.

Keywords—Agent platform, container, multi-agent system,
services, ubiquitous computing.

I. INTRODUCTION
ULTI-AGENT system achieves the goal through
co-work of the agents showing autonomous behaviors.

The multi-agent system needs a platform for efficient and stable
interaction between intelligent agents [1]. Each domain and
agent existing in the area is registered in the agent platform.
Several platforms can be connected together through the
interface offered for convenient implementation, and thereby
high scalability is supported.

The agent platform uses standard agent communication
language (ACL) for the communication between the agents. It
needs to have the agent administration and management system
(AMS) module for providing white page service. It, also,
requires the modules supporting additional agent services such
as yellow page service.

The Java Agent Development Environment (JADE) [8] is a
framework used for implementing multi-agent system, which
conforms to the FIPA standard. It is available to implement

Manuscript received November 30, 2006. This work was supported in part

by the Ministry of Information and Communication, 21C Frontier Project on
Ubiquitous Computing and Networking and the Ministry of Education, Brain
Korea 21 Project.

A. H. Park is with the School of Information and Communication
Engineering, Sungkyunkwan University, Suwon, Korea, 440-736 (e-mail:
ahpark@skku.edu).

S. H. Park is with the School of Information and Communication
Engineering, Sungkyunkwan University, Suwon, Korea, 440-736 (e-mail:
sohyun1027@skku.edu).

H. Y. Youn is with the School of Information and Communication
Engineering, Sungkyunkwan University, Suwon, Korea, 440-736
(corresponding author to provide phone: 82-31-290-7147; fax:
82-31-290-7231; e-mail: youn@ece.skku.ac.kr).

only the Java-based system and hard to implement multiple
domain presentations of agent system. SEAGENT [9] is a
platform used to develop semantic web-based multi-agent
system. All agents in the platform follow semantic web
standards to represent their internal knowledge and provide
semantic service, directory service, and ontology service.
However, it must provide a means to define the mappings
between platform anthologies and external anthologies, and the
translation process is based on the mappings.

In this paper, thus, we propose a new agent platform
architecture which uses containers to manage the agents like
JADE. However, it can manage the agents more efficiently by
composing the containers with multiple hierarchical agent
groups. Also, it has the classes and functions allowing
communication between the agents implemented in various
languages such as java and c++. The proposed agent platform
uses the ACL of FIPA [5], and conforms to the standard agent
technologies. As a result, it is compatible with the system
developed using JADE.

The proposed agent platform is composed by the system
developed based on the standard agent technology of FIPA, and
it supports agent services operating as agents. The multi-agent
system developed with the proposed agent platform can be
flexible since it supports both group management and
individual management of the agent at the same time. It has
essential functions for the communication of the agents and
includes agent monitoring functions. Moreover, it allows
reflection for self-configuration. As a result, the proposed agent
platform provides a flexible foundation for dynamic
multi-agent system which can be used for seamless delivery of
ubiquitous service [2] of u-home, u-health, etc. In this paper we
introduce the proposed agent platform architecture, while
focusing on the implementation. We also provide an
explanation on the operation sequence between the modules.
The proposed platform has been implemented in the CALM
(Component-based Autonomic Layered Middleware) [1]
developed by the authors, which is reflective to efficiently
support dynamic operation in ubiquitous environment.

The remainder of the paper is organized as follows. Section
II deals with the related work and Section III introduces the
proposed agent platform. The implementation of the proposed
agent platform core is presented in Section IV. Finally, Section
V summarizes the proposed approach and ongoing work.

A Flexible and Scalable Agent Platform
for Multi-Agent Systems

Ae Hee Park, So Hyun Park, and Hee Yong Youn

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

123

II. THE RELATED WORK

A. Agent-Based Computing
An agent is a software component capable of flexible

autonomous operation in a dynamic, unpredictable and open
environment. Agent technology is a natural extension of
current component-based approaches, and includes distributed
planning, decision-making, automated auction mechanisms and
learning mechanisms [3].

Multi-Agent Planning: A multi-agent system consists of
several agents capable of reaching the goal collectively.
Planning the interdependent systems includes ensuring the
interoperability of different agents, attempting to optimize the
overall plan schedule and the distribution of local planning
tasks by a central agent. For example, there are models of team
or group activity in which the agents collaborate towards
specific objectives.

