
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

289

 Abstract—The group mutual exclusion (GME) problem is a
variant of the mutual exclusion problem. In the present paper a
token-based group mutual exclusion algorithm, capable of handling
transient faults, is proposed. The algorithm uses the concept of
dynamic request sets. A time out mechanism is used to detect the
token loss; also, a distributed scheme is used to regenerate the token.
The worst case message complexity of the algorithm is n+1. The
maximum concurrency and forum switch complexity of the
algorithm are n and min (n, m) respectively, where n is the number of
processes and m is the number of groups. The algorithm also satisfies
another desirable property called smooth admission. The scheme can
also be adapted to handle the extended group mutual exclusion
problem.

Keywords—Dynamic request sets, Fault tolerance, Smooth
admission, Transient faults.

I. INTRODUCTION
HE mutual exclusion is a classical problem of distributed
systems. Joung [1] proposed the group mutual exclusion

(GME) problem, a generalization of the mutual exclusion
problem, and modeled it as the congenial talking philosophers
(CTP) problem. In group mutual exclusion, a process requests
a resource type (group) before entering its critical section
(CS). Processes requesting the same group are allowed to be
in their CS simultaneously. However, processes requesting
different groups, must execute their CS in mutually exclusive
way. The time interval in which all critical sections executed
are of the same type is called a ‘session’. An interesting
application of GME is, when several users share large data
objects stored in some secondary storage (such as CD’s), and
only one data object can be loaded in the buffer at a time. A
solution of group mutual exclusion problem must satisfy the
following requirements:

Safety: No two processes, requesting different groups, can
be in their critical sections concurrently.

Starvation Freedom: A process attempting to attend a
session will eventually succeed.

Abhishek Swaroop is with the computer science and engineering
department of G.P.M. College of Engineering, Delhi, 110036, India
(corresponding author: phone: 91-11-22300003; fax: 91-11-27203937; e-mail:
abhi_pu1@yahoo.co.in).

Awadhesh Kumar Singh is with the Computer Engineering department of
National Institute of technology, Kurukshetra, 136119, India (e-mail:
aksinreck@rediffmail.com).

Concurrent Occupancy: If some process P, has requested a
group X, and no philosopher is currently attending or
requesting a different group, then P can attend X, without
waiting for any other process to leave the CS. The term
‘concurrent occupancy’ was first used by Kean and Moir in
[2].

Joung solved the GME problem for shared memory systems
in [1]. Later on, a number of solutions were proposed using
different approaches like, permission-based algorithm [3],
token-based algorithms [4-10], and non token-based solutions
[11-13]. Out of them, there are only three token-based
algorithms for fully connected networks: Mittal-Mohan’s
TokenGME [8], Mamun-Nazakato algorithm [6] and
Swaroop-Singh algorithm [10]. Mittal-Mohan’s TokenGME,
which is based upon Suzuki-Kasmi algorithm [14], uses two
types of tokens, primary token and secondary tokens. The
algorithm uses static request sets and its message complexity
is 2*(n-1). In Mamun-Nazakato algorithm, a session is opened
for a predefined time and processes are made aware about it,
through broadcast. The processes interested in the currently
open session, may join it without incurring any message
overhead. However, the algorithm needs that the processes
maintain synchronized logical clocks. In [10] Swaroop and
Singh presented a token-based algorithm in which each
process announces a priority level along with its request. The
worst case message complexity of the algorithm is n+1. The
algorithm favors the request with higher priority levels. This
feature makes the algorithm suitable for soft real time
distributed systems. The concept of aging is used to remove
the possibility of starvation. The algorithm presented in [10]
assumes that all channels and processes are reliable.

