
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3519

A Fast Neural Algorithm for Serial Code Detection in
a Stream of Sequential Data

Hazem M. El-Bakry, and Qiangfu Zhao

 Abstract—In recent years, fast neural networks for object/face
detection have been introduced based on cross correlation in the
frequency domain between the input matrix and the hidden weights of
neural networks. In our previous papers [3,4], fast neural networks for
certain code detection was introduced. It was proved in [10] that for
fast neural networks to give the same correct results as conventional
neural networks, both the weights of neural networks and the input
matrix must be symmetric. This condition made those fast neural
networks slower than conventional neural networks. Another
symmetric form for the input matrix was introduced in [1-9] to speed
up the operation of these fast neural networks. Here, corrections for
the cross correlation equations (given in [13,15,16]) to compensate for
the symmetry condition are presented. After these corrections, it is
proved mathematically that the number of computation steps required
for fast neural networks is less than that needed by classical neural
networks. Furthermore, there is no need for converting the input data
into symmetric form. Moreover, such new idea is applied to increase
the speed of neural networks in case of processing complex values.
Simulation results after these corrections using MATLAB confirm the
theoretical computations.

Keywords—Fast Code/Data Detection, Neural Networks, Cross
Correlation, real/complex values.

I. INTRODUCTION

ECENTLY, neural networks have shown very good
results for detecting two dimensional sub-image in a

given image [11,12,14]. Some authors tried to speed up the
detection process of neural networks [13,15,16]. They
proposed a multilayer perceptron (MLP) algorithm for fast
object/face detection based on cross correlation in the
frequency domain between the input image and the hidden
weights of neural networks. Then, they established an
equation for the speed up ratio. It was proved in [1-12] that
their equations contain many errors, which lead to invalid
speed up ratio.

Manuscript received October 21, 2004.
H. M. El-Bakry, is assistant lecturer with Faculty of Computer Science and

Information Systems – Mansoura University – Egypt. Now, he is PhD student
in University of Aizu, Aizu Wakamatsu City, Japan 965-8580 (phone:
+81-242-37-2760, fax: +81-242-37-2743, e-mail: d8071106@u-aizu.ac.jp).

Q. Zhao is professor with the Information Systems Department, University
of Aizu, Japan (e-mail: qf-zhao@u-aizu.ac.jp).

 Here, another error in the definition of cross correlation
equation presented in [13,15,16] is presented. In [1-10] a
symmetry condition was introduced in both the input matrix
(image) and the weights of neural networks to compensate for
this error. This symmetry condition allowed those fast neural
networks to give the same correct results as conventional
neural network for detecting sub-matrix in a given large input
matrix. In [3,4], the same principle was used for fast detecting
a certain code/data in a given one dimensional matrix
(sequential data). This was done by converting the input
matrices into symmetric forms. In this paper, corrections for
the errors in cross correlation equations introduced in
[13,15,16] are presented. Theoretical and practical results after
these corrections prove that our proposed fast neural algorithm
is faster than the previous algorithms as well as classical
neural networks. In section II, fast neural networks for
code/data detection are described. The correct fast neural
algorithm for detecting a certain code/data in a given one
dimensional sequential data is presented in section III. This
algorithm can be applied for communication applications.
Here, such algorithm is used for increasing the speed of neural
networks dealing with complex values. The new fast neural
networks with real/complex successive input values will be
presented in section IV.

II. THEORY OF FAST NEURAL NETS BASED ON CROSS
CORRELATION IN THE FREQUENCY DOMAIN FOR SEQUENTIAL

DATA DETECTION

 Finding a certain code/data in the input one dimensional
matrix is a searching problem. Each position in the input
matrix is tested for the presence or absence of the required
code/data. At each position in the input matrix, each sub-
matrix is multiplied by a window of weights, which has the
same size as the sub-matrix. The outputs of neurons in the
hidden layer are multiplied by the weights of the output layer.
When the final output is high, this means that the sub-matrix
under test contains the required code/data and vice versa.
Thus, we may conclude that this searching problem is a cross
correlation between the matrix under test and the weights of
the hidden neurons.