Agent Communication Language: Two common languages
for inter-agent communication are KQML and FIPA ACL.
KQML was developed as a part of the ARPA Knowledge
Sharing Effort, and it includes the message format and
message-handling protocol to support run-time knowledge
sharing among the agents [4]. FIPA is an international
organization dedicated to promoting the industry of intelligent
agents by openly developing specifications supporting
interoperability among the agents and agent-based applications
[5]. FIPA ACL message contains a set of one or more message
parameters that vary according to the situation for effective
agent communication.

Agent Architectures: Agent architectures are the fundamental
engines underlying the autonomous components that support
effective behaviors in real-world, dynamic and open
environments.

B. Autonomic Computing
Autonomic computing is a systematic approach to achieving

computer-based systems which manage themselves without
human interventions [6]. The autonomic computing capabilities
are based on four characteristics of self-managing systems.
Self-configuring allows the system to dynamically adapt to the
deployment of new components or changes with minimal
human intervention. Self-optimizing can efficiently tailor
resource allocation and utilization to meet the user needs and
ensure optimal quality of service. Self-healing automatically
detects, diagnoses, and repairs localized software and hardware
problems. Self-protecting automatically defends against
malicious attacks or cascading failures. Huang et al. [7]
presents a reflection-based approach for autonomic computing
middleware. It shows the philosophy that autonomic computing
should focus on how to reason while reflective computing
supports how to monitor and control the system. Here,
reflective computation collects the states and behaviors of basic
computation. Then, autonomic computation measures and

analyzes the data and decides when and what to change. Finally,
reflective computation decides how to change and enforces the
changes.

C. JADE Platform
JADE is a software framework simplifying the

implementation of multi-agent systems. JADE platform has
containers to hold the agents, and a main container resides on
the host which runs the RMI server of the platform. The agents
are implemented as Java threads and live within the agent
containers providing runtime support to the execution of the
agents. JADE platform includes the following three
components automatically activated at the agent platform
start-up time [8].

AMS (Agent Management System): AMS provides
white-page and life-cycle service, maintaining a directory of
agent identifiers (AID) and agent state. Each agent must
register with an AMS in order to get a valid AID.

DF (Directory Facilitator): DF is the agent providing the
default yellow page service in the platform.

ACC (Agent Communication Channel): ACC is the software
component controlling the exchange of messages within and
between the platforms.

III. THE PROPOSED SCHEME
We first present the overview of the proposed agent platform

architecture. We then show the sequence flow between the
main modules in the architecture core. Also, we show group
management and personalization administration for efficient
agent management.

A. Overview of the Agent Platform Architecture
The agent platform includes important information and

functions for agent management internally. The AMS and DF
are registered in the platform as an agent, respectively. Fig. 1
shows that the agent platform includes the Message Transport
Protocol (MTP) module for reliable message processing using
the ACL of FIPA with HTTP. The agent platform contains the
core module responsible for the management of the agent
platform and agents. The MTP module is constructed as
follows.

 HTTP Communication: This is a module built for the

communication between the agents, and embodied
according to the HTTP. An agent has a HTTP server
and client module in itself. When a message is received,
the HTTP server processes it. When a message is sent,
the HTTP client is used for the communication.

 ACL Encoder/Decoder: This is a parser module
encoding and decoding the ACL message. An agent can
send a message simultaneously to several agents
through the process of ACL.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

124

 Messaging Service: This is a message queue module
that supports ordering and queuing of messages in case
of receiving/sending messages from/to several agents at
the same time.

Fig. 1 The structure of the proposed agent platform

The main modules of the agent platform core are as follows.

 Main Container: This is the main module that manages
the agent platform.
- Platform Manager: This is a submodule that

handles the initialization of the agent platform and
delivery of messages from the MTP level to the
agent processing module.

- Service Manager: This is a submodule that
registers and manages additional services such as
reflective module.

 Agent Container: This is a module that manages groups
of agents having similar roles or functions
hierarchically.
- Life-Cycle Manager: This is a module that

manages and monitors the activity of an agent as a
thread. The methods used are start, suspend,
resume, stop etc.

