
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2123

Abstract—A novel file splitting technique for the reduction of

the nth-order entropy of text files is proposed. The technique is based
on mapping the original text file into a non-ASCII binary file using a
new codeword assignment method and then the resulting binary file
is split into several subfiles each contains one or more bits from each
codeword of the mapped binary file. The statistical properties of the
subfiles are studied and it is found that they reflect the statistical
properties of the original text file which is not the case when the
ASCII code is used as a mapper. The nth-order entropy of these
subfiles are determined and it is found that the sum of their entropies
is less than that of the original text file for the same values of
extensions. These interesting statistical properties of the resulting
subfiles can be used to achieve better compression ratios when
conventional compression techniques are applied to these subfiles
individually and on a bit-wise basis rather than on character-wise
basis.

Keywords—Bit-wise Compression, Entropy, File Splitting,
Source Mapping.

I. INTRODUCTION
N conventional computer-based text compression
techniques, the characters in the alphabet of the input text

file are transformed into an arbitrary fixed-length binary code
such as the standard 8-bit ASCII code and then the
compression algorithm manipulates the resulting binary text
file on a character-wise basis (byte-wise basis) [1] and [2]. As
it is well known, high compression ratios can be achieved by
working on higher-order extensions of the original text source
by finding the probabilities of the occurrence of all the
combinations resulting from two or more characters. But
increasing the order of extension from the 0th order to the nth
order requires increasing the number of combinations to
(256)n+1 which is (256)2 = 65536 combinations for the 1st
order and (256)3= 16777216 combinations for 2nd order
compared to 256 combinations for the 0th order. This mean
that the higher-order extended sources requires from the
compression algorithms to deal with a very large number of
combinations which in turns requires very large memories and
very long execution times. On the other hand, if a bit-wise
source extension is used, the number of combinations can be

Manuscript received January 26, 2006.

A. M. Jaradat is with the Electrical and Computer Engineering Department,
University of Sharjah, Sharjah, P O Box 27272, United Arab Emirates
(corresponding author, fax: +971-6-5050872; e-mail: jaradat@ Sharjah.ac.ae).

M. I. Irshid, is with the Electrical Engineering Department, Jordan
University of Science & Technology, Irbid, 22110 Jordan.

T. T. Nassar is with the Computer Science Department, Jordan University
of Science & Technology, Irbid, 22110 Jordan.

increased in smaller jumps as we increase the order of
extensions where the number of combinations is equal to 2n+1
for the nth order extended source, i.e. 2, 4, 8, 16, 32,… etc. It
is found that a very limited research has been done on text
compression based on a bit-wise basis [4].

One method based on bit-wise approach has been proposed
in [3] where a non-ASCII codewords are assigned to the
characters of the English text so that it would be more
effective for the bit-wise run-length compression algorithm. In
previous work of the authors, an efficient source encoding
technique is proposed which is based on mapping the non-
binary information sources with a large alphabet onto an
equivalent binary source using weighted fixed-length code
assignments [4], [5]. The weighted codes are chosen such that
the entropy of the resulting binary source multiplied by the
code length is made as close as possible to that of the original
non-binary source. It is found that a large saving in
complexity, execution time, and memory size is achieved
when the commonly-used source encoding algorithms are
applied to the bit-wise nth-order extension of the resulting
binary source . This saving is due to the large reduction in the
number of symbols in the alphabet of the new extended binary
source where bit extensions of 1, 2, 3, 4, … can be used in the
bit-wise procedure instead of bit extension of 8, 16, 24, … in
the character-wise procedure.

