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Abstract—A new numerical method for solving the two- 

dimensional, steady, incompressible, viscous flow equations on a 
Curvilinear staggered grid is presented in this paper. The proposed 
methodology is finite difference based, but essentially takes 
advantage of the best features of two well-established numerical 
formulations, the finite difference and finite volume methods. Some 
weaknesses of the finite difference approach are removed by 
exploiting the strengths of the finite volume method. In particular, 
the issue of velocity-pressure coupling is dealt with in the proposed 
finite difference formulation by developing a pressure correction 
equation in a manner similar to the SIMPLE approach commonly 
used in finite volume formulations. However, since this is purely a 
finite difference formulation, numerical approximation of fluxes is 
not required. Results obtained from the present method are based on 
the first-order upwind scheme for the convective terms, but the 
methodology can easily be modified to accommodate higher order 
differencing schemes.  
 

Keywords—Curvilinear, finite difference, finite volume, 
SIMPLE.  

I. INTRODUCTION 
WO-dimensional viscous incompressible flow equations 
are usually expressed in one of two different 

formulations, based on the dependent variables used. First is 
the primitive variable formulation, in which the equations are 
expressed in terms of the pressure and velocity. The second 
form of the equations is the vorticity-streamfunction equations 
which are derived from the Navier-Stokes equations by 
incorporating the definitions for the vorticity and 
streamfunction.  

Over the last quarter century there has been much research 
devoted to the numerical solution of the incompressible 
Navier-Stokes (N-S) equations reported in the literature, see 
for example [1]-[7]. While there are finite difference, finite 
element and finite volume methodologies available, the 
majority of the fundamental research work in this field has 
been based on finite difference formulations, whereas the  
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finite volume method dominates commercial codes used in 
industry. 

Primitive variables methodologies that are used to simulate 
the incompressible Navier-Stokes equations, in which mass 
conservation is used to derive an equation for the pressure 
field, invariably solve on a staggered grid arrangement. The 
scalar properties such as pressure are located at a different set 
of grid points than the velocity components. This staggered 
arrangement is a well known approach and has been used 
successfully with a variety of methodologies [8]-[10]. The 
main reason for choosing this arrangement is that it prevents 
odd-even coupling or what is known as checkerboarding 
between the pressure field and the velocity fields [9].  

Finite difference primitive variable formulations have been 
used with success by different researchers, such as [10]-[12]. 
For the case of the incompressible Navier-Stokes equations 
written in primitive variables, the steady state solution is 
obtained either by taking an unsteady solution to the limit of 
large time, or by "directly" solving the steady equations. In 
most solution schemes for incompressible steady flows, the 
pressure field is obtained from a Poisson equation which is 
derived from the momentum equations and the continuity 
equation. However, this gives rise to issues concerning the 
proper boundary conditions for pressure. Unsteady methods 
include the work of [13], also known as the artificial 
compressibility method, the fractional step method [14], and 
the SOLA algorithm [15]. Chorin’s method [13], which is the 
basis for many current finite difference formulations for 
incompressible flow (eg., [16]) , avoids the problems 
associated with the Poisson pressure equation by introducing a 
time derivative of pressure into the conservation of mass 
equation.  

In the finite volume world, the popular SIMPLE algorithm, 
see [17], uses a segregated solution technique in which the 
pressure field and velocity fields are solved for separately 
within an iteration cycle (i.e. a complete sweep of the flow 
field). The necessary pressure-velocity coupling for the 
satisfaction of mass conservation is attained through the 
solution of a "pressure correction" equation, derived from the 
continuity equation by means of certain simplifying 
assumptions. 

In the present work, the new finite difference scheme 
developed in [18] to solve the Navier-Stokes equation on a 
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Cartesian grid is extended to a curvilinear grid. The basic idea 
is that the method is implemented with a SIMPLE-type 
algorithm for the pressure field calculation similar to that used 
in finite volume methods, whereas the discretized equations 
are developed as a purely finite difference formulation. The 
convective terms in the momentum equations are 
approximated using first-order upwind finite difference 
formulae. There are several established higher-order schemes, 
such as QUICK [19], SMART [20], VONOS [21] and 
CUBISTA [22], which have been implemented in finite 
volume formulations to approximate cell face values needed 
to evaluate the integral fluxes. However, these schemes do not 
carry over to finite difference methods. Higher-order finite 
difference approximations for the first derivatives in the 
convective terms could be used, but the present results are 
accurate enough to justify the main conclusion of our work, 
ie., within the family of finite difference methods, this new 
approach is a viable alternative for handling the pressure 
compared to the artificial compressibility and Poisson 
equation methods.  

II. NUMERICAL PROCEDURE 

A. Governing Equations 
The Navier-Stokes equations for the two-dimensional, 

steady, incompressible, viscous flow in terms of curvilinear 
coordinates ( )ηξ , , in the non-conservative dimensional form, 
are 
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where u and v are the velocity components in the ξ and η  
direction respectively, p is the pressure, ρ is the constant 

density, υ  is the viscosity xξ , yξ , xη  and yη are the 

metrics of transformation [23].  