- Agent Descriptor: This is a module managing the
information of agent description such as id, address,
roles, etc.

 ADT (Agent Description Table): This is a hash table
managing the reference information of the description
of the agent using the hash key of the agent id.

The agent platform core uses the MTP library, and it
hierarchically consists of one main container and several
agent containers. An agent container manages the groups of
agent descriptions, where the agent description contains the
information required for connection and management of the
agent and status information for life cycle. The agent
platform monitors and manages the agents as threads. The
threads take actions such as start, stop, and resume, running
dynamically with the present state of the agent.

B. Sequence Flow of Agent Platform Core
The agent platform core has important parts that allow

interactions among the agents and manage the execution of
agent platform. It governs the relationships between the
modules and services through the main action flow. Fig. 2
shows the sequence among the principal modules of the agent
platform core in case of initializing the agent platform,
registering and releasing an agent, and delivery of message.

Fig. 2 The main operational sequence of agent platform core

When the agent platform begins to operate, it creates Main

Container first. The Main Container reads the setting file of
XML format for initialization, which has the version
information of the platform along with the name, address, port,
and resource information. It also creates the ADT to directly
access the agent description information and Main Thread
Group Table that manages the Agent Container's reference
values. Then, it finishes the initialization to receive the ACL
messages by initializing the communication server module of
the MTP.

Each agent sends an ACL message to register at the agent
platform. Then, the agent platform core receives a callback
message from the MTP. It then confirms whether it is a
message sent by the agent platform through the receiver part of
the message. After checking the content of the message if it is a
registration message, it extracts the agent’s name, address, port,
description information, container information from the
content. Then, it examines the Agent ID from the ADT using
the hash key whether it has been already registered or not. If it
has already been registered, the platform sends a failure
message indicating ‘already-registered’ to the agent. After the
agent is registered at the ADT, the agent platform executes an
agent thread. The agent thread has the agent description
information, and it dynamically monitors the agent according to
its state. It then checks if there already exists a relevant agent
container. If not, it makes a one. Otherwise, it adds it to the
existing agent container. When the agent registration process is
completed, it sends the agent the result of registration process.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

125

When an agent sends a destroy message, the agent platform
core receives an ACL message through callback. Then it
confirms that the receiver part of it is agent platform and the
content is for deletion. It searches the ADT using the hash key
of the agent id, and deletes the reference value of the relevant
agent information. Also, it destroys the agent thread and deletes
the reference of it from the table of the agent container.

The agent platform core delivers messages to relevant agent
in case the receiver of the ACL message entering through the
message callback function is not the agent platform. The sender
agent does not know the IP Address and Port information of the
receiver agent but only the name. Therefore, it sends the request
for transmission to the agent platform. The agent platform core
searches the ADT to find the address equivalent to the name of
the receiver agent. The agent platform core receives necessary
information from the agent thread managing the agent
description information. It also talks to the relevant agent after
changing the receiver’s name and attribute value of the address,
and so on. The principal operational sequence is supported by
the MTP. Also, the platform core collects the information of
management obtained by the thread monitor.

C. Management of Agents in the Agent Platform Core
The agent platform core supports both group management

and individual management of the agents for efficiency. Also, it
uses the ADT for fast access on individual information of the
agents. The agent platform includes multiple group
management of the agents, where the groups are hierarchically
formed. The management of agent group supports the
administration of the agents belonging to the group –
establishment of priority order, start, stop, resume, kill, etc.

For example, refer to Fig. 3. There exists “Sports” agent
belonging to the Entertainment’s Outdoor group, and it is
referred by News group. When it registers at the agent platform
“A” as in the figure, it sends an ACL message that includes the
agent's address information, name, agent description
information, container information, etc. The container
information consists of the primary domain name,
“Entertainment:Outdoor”, and the referred domain name,
“News”. The agent platform searches the ADT whether there
already exists the agent description information. Then it makes
a key with the name and address of the agent if it accepts the
“Sports” agent registration information. It registers it at the
ADT after making an instance inherited Agent Thread class in
case of no existence in the ADT. Then, it examines the Agent
Group Management Table for managing the agent group and
checks whether “Entertainment Agent Container” exists. The
agent platform then creates “Outdoor Agent Container” in case
the management table of “Entertainment Agent Container”
does not include that container. The management table of
“Outdoor Agent Container” includes the reference of “Sports”
agent instance made for ADT registration. Also, “News Agent
Container” gets the reference of “Sports” agent instance. Then
“Sport” agent is accessed through several groups such as News
Agent Container and Entertainment Agent Container. The