In this paper, we propose a novel technique by which a
higher compression ratios can be achieved by reducing the
entropy of the text file below that of normally used values.
The technique is based on mapping the original text file into a
non-ASCII binary file using a new codeword assignment
method which is slightly different from that used in [3] and
[4]. The resulting binary file is split into several binary
subfiles each contains one or more bits from each codeword of
the original binary file. The statistical properties of the split
files are studied and it is found that they reflect the statistical
properties of the original text file which is not the case when
the ASCII code is used as mapper. The nth-order entropy of
these split files are determined and it is found that the sum of
their entropies is less than that of the original text file for the
same extension. These interesting properties of the resulting
split files can be used to achieve better compression ratios
when conventional compression techniques are applied to
these files individually and on a bit-wise basis rather than on
character-wise basis. In section 2, the new source mapping
method is discussed and the bit-wise nth-order entropy of an
English text file is found using the proposed mapping method
and it is compared with that resulting from using ASCII code

A File Splitting Technique for Reducing the
Entropy of Text Files

Abdel-Rahman M. Jaradat,, Mansour I. Irshid, and Talha T. Nassar

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2124

mapping.
 In section 3, the proposed splitting technique is discussed

and the bit-wise nth-order entropy of an English text file is
found for the individual split files.

 Conclusions are given in section 3.

II. SOURCE MAPPING
In conventional text compression techniques, the original

text file is transformed into a binary file using the standard
ASCII code in which the 8-bit binary codewords were
assigned to the different text characters without given any
attention to the statistical properties of the individual bits of
the codewords. Such assignment method allows the
compression technique to work on the resulting binary file on
a character-wise basis only and in this case the compression
ratio will be independent of the way the codewords are
assigned to the original characters. On the other hand, if a bit-
wise compression technique is to be used then the mapping of
the original text file into binary file must be done in a specific
procedure such that the statistics of the original characters of
the source are reflected onto the statistics of the two binary
symbols in the resulting binary file. The optimum mapping
method is the one which makes the entropy of the resulting 0th
-order binary file as close as possible to the entropy per bit of
the original file.

In previous work, the authors successfully applied a new
source mapping technique to compress text files using
conventional compression techniques but working on the
binary file on a bit-wise basis rather than on a character-wise
basis [4], [5] and recently in [6] it was extended to the
compression of multimedia files.

In this paper, the proposed mapping technique is based on
mapping each character in the original text file into an 8-bit
codeword based on the frequency of occurrence of the original
character. The mapping is done by arranging the different
characters of the alphabet of the given text file in a descending
order of their probabilities of occurrence, and then the
codewords are given to the different characters such that each
codeword is the 8-bits binary representation of the position of
that corresponding character in the list.

 The most frequent character is represented by an 8-bit
binary sequence of all zeros (which is the binary
representation of decimal zero), the second most frequent
character is represented by all zeros but a one in the LSB of
the binary sequence (which is the binary representation of
decimal one) and so on. A source mapper for the English
language (256 symbols) is designed according to the proposed
mapping rule and the probabilities and the assigned
codewords for the different characters are shown in Table I (a
sample of the characters is shown in the table).

TABLE I

PROBABILITIES AND THE NEW CODE ASSIGNMENTS OF THE
ENGLISH TEXT ALPHABET

Characte
r

Probabilit
y

Assigned
code

Space 0.174 00000000
e 0.098 00000001
t 0.070 00000010
a 0.062 00000011
o 0.059 00000100
i 0.055 00000101
n 0.055 00000110
s 0.050 00000111
r 0.048 00001000
h 0.042 00001001
...

Let the original information source S has an alphabet of

M =2N symbols with probabilities 0p , 1p , 2p , …, 1Mp − ,

and let the equivalent binary source B has probability 0p for

symbol 0 and probability 1 01p p= − for symbol 1. The 0th-
order entropy of the original text file is calculated on a
character-wise basis using the following well-known entropy
equation:

255

2
0

logC i i
i

H p p
=

= −∑ (1)

When substituting the probabilities of the different
characters of the English language given in Table I in (1), it is
found that the entropy of the original text source is 4.47
bits/character [7]. The 0th entropy of the binary file which
results from mapping the original source using the above
proposed mapping method can be found by calculating the
probabilities of symbol 0 and symbol 1 of the resulting binary
source are found to be

0 10.8, 0.2p p= = (2)

The entropy of the resulting 0th-order binary source is found
by substituting the probabilities of 0 and 1 in the following
binary entropy equation:

0 2 0 1 2 1() log logH B p p p p= − − (3)

and it is found to be 0.7219 bits/symbol. The entropy for n
bits of the binary file is n times that of its 0th-order entropy,
i.e., 0.7219 n bits/symbol. The entropy of the 8 bits of the
binary source which is equivalent to one character of the
original file is found to be 5.7754 bits/character compared to
4.47 bits/character calculated on character-basis for the
original text file.