B. Differencing Scheme 
In the present work, the first order upwind differencing 

scheme is used to approximate the convective terms in the 
momentum equations, while second order central differencing 
is used for the diffusion terms. It is not argued here that first 
order upwinding is superior to other schemes. It has been used 
for its simplicity. Higher order schemes, which should give 
more accurate results, can be easily implemented into the 
procedure developed in this paper as shown in [18] on a 
Cartesian grid.  

C. Discretized Equations 
A staggered grid is used to store the velocity components u 

and v and the pressure p. The variables u and v are stored at 
the i-1,j and i,j+1 locations respectively and p is stored at i,j. 
Thus, the u-momentum equation (2) is discretized at i-1,j, the 
v-momentum equation (3) at i,j+1, and the continuity equation 
(1) at i,j. In general form, using finite volume notations, the 
finite difference equations can be expressed as 
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The sub-index “E” in the coefficient int

Ea  means that the 
coefficient is evaluated at the east neighbour of a u-node and 
“int” means at interior nodes, i.e., away from the boundaries. 
The same notation follows for the other coefficients. The caret 
above a variable indicates quantities calculated at the previous 
iteration.              

Introducing corrections to the approximate values of u, v 
and p, and following a procedure similar to SIMPLE, which is 
commonly used in finite volume formulations, the finite 
difference equation for the pressure correction p΄ is 
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where u* and v* are the current iterates of the velocity. This 
equation can be written as 
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Because of the use of a staggered grid, the values of v in the 

ξ  momentum equation and u in the η  momentum equation, 
appearing as coefficients of the convective derivatives, are not 
available at the desired points. These velocities are computed 
using the four surrounding grid points at which they are 
stored. 

D. Boundary Conditions 
Boundary conditions are problem dependent, and are easily 

implemented in this formulation. For example, in the 
backward facing step problem, the following boundary 
conditions are applied; no slip boundary conditions are 
applied at the walls simply by setting velocity equals to zero. 
Inlet velocity values are prescribed and a parallel flow is 
applied at the outlet. The boundary conditions for p΄ are 
treated in a similar way as in a finite volume procedure.                       

    E.    Matrix Solver 
The discretized equations (4)-(6) for u, v and p are solved 

using successive line relaxation and the tri-diagonal matrix 
algorithm [9]. 

III. RESULTS 
Different Reynolds numbers in the case of backward facing 

step are compared against numerical and experimental results. 
The flow is simulated on a mesh where clustering is imposed 
close to the lower wall boundary. The results obtained are in 

good agreement with those found in literature. To confirm that 
the results obtained are independent of grid resolution, 
successive mesh refinement is tested. For the flow over a 
backward facing step at Re = 200, the reattachment length and 
number of iterations obtained using 201x41 and 401x81 nodes 
are almost identical.  Typical streamline patterns for these 
flows are shown in Fig. 1.  

 

 
Fig. 1 Streamlines for flow over a backward 

facing step; Re = 200 
 
In the absence of an exact reference solution, the results 

obtained in [24] have been taken as the benchmark, as 
recommended in [25] for the flow in a complex channel. 
Cliffe, Jackson, and Greenfield [24] used a finite element 
method in primitive variables, a Newton-Raphson 
linearization scheme and the frontal solution method for the 
resulting linear system. The results are also compared to those 
obtained in [26] who used a velocity-vorticity approach in 
streamfunction coordinates to solve this problem. Fig. 2 shows 
the vorticity at the wall using the proposed method compared 
to those found in [24] and [26]. Fig. 3 shows pressure at the 
wall using the proposed method compared to those found in 
[24] and [27]. The circulation zone obtained by using 
FLUENT is shown in Fig. 4. The circulation zones obtained 
by FLUENT and the proposed method, Fig. 5, are almost 
identical.  

 

 
Fig. 2 Vorticity along the lower wall, Re = 10 
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Fig. 3 Pressure along the lower wall, Re = 10 

 

 
Fig. 4 Streamlines for Re = 10 using FLUENT 

 

 
Fig. 5 Streamlines for Re = 10 using present method 

IV. CONCLUSIONS 
This paper presents a new numerical algorithm for solving 

the two-dimensional, steady, incompressible, viscous flow 
equations on a staggered curvilinear grid by essentially taking 
advantage of the best features of the two well-established 
numerical formulations, the finite difference and finite volume 
methods. Under the finite difference umbrella, a velocity-
pressure correction scheme has been developed, analogous to 
the SIMPLE method in finite volume formulations. 

The numerical methodology developed in this paper can be 
easily extended to second orders and higher. It can be also 
extended to three-dimensional domains, and to the modeling 
of more complicated physical phenomena, such as unsteady 
turbulent flows. 
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