The token-based algorithms are susceptible to token loss
and token has to be regenerated in case token is lost in transit
or the site holding the token fails. In the present paper, we
propose a token-based algorithm, called DRS_GME
henceforth, to solve the group mutual exclusion problem. Our
algorithm uses the concept of dynamic request sets. Chang,
Singhal, and Liu [15] used the dynamic request sets in their
algorithm to solve the classical mutual exclusion problem.
The proposed algorithm is capable of handling transient faults
[16]. The algorithm also satisfies a desirable property called
smooth admission [17], which ensures that when captain is in
its critical section, a process requesting for the same group is

A Fault Tolerant Token-based Algorithm for
Group Mutual Exclusion in Distributed

Systems
Abhishek Swaroop, and Awadhesh Kumar Singh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

290

allowed to enter in its CS immediately by the captain. The use
of dynamic request sets reduces the number of messages per
CS request considerably, when the system is lightly loaded.
The reason is that the cardinality of request sets will be far
less than n-1 in that case. In the proposed scheme, a captain
process is responsible for the session initiation and sending
‘start’ message to other processes requesting the same
resource type as requested by the captain, in order to allow
them to enter in CS as follower. The algorithm uses a
distributed scheme, adapted from Manivannan and Singhal
[18], for the token regeneration. A timeout mechanism detects
message losses due to site failure and (or) communication link
failure.

II. SYSTEM MODEL
We assume that the system has n sites, numbered as

1,2,3,..,n. The only way of communication between sites, is
through message passing. The system is fully logically
connected. We assume that, at each site i, there exists exactly
one process Pi. Hence, we can use site and process
interchangeably. The maximum message delay and the time
for which a process can be in its CS are bounded. We also
assume that only transient faults occur in the system, and
failed sites and (or) communication links will eventually
recover. The sites have stable storage (which survives failure),
to store local variables.

III. THE DATA STRUCTURES
In our algorithm, the token is a message, which contains an

FCFS queue, namely token.queue, in order to store all pending
requests. The token stores the number of the last completed
session in token.session. The token contains two more
variables (a) token.type that stores the type of current session
and (b) token.followers that stores the number of follower
processes. The requests for the same resource are grouped
together and treated as one entry in the token.queue.

Each process may be in any one of the following six states:
N (Not requesting), R (Requesting), EC (Executing in CS as
captain), EF (Executing in CS as follower), HS (Captain but
not in CS), and HI (Holding token because no request is
pending).

The process Pi at site i, has the following local variables:
statei - the current state of Pi
captaini- stores the id of its captain.
SNi - is an array of sequence numbers.
RSi - request set of site i.
old_tokeni-a copy of the token is stored in it.
TGIi - indicates whether the token regeneration process has

been initiated by site i.
followeri - is the set of follower

IV. THE ALGORITHM
The pseudo code of the algorithm is given in Appendix A;

however, for reader’s convenience a high level description of
the algorithm is presented in this section. Our algorithm uses

the dynamic request sets technique and each site stores in its
request set the process identifiers, called id henceforth, of sites
which are possibly holding the token. This request set changes
dynamically as the execution progresses. The sequence
numbers are used to differentiate between old delayed
requests and new requests. There exists a unique valid token
and the process, holding this token only, may initiate a session
and may work as captain. Initially the process P1 holds the
token. A process Pi requesting a resource sends its request to
all members in its request set, if it is not holding the ‘valid’
token. However, if it is holding the valid token in state HI, it
immediately enters in its CS as captain. If Pi is in state HS, it
enters in its CS only if the requested resource type is the same
as the token.type and the token.queue is empty; otherwise, the
request is added in token.queue.

When a process Pi holding the valid token receives a
request from Pj for the resource type X, it transfers the token
to Pj immediately, if statei is HI. If Pi is in state N, R, or EF it
adds Pj in its request set if Pj is not already there .
Furthermore, Pi also sends a request message to Pj, if Pj is not
in RSi and statei is R. When the request of a process reaches
the captain which is executing in its CS, It issues a ‘start’
message to Pj, if X is the same resource as token.type.
However, if the request is conflicting, it is added in the
token.queue. Furthermore, in order to remove the possibility
of starvation, if the captain is in state HS, it issues a ‘start’
message only if the request is of the same type and there are
no conflicting pending requests.