For comparison purposes, the entropy of the binary source
resulting from using the standard ASCII code mapper is
calculated and it is found that the probabilities of symbol 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2125

and symbol 0 are 0.44 and 0.56, respectively and the entropy
of the 0th-order binary source is 0.99 bits/symbol and the
entropy of the 8 bits which is equivalent to one character is
7.9 bits/symbol which is much greater than the entropy of the
original source. This comparison indicates that bit-wise
compression technique cannot achieve any compression when
applied to binary sources using ASCII code or any other
random code. The nth-order entropy for the binary source
resulting from the proposed mapping method and that
resulting from the ASCII code is calculated for various values
of bit extensions where n takes values from 1 to 32 where a
computer program is written to determine these entropies by
finding the probabilities of occurrence of the 2n bit
combinations in the binary file. Fig. 1 shows the nth entropy
as function of bit extensions for an English text file using the
proposed source mapper and the ASCII code mapper.

5 10 15 20 25 30
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
English Text Source File

extension

en
tro

py

ASCII Code
Our Code

Fig. 1 The nth-order entropy of the English text file for the proposed

Code and the ASCII Code for various bit extensions

As it is shown from this figure, the two mappers give the

same nth entropy for the 8, 16, 24, and 32 bit extensions and
this result is as expected since these extensions correspond to
the 0th, 1st, 2nd, and 3rd extensions based on character-wise
entropy calculations which are independent of codeword
assignments. For bit extensions which are not multiples of
number 8, the entropy of the ASCII code is quite larger than
that of the proposed code specially for lower extension values
but the difference decreases as the bit extension increases. For
bit extensions lower than eight, there is a saving of
approximately two bits in the value of the entropy when using
the proposed mapping method. This saving in entropy at low
bit extensions can help in designing simple compression
techniques with large saving in complexity, execution time
and memory requirements [4], [5].

III. FILE SPLITTING
In [4], [5], the compression techniques are applied to the

whole binary file which results from mapping the original text
file using the proposed mapping method. Although, the

compression achieved in these papers is comparable to that of
conventional methods but they have the advantage of large
saving in complexity, execution time and memory size which
is due to the large reduction in the number of symbols used in
the compression process. In this paper, a novel method is
proposed to achieve more compression by reducing the nth
order entropy of the text file. This reduction of the entropy is
achieved by splitting the mapped binary file into several
subfiles and the total entropy of the file is found by
determining the entropy of the subfiles and summing them up.
To achieve compression ratios below that of conventional
methods, the compression algorithm has to be done on the
subfiles rather than on the whole binary file.

By examining the variation in the probabilities of the binary
symbols in the different bit position, we find that the
probabilities of symbol 1 and symbol 0 in the least significant
bit of the codewords are almost equal while the difference
between these two probabilities start to increase as we move
toward the most significant bit where it is almost one for
symbol 0 and almost zero for symbol 1. This means that the
entropy of the LSB is nearly equal one while it is nearly equal
zero for the MSB and has values between zero and one for the
rest of the bit positions. This interesting fact leads us to device
a technique which uses this wide variations in the entropy of
the different bit positions in the binary text file. The technique
is based on splitting the binary file into two, four or eight
subfiles each of them contains equal parts of the original file
based on dividing the bits of the codewords in specified
manner.