 The convolution theorem in mathematical analysis says that
a convolution of f with h is identical to the result of the
following steps: let F and H be the results of the Fourier
Transformation of f and h in the frequency domain. Multiply F
and H in the frequency domain point by point and then
transform this product into the spatial domain via the inverse

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3520

Fourier Transform. As a result, these cross correlations can be
represented by a product in the frequency domain. Thus, by
using cross correlation in the frequency domain, speed up in
an order of magnitude can be achieved during the detection
process [1,2,3,4,5,7,8,9]. In the detection phase, a sub matrix I
of size 1xn (sliding window) is extracted from the tested
matrix, which has a size 1xN, and fed to the neural network.
Let Xi be the vector of weights between the input sub-matrix
and the hidden layer. This vector has a size of 1xn and can be
represented as 1xn matrix. The output of hidden neurons h(i)
can be calculated as follows:

⎟
⎠

⎞
⎜
⎝

⎛ +∑
=

= ib(k)I(k)
n

1k iXgih (1)

where g is the activation function and b(i) is the bias of each
hidden neuron (i). Equation 1 represents the output of each
hidden neuron for a particular sub-matrix I. It can be obtained
to the whole matrix Z as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
−=

++=
n/2

n/2k i bk) Z(uk)(iXg(u)ih (2)

Eq.2 represents a cross correlation operation. Given any two
functions f and d, their cross correlation can be obtained by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xd(x)f(x) (3)

Therefore, Eq.2 can be written as follows [1]:

()ibiXZgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u) is the
activity of the hidden unit (i) when the sliding window is
located at position (u) and (u) ∈[N-n+1].

Now, the above cross correlation can be expressed in terms of
one dimensional Fast Fourier Transform as follows [1]:

() ()()iX*FZF1FiXZ •−=⊗ (5)

Hence, by evaluating this cross correlation, a speed up ratio
can be obtained comparable to conventional neural networks.
Also, the final output of the neural network can be evaluated
as follows:

⎟
⎠
⎞

⎜
⎝
⎛
∑
=

+=
q

1i
ob)u(ih (i)owgO(u) (6)

where q is the number of neurons in the hidden layer. O(u) is
the output of the neural network when the sliding window
located at the position (u) in the input matrix Z.

 The complexity of cross correlation in the frequency
domain can be analyzed as follows:

1- For a tested matrix of 1xN elements, the 1D-FFT requires a
number equal to Nlog2N of complex computation steps.
Also, the same number of complex computation steps is
required for computing the 1D-FFT of the weight matrix at
each neuron in the hidden layer.

2- At each neuron in the hidden layer, the inverse 1D-FFT is
computed. Therefore, q backward and (1+q) forward
transforms have to be computed. Therefore, for a given
matrix under test, the total number of operations required
to compute the 1D-FFT is (2q+1)Nlog2N.

3- The number of computation steps required by fast neural
networks is complex and must be converted into a real
version. It is known that, the one dimensional Fast Fourier
Transform requires (N/2)log2N complex multiplications
and Nlog2N complex additions. Every complex
multiplication is realized by six real floating point
operations and every complex addition is implemented by
two real floating point operations. Therefore, the total
number of computation steps required to obtain the 1D-
FFT of a 1xN matrix is:

ρ=6((N/2)log2N) + 2(Nlog2N) (7)

which may be simplified to:

ρ=5(Nlog2N) (8)

4- Both the input and the weight matrices should be dot
multiplied in the frequency domain. Thus, a number of
complex computation steps equal to qN should be
considered. This means 6qN real operations will be added
to the number of computation steps required by fast neural
networks.