management of agent group includes the message priority,
enumerating, adding, removing, getting the number of agent,
and so on. It operates differently according to the situation such
as “Broadcast” agent uses “Music” agent and “Sports” agent.
Therefore, the agent container can apply same or different
policy to the agents in a group of agents.

Fig. 3 Registration of "Sports” agent to the agent platform

Unlike JADE [8], the proposed agent platform core provides

the presentation of multi-domain by supporting efficient group
management internally. However, it might take long time to
find the information of the agent through the hierarchical group
management process. Therefore, we use the ADT at the same
time the group is managed hierarchically, and the agent
description information can be accessed directly.

The agent platform core finds and manages the information
of description of Agent ID by monitoring the state of the agent
using a thread. Also, the agent thread becomes a virtual agent
having a state since it acts differently according to the situation
of the agent. The agent thread has a structure with which
adjustment is possible by applying the policy decided
according to the property of the agent. It operates
independently from the process of the platform manager of
Main Container module.

The agent thread monitoring the agent gets information of
the agent from the message delivered among the agents. When
a set of agents in a multi-agent system is A = {a1, a2, … ai …an}
and agent ai is receiver of message, mk, the monitored
information is follows.

 Current message size: _ ()c size km sizeof m=

 Accumulated message size:
1

_
1

()
k

h size j
j

m sizeof m
−

=
=

∑

 The total number of delivered message: 1cntm k= −

 The ratio of current message: _

_

c size
ratio cnt

h size

m
m m

m
= ×

 Monitored data from the messages sent to ai by major
agents: S = {S1, S2, … Si …Sn} is a set of major senders,
and the agent platform includes the monitored

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

126

information relative to each element. That is

_ _ _ _ _ _{ , , , }j j c size j h size j cnt j ratios m m m m=

The monitored information is used to measure message
convergence, specification of agent’s importance, and other
information relevant to the agents.

IV. IMPLEMENTATION OF AGENT PLATFORM CORE
The agent platform core imports the MTP library, and the

main modules consist of classes. The MTP library consists of
DllQueuing library for processing the message queues,
NetworkLib for HTTP communication, and ACL_Parser_DLL
for ACL message processing. Fig. 4 shows the class diagram of
the agent platform core. The principal classes are
CMainContainer, ThreadGroup, CLADT, CAP_Thread, and
CAgentInterface.

CMainContainer is the class managing the Main Container

and its main methods are as follows.
 bool StartPlatform (): Starting the execution of agent

platform
 bool InitPlatform (): Initializing the agent platform
 bool MTPInitSetting (void): Initializing the MTP
 bool AgentRegister: (string cid, string name, string

address): Processing registration of the agent at the
agent platform

 bool AgentDestroy (string AgentName): Destroying the
agent from the agent platform

 bool ProcessMsgTransmission (CMessage msg):

Processing delivery of message to one or more receivers
 bool ACLContentParser (CMessage msg): Processing

the ACL message received from the MTP Library

CThreadGroup is a class for the administration of agent

container and management of sub-container references and
agent threads using a vector. Fig. 5 shows the simplified
declaration of the CThreadGroup class. The class constructor
receives the group id and pointer from the parent group as
parameters.

Fig. 5 The CThreadGroup class

The AddThread() mothod adds a new agent thread to the thread
vector. The RemoveThreadItem() method deletes an agent
thread from the thread vector. The RemoveGroupItem()
method removes a sub-container from the current group vector.
The Destroy() method removes all agent threads and child
group vectors, and then destroys the instance of the group class.
The Enumerate() method shows the list of active threads in the
group. These methods are used for group management. Fig. 6
illustrates the processes of the AddThread() and
RemoveThreadItem() methods.

