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    Abstract—In recent years, fast neural networks for object/face 
detection have been introduced based on cross correlation in the 
frequency domain between the input matrix and the hidden weights of 
neural networks. In our previous papers [3,4], fast neural networks for 
certain code detection was introduced. It was proved in [10] that for 
fast neural networks to give the same correct results as conventional 
neural networks, both the weights of neural networks and the input 
matrix must be symmetric. This condition made those fast neural 
networks slower than conventional neural networks. Another 
symmetric form for the input matrix was introduced in [1-9] to speed 
up the operation of these fast neural networks. Here, corrections for 
the cross correlation equations (given in [13,15,16]) to compensate for 
the symmetry condition are presented. After these corrections, it is 
proved mathematically that the number of computation steps required 
for fast neural networks is less than that needed by classical neural 
networks. Furthermore, there is no need for converting the input data 
into symmetric form. Moreover, such new idea is applied to increase 
the speed of neural networks in case of processing complex values. 
Simulation results after these corrections using MATLAB confirm the 
theoretical computations. 

Keywords—Fast Code/Data Detection, Neural Networks, Cross 
Correlation, real/complex values.   

I. INTRODUCTION 

ECENTLY, neural networks have shown very good 
results for detecting two dimensional sub-image in a 

given image [11,12,14]. Some authors tried to speed up the 
detection process of neural networks [13,15,16]. They 
proposed a multilayer perceptron (MLP) algorithm for fast 
object/face detection based on cross correlation in the 
frequency domain between the input image and the hidden 
weights of neural networks. Then, they established an 
equation for the speed up ratio. It was proved in [1-12] that 
their equations contain many errors, which lead to invalid 
speed up ratio.  

 
 
 
 
 

Manuscript received October 21, 2004. 
H. M. El-Bakry, is assistant lecturer with Faculty of Computer Science and 

Information Systems – Mansoura University – Egypt. Now, he is PhD student 
in University of Aizu, Aizu Wakamatsu City, Japan 965-8580 (phone:               
+81-242-37-2760, fax: +81-242-37-2743, e-mail: d8071106@u-aizu.ac.jp).  

Q. Zhao is professor with the Information Systems Department, University 
of Aizu, Japan (e-mail: qf-zhao@u-aizu.ac.jp). 

     Here, another error in the definition of cross correlation 
equation presented in [13,15,16] is presented. In [1-10] a 
symmetry condition was introduced in both the input matrix 
(image) and the weights of neural networks to compensate for 
this error. This symmetry condition allowed those fast neural 
networks to give the same correct results as conventional 
neural network for detecting sub-matrix in a given large input 
matrix. In [3,4], the same principle was used for  fast detecting 
a certain code/data in a given one dimensional matrix 
(sequential data). This was done by converting the input 
matrices into symmetric forms. In this paper, corrections for 
the errors in cross correlation equations introduced in 
[13,15,16] are presented. Theoretical and practical results after 
these corrections prove that our proposed fast neural algorithm 
is faster than the previous algorithms as well as classical 
neural networks. In section II, fast neural networks for 
code/data detection are described. The correct fast neural 
algorithm for detecting a certain code/data in a given one 
dimensional sequential data is presented in section III. This 
algorithm can be applied for communication applications. 
Here, such algorithm is used for increasing the speed of neural 
networks dealing with complex values. The new fast neural 
networks with real/complex successive input values will be 
presented in section IV. 

II. THEORY OF FAST NEURAL NETS BASED ON CROSS 
CORRELATION IN THE FREQUENCY DOMAIN FOR SEQUENTIAL 

DATA DETECTION 

     Finding a certain code/data in the input one dimensional 
matrix is a searching problem. Each position in the input 
matrix is tested for the presence or absence of the required 
code/data. At each position in the input matrix, each sub-
matrix is multiplied by a window of weights, which has the 
same size as the sub-matrix. The outputs of neurons in the 
hidden layer are multiplied by the weights of the output layer. 
When the final output is high, this means that the sub-matrix 
under test contains the required code/data and vice versa. 
Thus, we may conclude that this searching problem is a cross 
correlation between the matrix under test and the weights of 
the hidden neurons.   