A process upon receiving a ‘start’ message enters in its CS
as follower and sends a ‘complete’ message to its captain
upon exiting from its CS. When a captain process comes out
of its CS, it waits till all its followers have come out of CS and
only then it selects next captain from the front of the
token.queue and passes the token to the next captain if any;
otherwise, it holds the token in state HI. Whenever a captain
process transfers the token to new captain the copy of the
token is stored in a local variable old_tokeni which is used in
token regeneration process. Furthermore, the id of processes,
which can work as future captain, are added in the request set
of current captain before transferring the token to the new
captain. As soon as a process Pi receives a valid token
(old_tokeni.session<token.session) it empties its request set,
delete entry at the front of the token.queue, sends an start
message to all of its followers, and enters in its CS.

In our algorithm Timer T1 is used for detection of loss of a
token or request message and timer T2 is used for detection of
loss of a start or complete message. When timer T1 exceeds
the value Treq the requesting process Pi suspects token loss and
it sends the message gen_token (i, SN, X, session) for token
regeneration to all processes including itself and sets a
boolean flag TGIi to indicate that a token regeneration
process has been initiated by site i. This flag is reset, when Pi
receives a token or ‘start’ message. When a process Pj holding
token receives a request for token regeneration it treats it as a
CS request and takes action accordingly. However, if Pj is not
holding token and Pj has executed in its CS as captain at least

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

291

once after Pi has executed in its CS as captain then Pj
generates a new token with the help of old_tokenj. Pj selects
new captain from old_tokenj.queue and sends the newly
generated token to it. When a process Pk receives a token, it
checks whether the session number of new token is greater
then that of older one. If so, it accepts the newly received
token as valid token; otherwise, the token is deleted.

When timer T2 of the captain node expires, it suspects the
loss of message ‘complete’ or ‘start’ and sends the message
is_complete (j,X) to all its follower sites from where it has yet
not received the message ‘complete’. Upon reception of
‘is_complete’ message, there could be three possibilities: (a) if
Pj is in state EF then Pj ignores it, (b) if Pj is requesting for
session X, it enters in its CS, and (c) otherwise, process Pj
sends a ‘complete’ message to the captain.

The value of Treq should be chosen carefully so that a token
loss is detected well in time and the false token losses go
undetected. Let tm= maximum message delay and tc= the
maximum time period a process will be executing inside its
CS. A reasonable value of Treq would be (n+1)*tm + (n-1)*tc.
The suggested value for Tfol is 2*tm+tc because in 2tm+tc time
the captain must have received a complete message from a
follower.

Example: In order to provide convenience to the reader, we
consider the following example. Let P1, P2, P3 and P4 be the
four processes in the system and let g1, g2 and g3 be the three
groups. Initially token.queue is empty, RS1= Ф , RS2={1,3,4},
RS3={1,2,4} and RS4={1,2,3}.We consider following
sequence of events:

(a) P2 sends request for group g2 to {1,3,4}. P2’s request
for g2 reaches at sites {1,3,4},P1 transfers token to P2 and P2
enter in its CS as captain.

(b) P1’s request for g3 reaches at P2 which is in CS.
(c) P3 sends request for g1 to {1,2, 4}. The request reaches

at sites {1,2,4}, however, P2 still in CS.
(d) P4 sends request for g3 to {1,2,3} The request reaches at

sites {1,2,4}, however, P2 still in CS.
(e) P2 comes out of CS; P2 adds 1 and 3 in its request set,

selects P1 as new captain, sends token to P1. P1on receiving
token sends start message to P4.

Table I describes the changes in token.queue and Request
sets with the occurrence of above mentioned events.

TABLE I
CHANGES IN TOKEN.QUEUE AND REQUEST SETS

event token.queue

Request sets

After event
(a)

empty

RS1= {2}
RS2= Ф
RS3={1, 2, 4}
RS4={1, 2, 3}

After event
(b)

 g3 1 RS1={2}

RS2=Ф
RS3={1, 2, 4}
RS4={1, 2, 3}

After event
(c)

g3 1
g1 3

RS1={2,3}
RS2= Ф
RS3={1, 2, 4}
RS4={1, 2, 3}

After event
(d)

g3 1 4
g1 3

RS1= {2,3, 4}
RS2= Ф
RS3={1, 2, 4}
RS4={1, 2, 3}

After event
(e)

g1 3
RS1= Ф
RS2={1,3}
RS3=[1,2,4}
RS4={1,2,3}

V. PROOF OF CORRECTNESS
In this section, we prove that DRS_GME satisfies the

requirements of GME problem namely safety, Starvation
freedom, and concurrent occupancy. Let, type(i) = type of
resource being used by Pi and session(i)=latest session
number executed or being executed by Pi.