5- In order to perform cross correlation in the frequency
domain, the weight matrix must be extended to have the
same size as the input matrix. So, a number of zeros
= (N-n) must be added to the weight matrix. This requires
a total real number of computation steps = q(N-n) for all
neurons. Moreover, after computing the FFT for the weight
matrix, the conjugate of this matrix must be obtained. As a
result, a real number of computation steps =qN should be
added in order to obtain the conjugate of the weight matrix

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3521

for all neurons. Also, a number of real computation steps
equal to N is required to create butterflies complex
numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex
numbers are multiplied by the elements of the input matrix
or by previous complex numbers during the computation
of FFT. To create a complex number requires two real
floating point operations. Thus, the total number of
computation steps required for fast neural networks
becomes:

σ=((2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N) (9)

which can be reformulated as:

σ=((2q+1)(5Nlog2N)+q(8N-n)+N) (10)

6- Using sliding window of size 1xn for the same matrix of
1xN pixels, (q(2n-1)(N-n+1)) computation steps are
required when using classical neural networks for certain
code detection. The theoretical speed up factor η can be
evaluated as follows [11]:

 N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η (11)

7- But as proved in [10], this cross correlation in the frequency
domain (Fast Neural Networks) gives the same correct
results as conventional cross correlation (Conventional
Neural Networks) only when the input matrices are
symmetric.

II. FAST NEURAL NETWORKS FOR DETECTING A CERTAIN
CODE IN A STREAM OF ONE DIMENSIONAL SERIAL DATA

In [3,4], another symmetric form for the input one dimensional
matrix so that fast neural networks can give the same correct
results as conventional neural networks. The input matrix is
converted into symmetric form by obtaining its mirror and
testing both the matrix and its mirror version as a one
(symmetric) matrix consists of two matrices. In this case, the
symmetric matrix will have dimensions of (1x2N). Assume
that the original input matrix (1xN dimensions) Xo is:

Xo = [x1,x2, …..….,xN] (12)

Then the symmetric matrix Xs (1x2N dimensions) after
conversion from non-symmetric to symmetric one will be:

 Xs = [x1,x2, …..….,xN,xN, …..….,x2,x1] (13)

By substituting in Eq.9 for the new dimensions, the number of
computation steps required for cross correlating this new
matrix with the weights in the frequency domain can be
calculated as follows [3,4]:-

σ=((2q+1)(5(2Nlog22N))+6q(2N)+q(2N-n)+q(2N)

 +2N) (14)

which can be simplified to:

σ=((2q+1)(10N(log22N)) +q(16N-n) +2N) (15)

So, the speed up ratio in this case can be calculated as [3,4]:

 N2 n)-q(16N 2N) 1)(10Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η (16)

 The theoretical speed up ratio in this case with different
sizes of the input matrix and different in size weight matrices
is shown in Fig.1. Also, practical speed up ratio for
manipulating matrices of different sizes and different in size
weight matrices is shown in Fig.2 using 700 MHz processor
and MATLAB.

 There are critical errors in cross correlation equations
presented in [13,15,16]. Eq.3 and Eq.4 (which is Eq.4 in [16]
and also Eq.13 in [15] but in two dimensions) are not correct.
Eq.3 is not correct because the definition of cross correlation
is:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xd(x)f(x) (17)

and then Eq.4 must be written as follows:

()ibiXZgih +⊗= (18)

 Therefore, the cross correlation in the frequency domain
given by Eq.5 does not represent Eq.4. This is because the fact
that the operation of cross correlation is not commutative
(W⊗Ψ ≠ Ψ⊗W). As a result, Eq.4 does not give the same
correct results as conventional neural networks. This error
leads the researchers in [1-10] who consider the references

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3522

[13,15,16] to think about how to modify the operation of cross
correlation so that Eq.4 can give the same correct results as
conventional neural networks. Therefore, the errors in these
equations must be cleared to all the researchers. In [1-10], the
authors proved that a symmetry condition must be found in
input matrices (the input matrix under test and the weights of
neural networks) so that fast neural networks can give the
same results as conventional neural networks. In case of
symmetry W⊗Ψ=Ψ⊗W, the cross correlation becomes
commutative and this is a valuable achievement. In this case,
the cross correlation is performed without any constrains on
the arrangement of the input matrices.