The main method which manages the agents belonging to the
group are Resume(), Suspend(), Stop(), ActiveCount(), and so
on. Moreover, the getAgentNumber() method gets the number
of agents belonging to the group. The SetMaxPriority ()
method sets a highest priority and the GetMaxPrioriy method
gets the priority of the group. The GetParent() method gets a
Spointer to the parent group of the group. The GetID() method
gets the id of the group and the GetThreadGroupItem() method
gets a pointer to the group which has the group id of input
parameter. The format of a group id has the form of GUID
(Globally Unique Identifier).

Fig. 4 The class diagram of the agent platform core

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

127

Fig. 6 The AddThread and RemoveThreadItem methods

CAP_Thread is a class for agent life cycle management and

acts according to the state of the agent. It uses classes connected
with a semaphore, condition, mutex for the creation and
management of threads. The main methods of CAP_Thread are
as follows.

 STATE_T GetState(): Getting the current state
 string GetID(void): Getting the agent id
 void SetID(string tid): Setting the agent id
 bool Destroy(void): Destroying the thread
 bool Stop(void): Stopping the thread
 bool Suspend(void): Suspending the thread
 bool Resume(void): Resuming the thread
 void Start(): Stating the thread
 void SetPriority(PRIORITY pri): Setting the priority
 PRIORITY GetPriority(): Getting the thread’s priority

CAgentInterface is a class managing the information of

agent description and it is inherited CAP_Thread class. It can
get agent description information and manage the life cycle
according to the situation of the agent using a thread. CLADT
is the class managing the ADT, and its main methods are Put(),
Get(), Sizeof(), Remove(), and so on.

Fig. 7 shows the snapshots of the screens of communication
among the agents in the proposed platform – BroadcastAgent,
WeatherAgent, MusicAgent, and SportsAgent. The
BroadcastAgent sends the agent platform the ACL message
whose receiver part includes the names of the MusicAgent and
SportsAgent. Then, the agent platform delivers the message to
them after searching the address information.

V. CONCLUSION
In this paper we have introduced a new architecture of agent

platform that provides an interactive environment between
intelligent agents. We have also showed the sequence flows of
registration, removal, and transmission of agents in the
proposed agent platform core. It allows both the group
management and individual management of the agents for
efficiency. Moreover, we showed the implementation of the
overall agent platform core. It includes various service agents
such as AMS and DF which are required to support multi-agent
system dynamically and flexibly. The proposed agent platform
has the mechanisms for managing several agents efficiently at
the same time. It monitors the messages transmitted between
the agents, and extracts information from them. The proposed
agent platform conforms to the standard agent technology and
allows scalability. Therefore, it can effectively support
interactions between the agents used for various ubiquitous
computing applications. As the future work, we will further
optimize the agent platform and implement dynamically
configurable and fault tolerant agent platform.

REFERENCES
[1] Youn, H.Y. et al. “CALM: An Intelligent Agent-based Middleware

Architecture for Community Computing”, Proceedings of the third
Workshop on Software Technologies for Future Embedded & Ubiquitous
Systems (SEUS 2006).

[2] Kindberg et al, “System software for ubiquitous computing”, IEEE,
Pervasive Computing, pp 70-81, Jan.-March 2002.

[3] Michael Luck et al. “Agent Technology: Enabling Next Generation
Computing” AgentLink community (2003).

[4] KQML-Knowledge Query and Manipulation Language,
http://www.cs.umbc.edu/kqml/

[5] FIPA-Foundation for Intelligent Physical Agents, http://www.fipa.org
[6] IBM. Autonomic Computing: IBM’s Perspective on the State of

Information Technology, http://www.ibm.com/research/autonomic, 2001.
[7] G HUANG et al. “Towards Autonomic Computing Middleware via

Reflection”, IEEE , Computer Software and Applications Conference
(COMPSAC'04), vol.1, pp. 135 - 140, 2004.

[8] JADE, Java Agent Development framework, http://jade.cselt.it
[9] Oguz Dikenelli et al. “SEAGENT: A Platform for Developing Semantic

Web based Multi-Agent Systems”, AAMAS’05, 2005.

Fig. 7 The communication among the agents