For example, in the case of splitting the binary file into two
subfiles, the four most significant bits (7, 6, 5, and 4) of each
codeword in the binary file are stored in one subfile while the
four least significant bits (3, 2, 1 and 0) are stored in the other
subfile where each subfile has a size half that of the original
binary file. While in splitting the original binary file into 4
subfiles, the following bit pairs (7, 6), (5, 4), (3, 2), and (1, 0)
of each codeword are stored in the four different subfiles
where each subfile has a size one fourth the size of the
original binary file. While in the case of eight subfiles, the bits
of each bit position in the codeword is stored in a different
subfile, i.e. the MSB is stored in one subfile, the next
significant bit is stored in another subfile and the same thing is
done for the rest of bits resulting in eight subfiles each has a
size one eighth the size of the original binary file. The 0th-
order entropy of each subfile can be calculated mathematically
by calculating the probabilities of symbol 0 and symbol 1
from the probabilities of the original characters of the text file.
The probability of symbol 0 in the 7th bit position of the
proposed mapped code is equal to the sum of the probabilities
of the characters whose MSB is zero and it can be determined
by the following equation:

127

07
0

i
i

p p
=

= ∑ (4)

Similarly, the probability of symbol 0 in the 6th and the 5th
bit positions are given by the following equations:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2126

63 191

06
0 128

i i
i i

p p p
= =

= +∑ ∑ (5)

31 95 159 223

05
0 64 128 192

i i i i
i i i i

p p p p p
= = = =

= + + +∑ ∑ ∑ ∑ (6)

The equations for determining the probability for symbol 0
for the rest of the bit positions can be found in a similar
procedure but because of the large number of summations
they are not shown here. The 0th order entropy of the nth bit
position can be determined by using the following binary
entropy equation:

0 2 0 1 2 1log log
n n n nnH p p p p= − − (7)

where 0p is the probability of symbol 0 and 1 01p p= − is
the probability of symbol 1.

The overall entropy of the mapped binary file can be found
by adding the entropies of the eight bit positions:

7

0
T i

i
H H

=

= ∑ (8)

The probabilities of symbol 0 and symbol 1 and the

corresponding entropies for the various bit positions are
shown in Table II.

TABLE II

THE PROBABILITIES AND THE ENTROPIES OF THE DIFFERENT
BIT POSITIONS OF THE PROPOSED CODEWORDS IN AN ENGLISH

TEXT FILE

Bit # P0 P1 Entrop
y

7 1.000 0.0000 0.0000
6 0.999 0.0010 0.0114
5 0.966 0.0340 0.2141
4 0.883 0.1170 0.5207
3 0.731 0.2690 0.8400
2 0.636 0.3640 0.9460
1 0.590 0.4100 0.9765
0 0.553 0.4470 0.9919

 The total 0th-order entropy TH of the mapped binary file
when it is split into 8 subfiles is found to be 4.818
bits/character compared to 5.775 bits/character for the non-
split binary file. This entropy value is almost equal to the 0th-
order entropy of the original text file calculated on character-
wise basis which is 4.47 bits/character. This is a very
encouraging result since we can device simple compression
techniques working on a bit-wise basis and achieving
compression ratios comparable to that working on character-
wise basis but with much lower symbol combinations. It is
obvious from Table II that the four least significant bits have
the largest contribution to the overall entropy of the mapped
binary file while the four most significant bits have the lowest

contribution where the contribution from the four LSB is 3.75
bits/character and from the four MSB is 0.75 bits/character.
Since it is very difficult to determine the nth order entropy of
the subfiles mathematically, a computer program was written
to determine these entropies by finding the probabilities of the
2n bit combinations in the each subfile and then substituting
the results in the entropy equation. The effective entropy of
the whole split binary file is equal to the sum of the individual
entropies of the subfiles.

5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

5

5.5

6

extension

en
tro

py

8-files
4-files
2-files
1-file
char-order

Fig. 2 The nth-order entropy of the split English text file as function
of bit extensions using the proposed Code for the various splitting
cases