 The correct theoretical speed up ratio, given by Eq.11, with
different sizes of the input matrix and different in size weight
matrices is listed in Fig.3. Practical speed up ratio for
manipulating matrices of different sizes and different in size
weight matrices is listed in Fig. 4 using 700 MHz processor
and MATLAB ver 5.3. In this case, both theoretical and
practical results show that speed up ratios are faster than the
previous speed up ratios listed in Figures 1 and 2. For different
lengths of the detected code (n), a comparison between the
numbers of computation steps required by fast and
conventional neural networks is shown in Figures 5, 6 and 7. It
is clear that the number of computation steps required by
conventional neural networks is much more than that needed
by fast neural networks. Furthermore, as shown in these three
figures, the number of computation steps required by fast
neural networks is the same. This is because the length of the
code (n), which is required to be detected, does not affect the
number of computation steps required by fast neural networks
(Eq.10). Moreover, the number of computation steps required
by conventional neural networks is increased with the length
of the code (n). Thus, as shown in Figures 3 and 4, the speed
up ratio is increased with the length of the input matrix.

IV. A NEW FAST COMPLEX-VALUED CODE DETECTION
ALGORITHM USING NEURAL NETWORKS

 Detection of complex values has many applications
especially in fields dealing with complex numbers such as
telecommunications, speech recognition and image processing
with the Fourier Transform [17,18]. For neural networks,
processing complex values means that the inputs, weights,
thresholds and activation function have complex values. For
sequential data, neural networks accept serial input data with
fixed size (n). Therefore, the number of input neurons equals
to (n). Instead of treating (n) inputs, our new idea is to collect
the input data together in a long vector (for example 100xn).
Then the successive input data is tested by fast neural
networks as a single pattern with length L (for example
L=100xn). Such test is performed in the frequency domain as
described in section II. In this section, formulas for the speed
up ratio with different types of inputs will be presented. The
special case when the imaginary part of the inputs=0 (i.e. real
input values) is considered. Also, the speed up ratio in case of
one and two dimensional input matrix will be concluded. The
operation of fast neural networks depends on computing the
Fast Fourier Transform for both the input and weight matrices

and obtaining the resulted two matrices. After performing dot
multiplication for the resulted two matrices in the frequency
domain, the Inverse Fast Fourier Transform is calculated for
the final matrix. As the Fast Fourier Transform is already
dealing with complex numbers, so there is no change in the
number of computation steps required by fast neural networks.
Therefore, the speed up ratio in case of fast neural networks
dealing with different types of inputs can be evaluated as
follows:

1) In case of real inputs and complex weights

A) For one dimensional input matrix

 Multiplication of (n) complex-valued weights by (n) real
inputs requires (2n) real operations. This produces (n) real
numbers and (n) imaginary numbers. The addition of these
numbers requires (2n-2) real operations. Therefore, the
number of computation steps required by conventional neural
networks can be calculated as:

θ=2q(2n-1)(N-n+1) (19)

The speed up ratio in this case can be computed as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η (20)

 A comparison between the numbers of computation steps
required by conventional and fast neural networks with
different code size is shown in Figures 8,9,10. The theoretical
speed up ratio for searching of a short successive code of
length (n) in a long input vector (L) using fast neural networks
is shown in Fig.11. Also, practical speed up ratio for
manipulating matrices of different sizes (L) and different in
size complex-valued weight matrices (n) is shown in Fig.12
using 700 MHz processor and MATLAB. It is clear that the
speed up ratio is proportionally increased with the size of the
code to be detected. This is very important for fast detecting
large size codes. Such result proves that the proposed
algorithm is a good achievement.

B) For two dimensional input matrix

 Multiplication of (n2) complex-valued weights by (n2) real
inputs requires (2n2) real operations. This produces (n2) real
numbers and (n2) imaginary numbers. The addition of these
numbers requires (2n2-2) real operations. Therefore, the
number of computation steps required by conventional neural
networks can be calculated as:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3523

θ=2q(2n2-1)(N-n+1)2 (21)

For two dimensional input matrix, the number of computation
steps (σ) required by fast neural networks can be calculated as
[19-23]:

σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N (22)

Therefore, the speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η (23)

 A comparison between the numbers of computation steps
required by conventional and fast neural networks for
detecting (nxn) real-valued sub-matrix in a large real-valued
matrix (NxN) is shown in Figures 13,14,15. The theoretical
speed up ratio for detecting (nxn) real-valued sub-matrix in a
large real-valued matrix (NxN) using fast neural networks is
shown in Fig.16. Also, practical speed up ratio for
manipulating real-valued matrices of different sizes (NxN) and
different in size complex-valued weight matrices (n) is shown
in Fig.17 using 700 MHz processor and MATLAB.

2) In case of complex inputs and weights

A) For one dimensional input matrix

 Multiplication of (n) complex-valued weights by (n)
complex inputs requires (6n) real operations. This produces
(n) real numbers and (n) imaginary numbers. The addition of
these numbers requires (2n-2) real operations. Therefore, the
number of computation steps required by conventional neural
networks can be calculated as:

θ=2q(4n-1)(N-n+1) (24)

The speed up ratio in this case can be computed as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η (25)

 A comparison between the numbers of computation steps
required by conventional and fast neural networks with
different code size is shown in Figures 18,19,20. The
theoretical speed up ratio for searching of a short complex-
valued successive code of length (n) in a long complex-valued
input vector (L) using fast neural networks is shown in Fig.21.
Also, practical speed up ratio for manipulating complex-
valued matrices of different sizes (L) and different in size

complex-valued weight matrices (n) is shown in Fig.22 using
700 MHz processor and MATLAB.

B) For two dimensional input matrix

 Multiplication of (n2) complex-valued weights by (n2) real
inputs requires (6n2) real operations. This produces (n2) real
numbers and (n2) imaginary numbers. The addition of these
numbers requires (2n2-2) real operations. Therefore, the
number of computation steps required by conventional neural
networks can be calculated as:

θ=2q(4n2-1)(N-n+1)2 (26)

The speed up ratio in this case can be computed as follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(4n
222

2
2

22

+++
+

=η (27)

 A comparison between the numbers of computation steps
required by conventional and fast neural networks for
detecting (nxn) complex-valued sub-matrix in a large
complex-valued matrix (NxN) is shown in Figures 23, 24, and
25. The theoretical speed up ratio for detecting (nxn) complex-
valued sub-matrix in a large complex-valued matrix (NxN)
using fast neural networks is shown in Fig.26. Also, practical
speed up ratio for manipulating complex-valued matrices of
different sizes (NxN) and different in size complex-valued
weight matrices (n) is shown in Fig.27 using 700 MHz
processor and MATLAB.

 For one dimensional matrix, from Figures
8,9,10,11,12,18,19,20,21,22, we can conclude that the
response time for vectors with small lengths are faster than
those which have larger lengths. For example, the speed up
ratio for the vector of length 10000 is faster that of length
1000000. The number of computation steps required for a
vector of length 10000 is much less than that required for a
vector of length 40000. So, if the vector of length 40000 is
divided into 4 shorter vectors of length 10000, the number of
computation steps will be less than that required for the vector
of length 40000. Therefore, for each application, it is useful at
the first to calculate the optimum length of the input vector.
The same conclusion can be drawn in case of processing the
two dimensional input matrix. From Figures
13,14,15,16,17,23,24,25,26,27, it is clear that the maximum
speed up ratio is achieved at matrix size (N=200x200) when
n=20, then at matrix size (N=300x300) when n=25, and at
matrix size (N=400x400) when n=30. This confirms our
previous results presented in [7] on fast sub-image detection
based on neural networks and image decomposition. Using
such technique, it was proved that the speed up ratio of neural
networks becomes faster when dividing the input image into
many sub-images and processing each sub-image in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3524

frequency domain separately using a single fast neural
processor.

V. CONCLUSION

 A fast neural algorithm for detecting a certain code/data in
a given sequential data has been presented. A new correct
formula for the speed up ratio has been established.
Furthermore, correct equations for one dimensional cross
correlation in the spatial and frequency domains have been
presented. Moreover, commutative cross correlation in one
dimension has been achieved by converting the non-
symmetric input matrices into symmetric forms. Theoretical
computations after these corrections have shown that fast
neural networks requires fewer computation steps than
conventional one. Simulation results have confirmed this
approval by using MATLAB. The presented fast neural
networks have been applied successfully to detect a small
matrix with real/complex values in a given large input one/two
dimensional matrix. Therefore, such algorithm can be used for
communication applications such as detecting certain serial
code in a given large stream of sequential input data.