Following invariants hold in the system:
session(captaini)=session(i) (1)

type(captaini)=type(i) (2)
We take the help of the following boolean functions to

prove the properties of our algorithm.
in_CS(i) = true, if Pi is in state EC or EF, false, otherwise.
holds_valid_token(i) = true, if Pi is in state EC, HS, or HI,

false, otherwise.
captain(i) = true, if Pi is in state EC or HS, false, otherwise.
Lemma 1. There exists at most one valid token in the

system.
Proof. We assume, initially P1 has the token, hence,

holds_valid_token(1)= true and holds_valid_token(i)= false
for sites i≠1. This token is transferred from one captain to
another captain as the algorithm progresses. In response to
gen_token (i,X,SN,session), a process Pj generates a token,
only if the condition (session<old_tokeni.session) is satisfied.
Pj transfers this newly generated token to the site to which it
has sent the token most recently. A token received by a
process Pi is valid only if old_tokeni.session < token.session.
All the invalid tokens are deleted immediately. The condition
old_tokeni.session < token.session can be true for at most one
token, which is generated by the site that executed in its CS as
a captain most recently. Only one such site may exist in the
system. Therefore, only one valid token will be retained.

Safety: If two processes are executing in their CS
simultaneously then both the CS is of the same type.

Proof: Let us assume the contrary. The two processes Pi
and Pj are in CS having their type as ti and tj (ti≠tj)
respectively. Since Pi and Pj are in CS, statei=EC or EF and
similarly statej=EC or EF. Now, four cases are possible:

Case1: statei=statej=EC: This implies that both captain(i)
and captain(j) are true. From lemma 1 we conclude that this is
not feasible.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

292

Case 2 : statei=statej=EF: From lemma 1 we know that
there exists only one captain. Therefore,

captaini = captainj
On applying type function, we get
type(captaini) = type(captainj)
Now, from invariant (2) we can write type(i) = type(j)
This contradicts the assumption.
Case 3: statei=EC and statej=EF
From statei=EC, we observe that captain(i) true.
Now, from lemma 1, only one captain exists in the system.

Therefore,
 captainj=i
On applying type function, we get
type(captainj)=type(i)
Now, from (2) we get
type(j)=type(i), which contradicts the assumption.
Case 4: statei=EF and statej=EC :The proof is similar to

case 3.
Therefore, it is proved that if two processes are executing in

their CS then both the CS are of the same type.
Starvation Freedom: To show that a request will eventually

be serviced following three conditions must be satisfied.
A request will eventually reach the site holding the valid

token.
A request that reach the token holding site will be issued a

‘start’ or ‘token’ message to enter CS as follower or will be
added in token.queue.

A request that is added in token.queue will eventually be
served.

Lemma 2: , : or j ii j i RS j RS∀ ∈ ∈

Proof: Initially RS1=Ф and for all i= 2 to n, RSi contains all
other sites except itself. Hence, for any two sites i and j, the
condition is satisfied. Now, the request set of a site i changes
in following conditions:

(i) Site i receives valid token : RSi is emptied.
(ii) Site j’s request or message gen_token reaches site i and

site i is not holding token: j is added in RSi, if j is not in RSi.
(iii) Site i transfers token to new captain j: In this case Site i

adds node j and other possible token holders in RSi, whose
requests are in token.queue.

The entries from a request set are deleted only when
condition (i) holds. However, at this time the site i will be in
the request set of all other sites. Therefore, in all above three
cases, the request sets changes in such a manner, that the
condition or j ii RS j RS∈ ∈ remains true for any two nodes i

and j.
Lemma 3: A request will reach the valid token holding site,

if , : or j ii j i RS j RS∀ ∈ ∈

Proof: Suppose when site i makes a request, the valid token
is held at site j. Now, RSj=Ф because site j is holding the valid
token; therefore, site j should be an element of RSi . Hence,
site i’s request will reach at site j. When node i’s request reach
site j, there are two possibilities: (i) j still holds the token and
(ii) j has transferred the token to next captain, say k. In case (i)

the request of site i will reach the site holding valid token. In
case (ii) if k is in RSi, site i’s request will reach site k.
However, if site i is in RSk, site k must have sent a request
message to site i. Consequently, site i will add site k in RSi, if
site k is not in RSi. Furthermore, site i will send a request
message to k. Subsequently, site i’s request will reach the
valid token holding site k.