Fig. 2 shows the overall entropy of the mapped binary file

as function of bit extensions for one, two, four and eight
subfiles where the case of one subfiles is that of the non-split
mapped binary file. It is obvious from this figure that the three
cases of split files give overall entropy which is much less
than that of the non-split case except for bit extensions which
are multiple of number eight which is the length of character
codeword. Also it is obvious that as the number of subfiles
increases the entropy curve becomes more smother. For bit
extensions less than eight, the 8 subfile case gives the lowest
entropy which is nearly constant and it is almost equal to the
0th-order character-wise entropy of the original text file and
this interesting property can be utilized to device a simple
method for determining the 0th order character-wise entropy
for sources having large number of alphabets. The two-subfile
case has the best entropy properties for values of bit extension
lying between 8 and 16 where its entropy at the 8 and 16 bit
extensions is less than that of the corresponding 0th and the 1st
character-wise entropy of the original text file. Moreover, the
entropy of the two-subfile case at the 12 bit extension is equal
to 4 bit/character compared to 4.75 bit/character for the non-
split binary file and compared to 4.47 bit/character for the 0th
order character-wise entropy and compared to 3.86
bit/character for the 1st order character-wise entropy. This
means that a good compression can be achieved at the 12 bit
extension of the two-subfile case where the compression

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2127

algorithm deals with 122 =4096 binary combinations compare
with 162 =65536 binary combinations required for the 16-bit
extension (1st-order character-wise extension).

The four-subfile case has the best entropy properties for
values of bit extension greater than 16 where it has the least
values of entropy compared with the other cases. This case
has an entropy of 3 bit/character at the 24 bit extension
compared with 3.42 bit/character for the corresponding 2nd-
order character-wise extension and an entropy of 2.3
bit/character at the 32 bit extension compared with 3.05
bit/character for the corresponding 3rd-order character-wise
extension. The reduction in the entropy of split file below that
of the original text file is due to the fact that when extending
the different subfiles by n-bits, the actual extension in the
original text file is 2n, 4n, and 8n bits for the two, four, and
eight subfiles cases.

For comparison purposes, Fig. 3 shows the nth-order
entropy of the split English text file as function of bit
extensions using the proposed Code and the ASCII code for
the 8 subfile splitting cases which shows that this file splitting
technique works only with specific codeword assignment
methods similar to that proposed in this paper.

5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

5

5.5

6

en
tro

py

extension

8-files splitting for English Text File

ASCII Code
Our Code

Fig. 3 The nth-order entropy of the split English text file as function
of bit extensions using the proposed Code and the ASCII code for the
8 subfile splitting cases

IV. CONCLUSION
In this paper, a new technique is proposed by which the nth -

order entropy of text files can be reduced below that of its
values calculated on a character-wise bases. The is achieved
via mapping the original text file into a non-ASCII binary file
using a new codeword assignment method and then the
resulting binary file is split into several binary subfiles each
contains one or more bits from each codeword of the mapped
binary file. The nth-order entropy of these subfiles are
determined and it is found that their sum is less than that of
the original text file for the same values of extensions. The
reduction in the entropy of the resulting subfiles can be used
to device compression algorithms with better compression

ratios. This can be done by applying the conventional
compression techniques to the subfiles individually and on a
bit-wise basis rather than on character-wise basis. By applying
the technique to the same text file but with ASCII mapping, it
was found that this file splitting technique works only with
specific codeword assignment methods similar to that
proposed in this paper.

REFERENCES
[1] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prentice-

Hall, Englewood cliffs NJ, 1990.
[2] G. Held and T. R. Marshall, Data Compression, John Wiley, New York,

1991.
[3] M. F. Lynch, “Compression of bibliographic files using an adaptation of

run-length coding,” Information Storage and Retrieval, Vol. 9, pp. 207—
214, 1973.

[4] A. M. Elabdalla and M. I. Irshid, “An efficient bitwise Huffman coding
technique based on source mapping,” Computers and Electrical
Engineering, Vol. 27, pp. 265—272, 2001.

[5] A. M. Jaradat and M. I. Irshid, “A simple binary run-length compression
technique for non-binary sources based on source mapping,” Active and
Passive Electronic Components, Vol. 24, pp. 211—221, 2001.

[6] A. A. Sharieh, “Enhancement of Huffman coding for the compression of
multimedia files,” International Journal of Information Technology, Vol.
1, pp. 211—213, 2004.

[7] Calgary-corpus:
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus

