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   Abstract—The group mutual exclusion (GME) problem is a 
variant of the mutual exclusion problem. In the present paper a 
token-based group mutual exclusion algorithm, capable of handling 
transient faults, is proposed. The algorithm uses the concept of 
dynamic request sets. A time out mechanism is used to detect the 
token loss; also, a distributed scheme is used to regenerate the token. 
The worst case message complexity of the algorithm is n+1. The 
maximum concurrency and forum switch complexity of the 
algorithm are n and min (n, m) respectively, where n is the number of 
processes and m is the number of groups. The algorithm also satisfies 
another desirable property called smooth admission. The scheme can 
also be adapted to handle the extended group mutual exclusion 
problem. 
 

Keywords—Dynamic request sets, Fault tolerance, Smooth 
admission, Transient faults. 

I. INTRODUCTION 
HE mutual exclusion is a classical problem of distributed 
systems. Joung [1] proposed the group mutual exclusion 

(GME) problem, a generalization of the mutual exclusion 
problem, and modeled it as the congenial talking philosophers 
(CTP) problem. In group mutual exclusion, a process requests 
a resource type (group) before entering its critical section 
(CS). Processes requesting the same group are allowed to be 
in their CS simultaneously. However, processes requesting 
different groups, must execute their CS in mutually exclusive 
way. The time interval in which all critical sections executed 
are of the same type is called a ‘session’. An interesting 
application of GME is, when several users share large data 
objects stored in some secondary storage (such as CD’s), and 
only one data object can be loaded in the buffer at a time. A 
solution of group mutual exclusion problem must satisfy the 
following requirements: 

Safety: No two processes, requesting different groups, can 
be in their critical sections concurrently. 

Starvation Freedom: A process attempting to attend a 
session will eventually succeed. 
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Concurrent Occupancy: If some process P, has requested a 
group X, and no philosopher is currently attending or 
requesting a different group, then P can attend X, without 
waiting for any other process to leave the CS. The term 
‘concurrent occupancy’ was first used by Kean and Moir in 
[2].   

Joung solved the GME problem for shared memory systems 
in [1]. Later on, a number of solutions were proposed using 
different approaches like, permission-based algorithm [3], 
token-based algorithms [4-10], and non token-based solutions 
[11-13]. Out of them, there are only three token-based 
algorithms for fully connected networks: Mittal-Mohan’s 
TokenGME [8], Mamun-Nazakato algorithm [6] and 
Swaroop-Singh algorithm [10]. Mittal-Mohan’s TokenGME, 
which is based upon Suzuki-Kasmi algorithm [14], uses two 
types of tokens, primary token and secondary tokens. The 
algorithm uses static request sets and its message complexity 
is 2*(n-1). In Mamun-Nazakato algorithm, a session is opened 
for a predefined time and processes are made aware about it, 
through broadcast. The processes interested in the currently 
open session, may join it without incurring any message 
overhead. However, the algorithm needs that the processes 
maintain synchronized logical clocks. In [10] Swaroop and 
Singh presented a token-based algorithm in which each 
process announces a priority level along with its request. The 
worst case message complexity of the algorithm is n+1. The 
algorithm favors the request with higher priority levels. This 
feature makes the algorithm suitable for soft real time 
distributed systems. The concept of aging is used to remove 
the possibility of starvation. The algorithm presented in [10] 
assumes that all channels and processes are reliable. 

The token-based algorithms are susceptible to token loss 
and token has to be regenerated in case token is lost in transit 
or the site holding the token fails. In the present paper, we 
propose a token-based algorithm, called DRS_GME 
henceforth, to solve the group mutual exclusion problem. Our 
algorithm uses the concept of dynamic request sets. Chang, 
Singhal, and Liu [15] used the dynamic request sets in their 
algorithm to solve the classical mutual exclusion problem.  
The proposed algorithm is capable of handling transient faults 
[16]. The algorithm also satisfies a desirable property called 
smooth admission [17], which ensures that when captain is in 
its critical section, a process requesting for the same group is 
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allowed to enter in its CS immediately by the captain. The use 
of dynamic request sets reduces the number of messages per 
CS request considerably, when the system is lightly loaded. 
The reason is that the cardinality of request sets will be far 
less than n-1 in that case. In the proposed scheme, a captain 
process is responsible for the session initiation and sending 
‘start’ message to other processes requesting the same 
resource type as requested by the captain, in order to allow 
them to enter in CS as follower. The algorithm uses a 
distributed scheme, adapted from Manivannan and Singhal 
[18], for the token regeneration. A timeout mechanism detects 
message losses due to site failure and (or) communication link 
failure. 

II. SYSTEM MODEL 
We assume that the system has n sites, numbered as 

1,2,3,..,n. The only way of communication between sites, is 
through message passing. The system is fully logically 
connected. We assume that, at each site i, there exists exactly 
one process Pi. Hence, we can use site and process 
interchangeably. The maximum message delay and the time 
for which a process can be in its CS are bounded. We also 
assume that only transient faults occur in the system, and 
failed sites and (or) communication links will eventually 
recover. The sites have stable storage (which survives failure), 
to store local variables. 

III. THE DATA STRUCTURES 
In our algorithm, the token is a message, which contains an 

FCFS queue, namely token.queue, in order to store all pending 
requests. The token stores the number of the last completed 
session in  token.session. The token contains two more 
variables (a) token.type that stores the type of current session 
and (b) token.followers that stores the number of follower 
processes. The requests for the same resource are grouped 
together and treated as one entry in the token.queue.  

Each process may be in any one of the following six states: 
N (Not requesting), R (Requesting), EC (Executing in CS as 
captain), EF (Executing in CS as follower), HS (Captain but 
not in CS), and HI (Holding token because no request is 
pending). 

The process Pi at site i, has the following local variables: 
statei - the current state of Pi 
captaini-  stores the id of its captain. 
SNi - is an array of sequence numbers.  
RSi - request set of site i.  
old_tokeni-a copy of the token is stored in it. 
TGIi - indicates whether the token regeneration process has 

been initiated by site i. 
followeri - is the set of follower 

IV. THE ALGORITHM 
The pseudo code of the algorithm is given in Appendix A; 

however, for reader’s convenience a high level description of 
the algorithm is presented in this section. Our algorithm uses 

the dynamic request sets technique and each site stores in its 
request set the process identifiers, called id henceforth, of sites 
which are possibly holding the token. This request set changes 
dynamically as the execution progresses. The sequence 
numbers are used to differentiate between old delayed 
requests and new requests. There exists a unique valid token 
and the process, holding this token only, may initiate a session 
and may work as captain. Initially the process P1 holds the 
token.  A process Pi requesting a resource sends its request to 
all members in its request set, if it is not holding the ‘valid’ 
token. However, if it is holding the valid token in state HI, it 
immediately enters in its CS as captain. If Pi is in state HS, it 
enters in its CS only if the requested resource type is the same 
as the token.type and the token.queue is empty; otherwise, the 
request is added in token.queue.  

When a process Pi holding the valid token receives a 
request from Pj for the resource type X, it transfers the token 
to Pj immediately, if statei is HI. If Pi is in state N, R, or EF it 
adds Pj in its request set if Pj is not already there . 
Furthermore, Pi also sends a request message to Pj, if Pj is not 
in RSi and statei is R. When the request of a process reaches 
the captain which is executing in its CS, It issues a ‘start’ 
message to Pj, if X is the same resource as token.type. 
However, if the request is conflicting, it is added in the 
token.queue. Furthermore, in order to remove the possibility 
of starvation, if the captain is in state HS, it issues a ‘start’ 
message only if the request is of the same type and there are 
no conflicting pending requests.  

A process upon receiving a ‘start’ message enters in its CS 
as follower and sends a ‘complete’ message to its captain 
upon exiting from its CS. When a captain process comes out 
of its CS, it waits till all its followers have come out of CS and 
only then it selects next captain from the front of the 
token.queue and passes the token to the next captain if any; 
otherwise, it holds the token in state HI. Whenever a captain 
process transfers the token to new captain the copy of the 
token is stored in a local variable old_tokeni which is used in 
token regeneration process. Furthermore, the id of processes, 
which can work as future captain, are added in the request set 
of current captain before transferring the token to the new 
captain. As soon as a process Pi receives a valid token 
(old_tokeni.session<token.session) it empties its request set, 
delete entry at the front of  the token.queue, sends an start 
message to all of its followers, and enters in its CS.  

In our algorithm Timer T1 is used for detection of loss of a 
token or request message and timer T2 is used for detection of 
loss of a start or complete message. When timer T1 exceeds 
the value Treq the requesting process Pi suspects token loss and 
it sends the message gen_token (i, SN, X, session) for token 
regeneration to all processes including itself and sets a 
boolean flag TGIi to indicate that a  token regeneration 
process has been initiated by site i. This flag is reset, when Pi 
receives a token or ‘start’ message. When a process Pj holding 
token receives a request for token regeneration it treats it as a 
CS request and takes action accordingly. However, if Pj is not 
holding token and Pj has executed in its CS as captain at least 
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once after Pi has executed in its CS as captain then Pj 
generates a new token with the help of old_tokenj. Pj selects 
new captain from old_tokenj.queue and sends the newly 
generated token to it. When a process Pk receives a token, it 
checks whether the session number of new token is greater 
then that of older one. If so, it accepts the newly received 
token as valid token; otherwise, the token is deleted. 

When timer T2 of the captain node expires, it suspects the 
loss of message ‘complete’ or ‘start’ and sends the message 
is_complete (j,X) to all its follower sites from where it has yet 
not received the message ‘complete’. Upon reception of 
‘is_complete’ message, there could be three possibilities: (a) if 
Pj is in state EF then Pj ignores it, (b) if Pj is requesting for 
session X, it enters in its CS, and (c) otherwise, process Pj 
sends a ‘complete’ message to the captain. 

The value of Treq should be chosen carefully so that a token 
loss is detected well in time and the false token losses go 
undetected. Let tm= maximum message delay and tc= the 
maximum time period a process will be executing inside its 
CS. A reasonable value of Treq would be (n+1)*tm + (n-1)*tc. 
The suggested value for Tfol is 2*tm+tc because in 2tm+tc time 
the captain must have received a complete message from a 
follower. 

Example: In order to provide convenience to the reader, we 
consider the following example.  Let P1, P2, P3 and P4 be the 
four processes in the system and let g1, g2 and g3  be the three 
groups. Initially token.queue is empty, RS1= Ф , RS2={1,3,4}, 
RS3={1,2,4} and RS4={1,2,3}.We consider following 
sequence of events: 

(a) P2 sends request for group g2 to {1,3,4}. P2’s request 
for g2 reaches at sites {1,3,4},P1 transfers token to P2 and P2 
enter in its CS as captain. 

(b) P1’s request for g3 reaches at P2 which is in CS. 
(c) P3 sends   request for g1 to {1,2, 4}. The request reaches 

at sites {1,2,4}, however, P2 still in CS. 
(d) P4 sends request for g3 to {1,2,3} The request reaches at 

sites {1,2,4}, however, P2 still in CS. 
(e) P2 comes out of CS; P2 adds 1 and 3 in its request set, 

selects P1 as new captain, sends token to P1. P1on receiving 
token sends start message to P4. 

Table I describes the changes in token.queue and Request 
sets with the occurrence of above mentioned events. 
 

TABLE I 
CHANGES IN TOKEN.QUEUE AND REQUEST SETS 

event token.queue 
 

Request sets 

After event 
(a) 

empty 
 

RS1= {2} 
RS2= Ф  
RS3={1, 2, 4} 
RS4={1, 2, 3}    

After event 
(b) 

 
 g3 1 RS1={2} 

RS2=Ф 
RS3={1, 2, 4} 
RS4={1, 2, 3} 
 

After event 
(c) 

 
g3 1 
g1 3 

RS1={2,3} 
RS2= Ф 
RS3={1, 2, 4} 
RS4={1, 2, 3} 
 

After event 
(d) 

 
g3 1 4 
g1 3 

RS1= {2,3, 4} 
RS2= Ф 
RS3={1, 2, 4} 
RS4={1, 2, 3} 
 

After event 
(e) 

 

g1 3 
RS1=  Ф  
RS2={1,3} 
RS3=[1,2,4} 
RS4={1,2,3}     
 

V. PROOF OF CORRECTNESS 
In this section, we prove that DRS_GME satisfies the 

requirements of GME problem namely safety, Starvation 
freedom, and concurrent occupancy. Let, type(i) = type of 
resource being used by Pi  and session(i)=latest session 
number executed or being executed  by Pi. 

Following invariants hold in the system: 
session(captaini)=session(i)       (1) 

type(captaini)=type(i)         (2) 
We take the help of the following boolean functions to 

prove the properties of our algorithm.  
in_CS(i) = true, if  Pi is in state EC or EF, false, otherwise. 
holds_valid_token(i) = true, if Pi is in state EC, HS, or HI, 

false, otherwise. 
captain(i) = true, if Pi is in state EC or HS, false, otherwise. 
Lemma 1. There exists at most one valid token in the 

system. 
Proof. We assume, initially P1 has the token, hence, 

holds_valid_token(1)= true and holds_valid_token(i)= false 
for sites i≠1. This token is transferred from one captain to 
another captain as the algorithm progresses. In response to 
gen_token (i,X,SN,session), a process Pj generates a token, 
only if the condition (session<old_tokeni.session) is satisfied. 
Pj transfers this newly generated token to the site to which it 
has sent the token most recently. A token received by a 
process Pi is valid only if old_tokeni.session < token.session. 
All the invalid tokens are deleted immediately. The condition 
old_tokeni.session < token.session can be true for at most one 
token, which is generated by the site that executed in its CS as 
a captain most recently. Only one such site may exist in the 
system. Therefore, only one valid token will be retained. 

Safety: If two processes are executing in their CS 
simultaneously then both the CS is of the same type. 

Proof: Let us assume the contrary. The two processes Pi 
and Pj are in CS having their type as ti and tj (ti≠tj) 
respectively.  Since Pi and Pj are in CS, statei=EC or EF and 
similarly statej=EC or EF. Now, four cases are possible: 

Case1:  statei=statej=EC: This implies that both captain(i) 
and captain(j) are true. From lemma 1 we conclude that this is 
not feasible. 
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Case 2 : statei=statej=EF: From lemma 1 we know that 
there exists only one captain. Therefore,  

captaini = captainj 
On applying type function, we get 
type(captaini) = type(captainj)  
Now, from invariant (2) we can write type(i) = type(j)  
This contradicts the assumption. 
Case 3: statei=EC and statej=EF 
From statei=EC, we observe that captain(i) true. 
Now, from lemma 1, only one captain exists in the system. 

Therefore, 
 captainj=i  
On applying type function, we get 
type(captainj)=type(i) 
Now, from (2) we get 
type(j)=type(i), which contradicts the assumption. 
Case 4: statei=EF and statej=EC :The proof is similar to 

case 3. 
Therefore, it is proved that if two processes are executing in 

their CS then both the CS are of the same type.  
Starvation Freedom: To show that a request will eventually 

be serviced following three conditions must be satisfied. 
A request will eventually reach the site holding the valid 

token. 
A request that reach the token holding site will be issued a 

‘start’ or ‘token’ message to enter CS as follower or will be 
added in token.queue. 

A request that is added in token.queue will eventually be 
served. 

Lemma 2: , :  or j ii j i RS j RS∀ ∈ ∈  

Proof: Initially RS1=Ф and for all i= 2 to n, RSi contains all 
other sites except itself. Hence, for any two sites i and j, the 
condition is satisfied. Now, the request set of a site i changes 
in following conditions: 

(i)   Site i receives valid token : RSi is emptied. 
(ii) Site j’s request or message gen_token reaches site i and 

site i is not holding token: j is added in RSi, if j is not in RSi. 
(iii) Site i transfers token to new captain j: In this case Site i 

adds node j and other possible token holders in RSi, whose 
requests are in token.queue. 

The entries from a request set are deleted only when 
condition (i) holds. However, at this time the site i will be in 
the request set of all other sites. Therefore, in all above three 
cases, the request sets changes in such a manner, that the 
condition  or j ii RS j RS∈ ∈  remains true for any two nodes i 

and j. 
Lemma 3: A request will reach the valid token holding site, 

if  , :  or j ii j i RS j RS∀ ∈ ∈  

Proof: Suppose when site i makes a request, the valid token 
is held at site j. Now, RSj=Ф because site j is holding the valid 
token; therefore, site j should be an element of RSi . Hence, 
site i’s request will reach at site j. When node i’s request reach 
site j, there are two possibilities: (i) j still holds the token and 
(ii) j has transferred the token to next captain, say k. In case (i) 

the request of site i will reach the site holding valid token. In 
case (ii) if k is in RSi, site i’s request will reach site k. 
However, if site i is in RSk, site k must have sent a request 
message to site i. Consequently, site i will add site k in RSi, if 
site k is not in RSi. Furthermore, site i will send a request 
message to k. Subsequently, site i’s request will reach the 
valid token holding site k. 

From lemma 2 and lemma 3 the first part of the starvation 
freedom is proved. 

Now, we prove the second part of the starvation freedom. 
When a request (j, SN, X) reaches the token holding site i, 
which may be in any one of the three states HI, EC or HS. 

Case 1:  Pi is in state HI : when Pi receives request from site  
j it will send a token message to j. 

Case 2:   Pi is in state EC:  Pi will issue a ‘start’ message to 
j if token.type=X; otherwise, the request is added in 
token.queue. 

Case 3: Pi is in state HS: If token.type=X and 
token.queue=Ф, a ‘start’ meesage is issued to j by i; otherwise, 
the request is added in token.queue.  

Now, we prove part three of the starvation freedom. In our 
algorithm token.queue is an FCFS queue and when a session 
terminates the token is transferred to the process at the front of 
the token.queue. Therefore, a request that is added in 
token.queue will eventually be served. Thus, part three of the 
starvation freedom will always be satisfied. 

Hence, the algorithm ensures starvation freedom. 
Concurrent Occupancy and Smooth Admission: In our 

algorithm, when a process starts execution in its CS as a 
captain, it sends ‘start’ message to the processes whose 
requests are stored in token.queue and requesting the same 
resource. When a captain process executing in its CS receives 
a request of the same type it issues a ‘start’ message to allow 
the requesting process to enter in its CS as follower and hence 
the algorithm satisfies ‘smooth admission’ property. However, 
if captain is in state HS, it sends a ‘start’ message in response 
of a request of the same type only if token.queue=Ф (no 
conflicting pending requests). A requesting process 
immediately enters in its CS as follower upon receiving a start 
message. Further if the token holding process is in state HI, it 
will transfer the token as soon as it receives a request 
message. This implies that, the algorithm satisfies concurrent 
occupancy property. 

VI. PERFORMANCE OF THE ALGORITHM 
In this section we discuss the performance of our algorithm 

based upon following parameters: message complexity per CS 
request, average message size, forum switch complexity, 
maximum concurrency, synchronization delay. First, we 
analyze the performance of our algorithm in fault free 
scenario. 

In the worst case n+1 messages needs to be exchanged (n-1 
‘request’, one ‘start’ and one ‘complete’ message) per CS 
entry. However in the best case no message needs to be 
exchanged. Among the messages used in the algorithm, only 
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the token has the size O(n). Therefore, in the best case (all 
processes requesting for the same session), the average 
message size will be O(1), because one token, n-1 ‘start’, n-1 
‘complete’ and some ‘request’ messages (depending upon the 
cardinality of the request sets at each site), will be exchanged. 
However, in the worst case (all processes requesting for a 
different session); n token messages will be exchanged, 
besides the ‘request’ messages. Therefore, in this case the 
average message size will be O(n). 

In our algorithm all n processes could be executing in their 
CS concurrently, if the system does not has any conflicting 
request pending. Hence, maximum concurrency of our 
algorithm is n. The requests for the same session are grouped 
together and treated as one entry in the token.queue. 
Therefore, at any point of time there can be at most min (n, m) 
entries in token.queueTherefore, the forum switch complexity 
of the algorithm is min(n,m). 

The synchronization delay of a distributed algorithm 
generally considered when the system is heavily loaded. 
Under heavy load conditions, there will always be some 
request pending, in token.queue. Hence, immediately, after 
captain comes out of its CS and no follower is in its CS, the 
token is passed to the next captain. Therefore, the heavy load 
synchronization delay is tm. However, if the last process exited 
from CS is a follower, it would send a ‘complete’ message to 
the captain that, in turn, terminates the session passing the 
token to next captain. Therefore, the synchronization delay 
would be 2tm. 

Performance in case of message loss: If a token 
regeneration process has been initiated by site i, it sends a 
‘gen_token’ message to all sites including itself. If site j 
satisfies the condition session≤old_tokenj.session, it would 
generate a token and forward it to the site to which j had sent 
the token most recently. In the worst case, n such tokens may 
be generated and 2n (n ‘gen_token’ and n token) extra 
messages are exchanged for token generation. However, in the 
best case, only one site may satisfy the above mentioned 
condition and only n+1 (n ‘gen_token’ and one token) extra 
messages need to be exchanged.  

In case, loss of ‘complete’ or ‘start’ message is suspected, 
the captain sends ‘is_complete’ message to all members of 
followeri  after timer T2 expires(value of T2 exceeds Tfol) .  
followeri stores id of the processes to which ‘start’ message 
has already been sent and ‘complete’ message is yet to be 
received from them. Therefore, after expiry of timer T2, 
followeri will contain id of only those processes whose 
‘complete’ message is lost or which could not finish their CS 
in time. In our scheme, two extra messages are required for 
each ‘complete’ message that was lost, and one extra message 
for the sites, which are not able to send ‘complete’ message in 
time. 

VII. EXTENSION OF THE ALGORITHM TO SOLVE EXTENDED 
GME PROBLEM 

Manabe and Park [10] suggested a modification of the 
GME problem and named it the Extended GME problem, in 

which a process is allowed to specify more than one resource 
type, while making a request. The request made by a process 
is serviced if the process can be allowed to join any one of the 
requested sessions. The Extended GME problem removes the 
possibility of unnecessary blocking. 

The proposed algorithm can be modified to solve the 
Extended GME problem. The ‘request’ message is modified, 
and a process Pi, specifies a set of resource types SX in its 
‘request’ message instead of specifying only one type. The 
process sends such ‘request’ message to all processes whose 
id is in its request set. When ‘request’ message reaches at the 
token possessing process Pj, Pj checks whether the current 
session X is in SX, and token.queue is empty. If so, Pj sends 
start (j,X)  message to Pi. Otherwise, Pj creates multiple entries 
of Pi in token.queue, one for each member of SX. When a 
process Pi receives token, it deletes all entries of Pi in the 
token.queue. Similarly, when a process Pi sends start(i,X) 
message to process Pj, Pi deletes all  entries related to process 
Pj from token.queue. 

VIII. CONCLUSION 
The proposed scheme satisfies the strongest fairness 

requirement, i.e. FCFS, in addition to the properties like safety 
and concurrent occupancy. The algorithm satisfies another 
desirable property called smooth admission. The maximum 
concurrency of the algorithm is n and the forum switch 
complexity is min (n,m). Due to its fault tolerant feature, the 
scheme is of practical significance rather than being only of 
theoretical interest. More importantly, the scheme can be 
applied to another, more complex problem, that is, the 
extended GME problem. The concept of dynamic request sets 
has appeared earlier in the literature, nevertheless, its 
application to handle GME and extended GME problem, is the 
novelty of the present work. Due to the use of dynamic 
request sets the algorithm performs better than the algorithms 
using static request sets when the system is lightly loaded. The 
comparative performance analysis of the proposed algorithm 
with other existing schemes is being postponed for the full 
paper. 

APPENDIX 
A. The Pseudo Code of the Algorithm DRS_GME 

 
Initialization: 
For i = 1 to n 
      statei=N;    captaini =NULL 
     RSi= {ids of all processes except  Pi} 
     followeri= Ø;   TGIi=false 
     old_tokeni.session=0;   
    old_tokeni.queue= Ø 
     old_tokeni.type=NULL;  
     old_tokeni.followers=0 
     For j = 1 to n SNi[j]=0 
state1=HI;  RS1=Ø 
token.type=NULL; token.queue=Ø 
token.followers=0; token.session=0 
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Event 1: Pi request for a forum X 
++SNi[ i] 
Switch(statei) 
Case HI:  
        token.type=X;     statei =EC 
        ++token.session 
        token.followers=0;  Enter CS 
Case HS: 
        If (token.queue= Ø) && (token.type=X) 
              statei=EC;  
              Enter CS 
        Else 
             Add request (i,SNi [i],X) to token.queue 
             Start timer T1 
 Default: 
        statei=R;  Start timer T1 

  Send request (i, SNi [i], X) to all members of  RSi 
   
Event 2:  Pi receives request (j,SN,X) 
If SN>SNi[j] /* otherwise old request 
    SNi[j] =SN 
   Switch (statei) 
   Case  R: 
          If ( iRSj ∉ )  
               Add j to RSi 

                   Send request (i,SNi[i], Y) to Pj  
   Case EC: 
          If (token.type=X)  
               ++ token.followers 
               reset timer T2 
               add  j to followeri 
               Send start (i) to Pj 
          Else add request (j,SN,X) to token.queue 
   Case HI:  
         Add j to RSi 
         Add  request ( j,SN,X) to token.queue 
         old_tokeni=token;  statei=R 
         Send token (token.queue, token.type,     
         token.followers,token.session) to Pj 
  Case HS: 
          If (token.type=X) && (token.queue=Ø) 
               ++token.followers;  

      Reset timer T2 
      Add j to followeri 
      Send start (i) to Pj 

          Else Add request (j,SN,X) to token.queue 
  Default:  
         If   ( iRSj ∉ ) Add j to RSi 
                                             
Event 3:   Pi receives start (j) 
If (TGIi=true) TGIi=false 
Close timer T1 
 captaini=j; statei=EF; Enter CS 
 
 Event 4:  Pi exits from CS: 
 If statei=EF 
      Send complete (i) to captaini 
      captaini=NULL;     statei=N 
 Else 
      If (token.followers=0) && (token.queue=Ø) 
           Close timer T2 
           statei=HI; token.type=NULL 
           old_tokeni=token 
      If (token.followers=0) && (token.queue≠Ø) 

           Close timer T2 
 statei =N; 

           old_tokeni=token 
           RSi = {id’s of all processes which are in    
           token.queue and will work as captain      
    in future}     

    Pj  at the front of token.queue is selected as  captain  
           Send token (token.queue, token.type,     

     token.followers,token.session) to Pj     
       If (token.followers≠0)  statei =HS 
 
Event 5: Pi receives complete(j) 
If ( j is in followeri) 
     -- token.followers 
     Remove j from followeri 
     If followeri =φ close timer T2 
     If (token.followers=0) && (statei=HS) 
          If (token.queue=Ø) statei=HI 
      Else 
            If (i’s request in token.queue) statei=R  
            Else   statei=N; 

     RSi = {id’s of all processes which                                                  
            are in token.queue and will work  
            as captain in future}  
     Pj at front of token.queue is selected as                                
captain              

                  o ld_tokeni =token 
            Send token (token.queue, token.type,     

      token.followers,token.session) to Pj        
 
Event 6: Pi receives token 
If (old_tokeni.session<token.session)  /*otherwise invalid 
     If  (TGIi=true) TGIi=false  
     Close timer T1 
     delete (token.queue)   /*delete Pi and its followers 
     token.type=X       /* X is the type of deleted entry 
      token.followers=number of followers of Pi                                     
     Add all followers of Pi to followeri 
   Send start (j) to   followers of Pj 
   statei=EC; enter CS; RSi =Ø 
 
Event 7: Timer T1 at Pi exceeds the value Treq 
Reset timer T1 
TGIi=true 
Send gen_token (i,X,SNi[i],old_tokeni.session) to all sites 
 
Event 8:  Pi receives gen_token (j,X,SN,session) 
If (SN≥SNi[j])  
     SNi[j] =SN 
     If (statei=N/R) 
          If   ( iRSj ∉ )  Add j to RSi 

            If statei=R Send  i’s request message to Pj 

          If (session ≤old_tokeni.session) 
               Pk= process at the front of old_tokeni.queue 
               token=old_tokeni 
              Send token (token.queue, token.type,     
               token.followers,token.session) to Pk 
    Else If (statei=EC) 
          If (token.type=X)  
               Reset timer T2 
               Send start (i) to Pj 
               If (j  not in followeri) 
                    ++ token.followers;   
                    Add  j to followeri 
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          Else Add request (j,SN,X) to token.queue    
    Else If (statei=HI) 
          Add j to RSi 
          Add request (j,SN,X)  to old_tokeni.queue 

 old_tokeni =token 
          Send token (token.queue, token.type,     
           token.followers,token.session) to Pj 
     Else If (statei=HS)  
            If (token.type=X) && (token.queue=Ø) 

        Reset timer T2;   
                 Send start(i) to Pj 
                 If (j  not in followeri) 
                                Add j to followeri 

                             ++totken.followers 
      Else Add request (j,SN,X) to token.queue 
 
Event 9: Timer T2 exceeds value 2*tm+tc at Pi 
Send is_complete (i,X) to all processes in followeri 

 
Event 10: Pi receives is_complete (j,X) 
If  Pi is requesting for session X 
      If  TGIi=True TGIi=False 
     Close timer T1;    captaini=j 
      statei=EF; enter CS 
If (statei≠EF) send complete (i) to Pj 
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