From lemma 2 and lemma 3 the first part of the starvation
freedom is proved.

Now, we prove the second part of the starvation freedom.
When a request (j, SN, X) reaches the token holding site i,
which may be in any one of the three states HI, EC or HS.

Case 1: Pi is in state HI : when Pi receives request from site
j it will send a token message to j.

Case 2: Pi is in state EC: Pi will issue a ‘start’ message to
j if token.type=X; otherwise, the request is added in
token.queue.

Case 3: Pi is in state HS: If token.type=X and
token.queue=Ф, a ‘start’ meesage is issued to j by i; otherwise,
the request is added in token.queue.

Now, we prove part three of the starvation freedom. In our
algorithm token.queue is an FCFS queue and when a session
terminates the token is transferred to the process at the front of
the token.queue. Therefore, a request that is added in
token.queue will eventually be served. Thus, part three of the
starvation freedom will always be satisfied.

Hence, the algorithm ensures starvation freedom.
Concurrent Occupancy and Smooth Admission: In our

algorithm, when a process starts execution in its CS as a
captain, it sends ‘start’ message to the processes whose
requests are stored in token.queue and requesting the same
resource. When a captain process executing in its CS receives
a request of the same type it issues a ‘start’ message to allow
the requesting process to enter in its CS as follower and hence
the algorithm satisfies ‘smooth admission’ property. However,
if captain is in state HS, it sends a ‘start’ message in response
of a request of the same type only if token.queue=Ф (no
conflicting pending requests). A requesting process
immediately enters in its CS as follower upon receiving a start
message. Further if the token holding process is in state HI, it
will transfer the token as soon as it receives a request
message. This implies that, the algorithm satisfies concurrent
occupancy property.

VI. PERFORMANCE OF THE ALGORITHM
In this section we discuss the performance of our algorithm

based upon following parameters: message complexity per CS
request, average message size, forum switch complexity,
maximum concurrency, synchronization delay. First, we
analyze the performance of our algorithm in fault free
scenario.

In the worst case n+1 messages needs to be exchanged (n-1
‘request’, one ‘start’ and one ‘complete’ message) per CS
entry. However in the best case no message needs to be
exchanged. Among the messages used in the algorithm, only

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

293

the token has the size O(n). Therefore, in the best case (all
processes requesting for the same session), the average
message size will be O(1), because one token, n-1 ‘start’, n-1
‘complete’ and some ‘request’ messages (depending upon the
cardinality of the request sets at each site), will be exchanged.
However, in the worst case (all processes requesting for a
different session); n token messages will be exchanged,
besides the ‘request’ messages. Therefore, in this case the
average message size will be O(n).

In our algorithm all n processes could be executing in their
CS concurrently, if the system does not has any conflicting
request pending. Hence, maximum concurrency of our
algorithm is n. The requests for the same session are grouped
together and treated as one entry in the token.queue.
Therefore, at any point of time there can be at most min (n, m)
entries in token.queueTherefore, the forum switch complexity
of the algorithm is min(n,m).

The synchronization delay of a distributed algorithm
generally considered when the system is heavily loaded.
Under heavy load conditions, there will always be some
request pending, in token.queue. Hence, immediately, after
captain comes out of its CS and no follower is in its CS, the
token is passed to the next captain. Therefore, the heavy load
synchronization delay is tm. However, if the last process exited
from CS is a follower, it would send a ‘complete’ message to
the captain that, in turn, terminates the session passing the
token to next captain. Therefore, the synchronization delay
would be 2tm.

Performance in case of message loss: If a token
regeneration process has been initiated by site i, it sends a
‘gen_token’ message to all sites including itself. If site j
satisfies the condition session≤old_tokenj.session, it would
generate a token and forward it to the site to which j had sent
the token most recently. In the worst case, n such tokens may
be generated and 2n (n ‘gen_token’ and n token) extra
messages are exchanged for token generation. However, in the
best case, only one site may satisfy the above mentioned
condition and only n+1 (n ‘gen_token’ and one token) extra
messages need to be exchanged.

In case, loss of ‘complete’ or ‘start’ message is suspected,
the captain sends ‘is_complete’ message to all members of
followeri after timer T2 expires(value of T2 exceeds Tfol) .
followeri stores id of the processes to which ‘start’ message
has already been sent and ‘complete’ message is yet to be
received from them. Therefore, after expiry of timer T2,
followeri will contain id of only those processes whose
‘complete’ message is lost or which could not finish their CS
in time. In our scheme, two extra messages are required for
each ‘complete’ message that was lost, and one extra message
for the sites, which are not able to send ‘complete’ message in
time.

VII. EXTENSION OF THE ALGORITHM TO SOLVE EXTENDED
GME PROBLEM

Manabe and Park [10] suggested a modification of the
GME problem and named it the Extended GME problem, in

which a process is allowed to specify more than one resource
type, while making a request. The request made by a process
is serviced if the process can be allowed to join any one of the
requested sessions. The Extended GME problem removes the
possibility of unnecessary blocking.

The proposed algorithm can be modified to solve the
Extended GME problem. The ‘request’ message is modified,
and a process Pi, specifies a set of resource types SX in its
‘request’ message instead of specifying only one type. The
process sends such ‘request’ message to all processes whose
id is in its request set. When ‘request’ message reaches at the
token possessing process Pj, Pj checks whether the current
session X is in SX, and token.queue is empty. If so, Pj sends
start (j,X) message to Pi. Otherwise, Pj creates multiple entries
of Pi in token.queue, one for each member of SX. When a
process Pi receives token, it deletes all entries of Pi in the
token.queue. Similarly, when a process Pi sends start(i,X)
message to process Pj, Pi deletes all entries related to process
Pj from token.queue.

VIII. CONCLUSION
The proposed scheme satisfies the strongest fairness

requirement, i.e. FCFS, in addition to the properties like safety
and concurrent occupancy. The algorithm satisfies another
desirable property called smooth admission. The maximum
concurrency of the algorithm is n and the forum switch
complexity is min (n,m). Due to its fault tolerant feature, the
scheme is of practical significance rather than being only of
theoretical interest. More importantly, the scheme can be
applied to another, more complex problem, that is, the
extended GME problem. The concept of dynamic request sets
has appeared earlier in the literature, nevertheless, its
application to handle GME and extended GME problem, is the
novelty of the present work. Due to the use of dynamic
request sets the algorithm performs better than the algorithms
using static request sets when the system is lightly loaded. The
comparative performance analysis of the proposed algorithm
with other existing schemes is being postponed for the full
paper.

APPENDIX
A. The Pseudo Code of the Algorithm DRS_GME

Initialization:
For i = 1 to n
 statei=N; captaini =NULL
 RSi= {ids of all processes except Pi}
 followeri= Ø; TGIi=false
 old_tokeni.session=0;
 old_tokeni.queue= Ø
 old_tokeni.type=NULL;
 old_tokeni.followers=0
 For j = 1 to n SNi[j]=0
state1=HI; RS1=Ø
token.type=NULL; token.queue=Ø
token.followers=0; token.session=0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

294

Event 1: Pi request for a forum X
++SNi[i]
Switch(statei)
Case HI:
 token.type=X; statei =EC
 ++token.session
 token.followers=0; Enter CS
Case HS:
 If (token.queue= Ø) && (token.type=X)
 statei=EC;
 Enter CS
 Else
 Add request (i,SNi [i],X) to token.queue
 Start timer T1
 Default:
 statei=R; Start timer T1

 Send request (i, SNi [i], X) to all members of RSi

Event 2: Pi receives request (j,SN,X)
If SN>SNi[j] /* otherwise old request
 SNi[j] =SN
 Switch (statei)
 Case R:
 If (iRSj ∉)
 Add j to RSi

 Send request (i,SNi[i], Y) to Pj
 Case EC:
 If (token.type=X)
 ++ token.followers
 reset timer T2
 add j to followeri
 Send start (i) to Pj
 Else add request (j,SN,X) to token.queue
 Case HI:
 Add j to RSi
 Add request (j,SN,X) to token.queue
 old_tokeni=token; statei=R
 Send token (token.queue, token.type,
 token.followers,token.session) to Pj
 Case HS:
 If (token.type=X) && (token.queue=Ø)
 ++token.followers;

 Reset timer T2
 Add j to followeri
 Send start (i) to Pj

 Else Add request (j,SN,X) to token.queue
 Default:
 If (iRSj ∉) Add j to RSi

Event 3: Pi receives start (j)
If (TGIi=true) TGIi=false
Close timer T1
 captaini=j; statei=EF; Enter CS

 Event 4: Pi exits from CS:
 If statei=EF
 Send complete (i) to captaini
 captaini=NULL; statei=N
 Else
 If (token.followers=0) && (token.queue=Ø)
 Close timer T2
 statei=HI; token.type=NULL
 old_tokeni=token
 If (token.followers=0) && (token.queue≠Ø)

 Close timer T2
 statei =N;

 old_tokeni=token
 RSi = {id’s of all processes which are in
 token.queue and will work as captain
 in future}

 Pj at the front of token.queue is selected as captain
 Send token (token.queue, token.type,

 token.followers,token.session) to Pj
 If (token.followers≠0) statei =HS

Event 5: Pi receives complete(j)
If (j is in followeri)
 -- token.followers
 Remove j from followeri
 If followeri =φ close timer T2
 If (token.followers=0) && (statei=HS)
 If (token.queue=Ø) statei=HI
 Else
 If (i’s request in token.queue) statei=R
 Else statei=N;

 RSi = {id’s of all processes which
 are in token.queue and will work
 as captain in future}
 Pj at front of token.queue is selected as
captain

 o ld_tokeni =token
 Send token (token.queue, token.type,

 token.followers,token.session) to Pj

Event 6: Pi receives token
If (old_tokeni.session<token.session) /*otherwise invalid
 If (TGIi=true) TGIi=false
 Close timer T1
 delete (token.queue) /*delete Pi and its followers
 token.type=X /* X is the type of deleted entry
 token.followers=number of followers of Pi
 Add all followers of Pi to followeri
 Send start (j) to followers of Pj
 statei=EC; enter CS; RSi =Ø

Event 7: Timer T1 at Pi exceeds the value Treq
Reset timer T1
TGIi=true
Send gen_token (i,X,SNi[i],old_tokeni.session) to all sites

Event 8: Pi receives gen_token (j,X,SN,session)
If (SN≥SNi[j])
 SNi[j] =SN
 If (statei=N/R)
 If (iRSj ∉) Add j to RSi

 If statei=R Send i’s request message to Pj

 If (session ≤old_tokeni.session)
 Pk= process at the front of old_tokeni.queue
 token=old_tokeni
 Send token (token.queue, token.type,
 token.followers,token.session) to Pk
 Else If (statei=EC)
 If (token.type=X)
 Reset timer T2
 Send start (i) to Pj
 If (j not in followeri)
 ++ token.followers;
 Add j to followeri

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

295

 Else Add request (j,SN,X) to token.queue
 Else If (statei=HI)
 Add j to RSi
 Add request (j,SN,X) to old_tokeni.queue

 old_tokeni =token
 Send token (token.queue, token.type,
 token.followers,token.session) to Pj
 Else If (statei=HS)
 If (token.type=X) && (token.queue=Ø)

 Reset timer T2;
 Send start(i) to Pj
 If (j not in followeri)
 Add j to followeri

 ++totken.followers
 Else Add request (j,SN,X) to token.queue

Event 9: Timer T2 exceeds value 2*tm+tc at Pi
Send is_complete (i,X) to all processes in followeri

Event 10: Pi receives is_complete (j,X)
If Pi is requesting for session X
 If TGIi=True TGIi=False
 Close timer T1; captaini=j
 statei=EF; enter CS
If (statei≠EF) send complete (i) to Pj

REFERENCES
[1] Y. J. Joung, “Asynchronus group mutual exclusion (extended abstract),”

in Proc. of the 17th annual ACM Symposium on Principles of Distributed
Computing (PODC), 1998, pp. 51-60.