REFERENCES
[1] H. M. El-Bakry, and Q. Zhao, “A New Symmetric Form for Fast Sub-

Matrix (Object/Face) Detection Using Neural Networks and FFT,”
International Journal of Signal Processing, to be published.

[2] H. M. El-Bakry, and Q. Zhao, “Fast Pattern Detection Using
Normalized Neural Networks and Cross Correlation in the Frequency
Domain,” EURASIP Journal on Applied Signal Processing, to be
published.

[3] H. M. El-Bakry, and H. Stoyan, “Fast Neural Networks for Code
Detection in Sequential Data Using Neural Networks for
Communication Applications,” Proc. of the First International
Conference on Cybernetics and Information Technologies, Systems and
Applications: CITSA 2004, 21-25 July, 2004. Orlando, Florida, USA,
Vol. IV, pp. 150-153.

[4] H. M. El-Bakry, and H. Stoyan, “Fast Neural Networks for Code
Detection in a Stream of Sequential Data,” Proc. of the International
Conference on Communications in Computing (CIC 2004), Las Vegas,
Nevada, USA, 21-24 June, 2004.

[5] H. M. El-Bakry, and H. Stoyan, “Fast Neural Networks for Object/Face
Detection,” Proc. of SOFSEM, the 30th Anniversary Conference on
Current Trends in Theory and Practice of Informatics, January 24 - 30,
2004, Czech Republic.

[6] H. M. El-Bakry, and H. Stoyan, "Fast Neural Networks for Sub-Matrix
(Object/Face) Detection," Proc. of IEEE International Symposium on
Circuits and Systems, Vancouver, Canada, 23-26 May, 2004.

[7] H. M. El-Bakry, "Fast Sub-Image Detection Using Neural Networks and
Cross Correlation in Frequency Domain," Proc. of IS 2004: 14th
Annual Canadian Conference on Intelligent Systems, Ottawa, Ontario,
6-8 June, 2004.

[8] H. M. El-Bakry, "Fast Neural Networks for Object/Face Detection,"
Proc. of 5th International Symposium on Soft Computing for Industry
with Applications of Financial Engineering, June 28 - July 4, 2004,
Sevilla, Andalucia, Spain.

[9] H. M. El-Bakry, and H. Stoyan, "A Fast Searching Algorithm for Sub-
Image (Object/Face) Detection Using Neural Networks," Proc. of the 8th
World Multi-Conference on Systemics, Cybernetics and Informatics, 18-
21 July, 2004, Orlando, USA.

[10] H. M. El-Bakry, “Comments on Using MLP and FFT for Fast
Object/Face Detection,” Proc. of IEEE IJCNN’03, Portland, Oregon, pp.
1284-1288, July, 20-24, 2003.

[11] H. M. El-Bakry, “Human Iris Detection Using Fast Cooperative
Modular Neural Nets and Image Decomposition,” Machine Graphics &
Vision Journal (MG&V), vol. 11, no. 4, 2002, pp. 498-512.

[12] H. M. El-Bakry, “Automatic Human Face Recognition Using Modular
Neural Networks,” Machine Graphics & Vision Journal (MG&V), vol.
10, no. 1, 2001, pp. 47-73.

[13] S. Ben-Yacoub, B. Fasel, and J. Luettin, “Fast Face Detection using
MLP and FFT,” Proc. of the Second International Conference on Audio
and Video-based Biometric Person Authentication (AVBPA'99), 1999.

[14] H. A. Rowley, S. Baluja, and T. Kanade, “ Neural Network - Based Face
Detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. 20, No. 1, pp. 23-38, 1998.

[15] B. Fasel, “Fast Multi-Scale Face Detection,” IDIAP-Com 98-04, 1998.
[16] S. Ben-Yacoub, “Fast Object Detection using MLP and FFT,” IDIAP-

RR 11, IDIAP, 1997.
[17] A. Hirose, Complex-Valued Neural Networks Theories and

Applications, Series on innovative Intellegence, vol.5. Nov. 2003.
[18] S. Jankowski, A. Lozowski, and M. Zurada, “Complex-valued Multistate

Neural Associative Memory,” IEEE Trans. on Neural Networks, vol.7,
1996, pp.1491-1496.

[19] H. M. El-Bakry, and Q. Zhao, “Fast Object/Face Detection Using
Neural Networks and Fast Fourier Transform,” International Journal on
Signal Processing, vol.1, no.3, pp. 182-187, 2004.

[20] H. M. El-Bakry, and Q. Zhao, “A Modified Cross Correlation in the
Frequency Domain for Fast Pattern Detection Using Neural Networks,”
International Journal on Signal Processing, vol.1, no.3, pp. 188-194,
2004.

[21] Hazem M. El-Bakry, and Q. Zhao, “Face Detection Using Fast Neural
Processors and Image Decomposition,” International Journal on
Computational Intelligence, vol.1, no.4, pp. 313-316, 2004.

[22] H. M. El-Bakry, and Q. Zhao, “Fast Pattern Detection Using Neural
Networks Realized in Frequency Domain,” Proc. of the International
Conference on Pattern Recognition and Computer Vision, The Second
World Enformatika Conference WEC'05, Istanbul, Turkey, 25-27 Feb.,
2005, pp.89-92.

[23] H. M. El-Bakry, and Q. Zhao, “Sub-Image Detection Using Fast Neural
Processors and Image Decomposition,” Proc. of the International
Conference on Pattern Recognition and Computer Vision, The Second
World Enformatika Conference WEC'05, Istanbul, Turkey, 25-27 Feb.,
2005, pp.85-88

 Eng. Hazem Mokhtar El-Bakry
(Mansoura, EGYPT 20-9-1970)
received B.Sc. degree in
Electronics Engineering, and
M.Sc. in Electrical Communication
Engineering from the Faculty of
Engineering, Mansoura University
– Egypt, in 1992 and 1995
respectively. Since 1997, he has
been an assistant lecturer at the
Faculty of Computer Science and
Information Systems – Mansoura
University – Egypt. Currently, he
is a doctoral student at the

Multimedia device laboratory, University of Aizu - Japan. In 2004,
he got a Research Scholarship from Japanese Government based on a
recommendation from University of Aizu.
 His research interests include neural networks, pattern
recognition, image processing, biometrics, cooperative intelligent
systems and electronic circuits. In these areas, he has published more
than 39 papers as a single author in major international journals and
conferences. He is the first author in 10 refereed international journal
papers and more than 70 refereed international conference papers.
 Eng. El-Bakry has the patent No. 2003E 19442 DE HOL / NUR,
Magnetic Resonance, SIEMENS Company, Erlangen, Germany,
2003. He is a referee for the International Journal of Machine
Graphics & Vision and many different international conferences. He
was selected as a chairman for the Facial Image Processing Session
in the 6th International Computer Science Conference, Active Media
Technology (AMT) 2001, Hong Kong, China, December 18-20, 2001
and for the Genetic Programming Session, in ACS/IEEE
International Conference on Computer Systems and Applications

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3525

Lebanese American University Beirut, Lebanon, June 25-29, 2001.
He was invited for a talk in the Biometric Consortium, Orlando,
Florida, USA, 12-14 Sep. 2001, which co-sponsored by the United
States National Security Agency (NSA) and the National Institute of
Standards and Technology (NIST).

Dr. Zhao received the Ph. D degree
from Tohoku University of Japan in
1988. He joined the Department of
Electronic Engineering of Beijing
Institute of Technology of China in
1988, first as a post doctoral fellow
and then associate professor. He was
associate professor from Oct. 1993 at
the Department of Electronic
Engineering of Tohoku University of
Japan. He joined the University of
Aizu of Japan from April 1995 as
associate professor, and became tenure

full professor in April 1999. Prof. Zhao research interests include
image processing, pattern recognition and understanding,
computational intelligence, neurocomputing and evolutionary
computation.