[2] P. Kean, and M. Moir, “ A simple local spin group mutual exclusion
algorithm,” in Proc. 18th Annual ACM Symposium on Principles of
Distributed Computing, 1999, pp. 23-32.

[3] Y. J. Joung, “The congenial talking philosopher problem in computer
networks”, Distributed Computing, vol. 15, 2002, pp. 155-175.

[4] S. Cantarell, A.K. Dutta, F. Pilit, and V. Villain, “Token based group
mutual exclusion for asynchronous rings,” in Proc. IEEE International
Conference on Distributed Computing Systems, 2001, pp. 691- 694.

[5] D. Lin, T. S. Moh, and M.. Moh, “Brief announcement: improved
asynchronous group mutual exclusion in token passing networks,” in
Proc. Annual ACM Symposium on Principles of Distributed Computing,
2005, pp. 275-275.

[6] Q. E. K. Mamun, and H. Nakazato, “A new token based protocol for
group mutual exclusion in distributed systems,” in Proc. 5th International
Symposium on Parallel and Distributed Computing, 2006, pp. 34-41.

[7] O.Thiare, M. Gueroui, and M. Naimi, “Distributed group mutual
exclusion based on client/servers model,” in Proc. 7th International
Conference on Parallel and Distributed Computing, Applications and
Technologies, 2006, pp. 67-73.

[8] N. Mittal, and P. K. Mohan, “A priority-based distributed group mutual
exclusion algorithm when group access is non uniform,” Journal of
Parallel and Distributed Computing, vol. 67, no. 7, 2007, pp. 797-815.

[9] K. P. Wu, and Y. J. Joung “Asynchronous group mutual exclusion in
ring networks,” in Proc. 13th International Parallel Processing
Symposium, 1999, pp. 539-543.

[10] A. Swaroop, and A. K. Singh, “A distributed group mutual exclusion
algorithm for soft real time systems,” in Proc. WASET International
Conference on Computer, Electrical and System Science and
Engineering CESSE’07, vol. 26, December 2007, pp. 138-143.

[11] Y. Manabe, and J. Park “Quorum based extended group mutual
exclusion algorithm without unnecessary blocking,” in Proc. 10th
International Conference on Parallel and Distributed Systems, 2004, pp.
341-348.

[12] R. Attreya, and N. Mittal, “A dynamic group mutual exclusion algorithm
using surrogate quorums,” in Proc. 25th IEEE Conference on Distributed
Computing Systems, 2005, pp. 251-260.

[13] M. Toyomura, and S. Kamei, and H. Kakugawa, “A quorum–based
distributed algorithm for group mutual exclusion,” in Proc. International

Conference on Parallel and Distributed Computing, Applications and
Technologies PDCAT’03, 2003, pp. 742-746.

[14] I. Suzuki, and T. Kasmi, “A distributed mutual exclusion algorithm,”
ACM Transactions on Computer Systems, vol. 3, no. 4, 1985, pp. 344-
349.

[15] Y. I. Chang, M. Singhal, and M. T. Liu, “A dynamic token based
distributed mutual exclusion algorithm,” in Proc. 10th Annual
International Phoenix Conference on Computers and Communications,
1991, pp. 240-246.

[16] B, Selic, “Fault tolerance techniques in distributed systems,” Available
at URL: www-128.ibm.com/developerworks /rational/library/114.html,
2004.

[17] M. Takamura, and Y. Igarashi, “Group mutual exclusion based on ticket
orders,” COCON 2003, LNCS 2697, 2003, pp. 232-41.

[18] D. Manivannan, and M. Singhal, “A decentralized token generation
scheme for token-based mutual exclusion algorithms,” International
Journal of Computer Systems Science and Engineering, vol. 11, no. 1,
1996, pp. 45-54.