0

1

2

3

4

5

6

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of serial input data

Sp
ee

d
up

 R
at

io

Theoretical Speed up ratio (n=400)
Theoretical Speed up ratio (n=625)
Theoretical Speed up ratio (n=900)

Fig. 1 The theoretical speed up ratio in case of converting sequential data into symmetric form by mirroring the input matrix

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3526

0
1
2
3
4
5
6
7
8
9

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of serial input data

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 2 Practical simulation results for speed up ratio in case of converting sequential data into symmetric form by mirroring the input matrix

0
2
4
6
8

10
12
14

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of serial input data

Sp
ee

d
up

 R
at

io

Theoretical Speed up ratio (n=400)
Theoretical Speed up ratio (n=625)
Theoretical Speed up ratio (n=900)

Fig. 3 The theoretical speed up ratio for detecting a certain code (n) in a stream of serial data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3527

0
2
4
6
8

10
12
14
16
18

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of serial input data

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 4 Practical speed up ratio for detecting a certain code (n) in a stream of serial data

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 5 A comparison between the numbers of computation steps required by fast and conventional neural networks (n=400)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3528

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1.4E+11

1.6E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 6 A comparison between the numbers of computation steps required by fast and conventional neural networks (n=625)

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 7 A comparison between the numbers of computation steps required by fast and conventional neural networks (n=900)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3529

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 8 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=400)

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 9 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=625)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3530

0

1E+11

2E+11

3E+11

4E+11

5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 10 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=900)

0

5

10

15

20

25

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Theoretical Speed up ratio (n=400)
Theoretical Speed up ratio (n=625)
Theoretical Speed up ratio (n=900)

Fig. 11 The relation between the speed up ratio and the length of one dimensional real-valued input matrix in case of complex-valued weights

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3531

0
5

10
15
20
25
30
35
40

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 12 Practical speed up ratio in case of one dimensional real-valued input matrix and complex-valued weights

0

2E+10

4E+10

6E+10

8E+10

1E+11

1E+11

1E+11

2E+11

2E+11

2E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 13 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued two

dimensional input matrix and complex-valued weight matrix (n=20)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3532

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 14 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued two

dimensional input matrix and complex-valued weight matrix (n=25)

0
5E+10
1E+11

1.5E+11
2E+11

2.5E+11
3E+11

3.5E+11
4E+11

4.5E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 15 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued two

dimensional input matrix and complex-valued weight matrix (n=30)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3533

0
2
4
6
8

10
12
14
16
18

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 16 The relation between the speed up ratio and the size of two dimensional real-valued input matrix in case of complex-valued weights

0

5

10

15

20

25

30

35

40

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 17 Practical speed up ratio in case of two dimensional real-valued input matrix and complex-valued weights

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3534

0
5E+10
1E+11

1.5E+11
2E+11

2.5E+11
3E+11

3.5E+11
4E+11

4.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 18 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued

one dimensional input matrix and complex-valued weight matrix (n=400)

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 19 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued

one dimensional input matrix and complex-valued weight matrix (n=625)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3535

0.00E+00
1.00E+11
2.00E+11
3.00E+11
4.00E+11
5.00E+11
6.00E+11
7.00E+11
8.00E+11
9.00E+11
1.00E+12

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 20 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued

one dimensional input matrix and complex-valued weight matrix (n=900)

0

10

20

30

40

50

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Theoretical Speed up ratio (n=400)
Theoretical Speed up ratio (n=625)
Theoretical Speed up ratio (n=900)

Fig. 21 The relation between the speed up ratio and the length of one dimensional input real-valued matrix in case of complex-valued weights

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3536

0
10
20
30
40
50
60
70
80

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 22 Practical speed up ratio in case of one dimensional complex-valued input matrix and complex-valued weights

0

5E+10

1E+11

2E+11

2E+11

3E+11

3E+11

4E+11

4E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r

of
 C

om
pu

ta
tio

n
St

ep
s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 23 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued

two dimensional input matrix and complex-valued weight matrix (n=20)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3537

0

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

7E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 24 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued

two dimensional input matrix and complex-valued weight matrix (n=25)

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

8.00E+11

9.00E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 25 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued

two dimensional input matrix and complex-valued weight matrix (n=30)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3538

0

5

10

15

20

25

30

35

40

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 26 The relation between the speed up ratio and the size of two dimensional real-valued input matrix in case of complex-valued weights

0

10

20

30

40

50

60

70

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 27 Practical speed up ratio in case of two dimensional complex-valued input matrix in and complex-valued weights