    The convolution theorem in mathematical analysis says that 
a convolution of f with h is identical to the result of the 
following steps: let F and H be the results of the Fourier 
Transformation of f and h in the frequency domain. Multiply F 
and H in the frequency domain point by point and then 
transform this product into the spatial domain via the inverse 

R 
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Fourier Transform. As a result, these cross correlations can be 
represented by a product in the frequency domain. Thus, by 
using cross correlation in the frequency domain, speed up in 
an order of magnitude can be achieved during the detection 
process [1,2,3,4,5,7,8,9]. In the detection phase, a sub matrix I 
of size 1xn (sliding window) is extracted from the tested 
matrix, which has a size 1xN, and fed to the neural network. 
Let Xi be the vector of weights between the input sub-matrix 
and the hidden layer.  This vector has a size of 1xn and can be 
represented as 1xn matrix. The output of hidden neurons h(i) 
can be calculated as follows:  

⎟
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where g is the activation function and b(i) is the bias of each 
hidden neuron (i). Equation 1 represents the output of each 
hidden neuron for a particular sub-matrix I. It can be obtained 
to the whole matrix Z as follows: 
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Eq.2 represents a cross correlation operation. Given any two 
functions f and d, their cross correlation can be obtained by: 
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Therefore, Eq.2 can be written as follows [1]: 

( )ibiXZgih +⊗=                      (4) 

where hi is the output of the hidden neuron (i) and hi (u) is the 
activity of the hidden unit (i) when the sliding window is 
located at position (u) and (u) ∈[N-n+1].  

Now, the above cross correlation can be expressed in terms of 
one dimensional Fast Fourier Transform as follows [1]: 

( ) ( )( )iX*FZF1FiXZ •−=⊗               (5) 

Hence, by evaluating this cross correlation, a speed up ratio 
can be obtained comparable to conventional neural networks. 
Also, the final output of the neural network can be evaluated 
as follows:  
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where q is the number of neurons in  the hidden layer. O(u) is 
the output of the neural network when the sliding window 
located at the position (u) in the input matrix Z. 

     The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 

1-  For a tested matrix of 1xN elements, the 1D-FFT requires a 
number equal to Nlog2N of complex computation steps. 
Also, the same number of complex computation steps is 
required for computing the 1D-FFT of the weight matrix at 
each neuron in the hidden layer.  

2-  At each neuron in the hidden layer, the inverse 1D-FFT is 
computed. Therefore, q backward and (1+q) forward 
transforms have to be computed. Therefore, for a given 
matrix under test, the total number of operations required 
to compute the 1D-FFT is (2q+1)Nlog2N. 

3- The number of computation steps required by fast neural 
networks is complex and must be converted into a real 
version. It is known that, the one dimensional Fast Fourier 
Transform requires (N/2)log2N complex multiplications 
and Nlog2N complex additions. Every complex 
multiplication is realized by six real floating point 
operations and every complex addition is implemented by 
two real floating point operations. Therefore, the total 
number of computation steps required to obtain the 1D-
FFT of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)             (7) 

which may be simplified to: 

ρ=5(Nlog2N)                          (8) 

4- Both the input and the weight matrices should be dot 
multiplied in the frequency domain. Thus, a number of 
complex computation steps equal to qN should be 
considered. This means 6qN real operations will be added 
to the number of computation steps required by fast neural 
networks.  

5- In order to perform cross correlation in the frequency 
domain, the weight matrix must be extended to have the 
same size as the input matrix. So, a number of zeros          
= (N-n) must be added to the weight matrix. This requires 
a total real number of computation steps = q(N-n) for all 
neurons. Moreover, after computing the FFT for the weight 
matrix, the conjugate of this matrix must be obtained. As a 
result, a real number of computation steps =qN should be 
added in order to obtain the conjugate of the weight matrix 
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for all neurons.  Also, a number of real computation steps 
equal to N is required to create butterflies complex 
numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex 
numbers are multiplied by the elements of the input matrix 
or by previous complex numbers during the computation 
of FFT. To create a complex number requires two real 
floating point operations. Thus, the total number of 
computation steps required for fast neural networks 
becomes: 

σ=((2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N)      (9) 

which can be reformulated as: 

σ=((2q+1)(5Nlog2N)+q(8N-n)+N)           (10) 

6- Using sliding window of size 1xn for the same matrix of 
1xN pixels, (q(2n-1)(N-n+1)) computation steps are 
required when using classical neural networks for certain 
code detection. The theoretical speed up factor η can be 
evaluated as follows [11]: 

   N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η      (11) 

7- But as proved in [10], this cross correlation in the frequency 
domain (Fast Neural Networks) gives the same correct 
results as conventional cross correlation  (Conventional 
Neural Networks) only when the input matrices are 
symmetric. 

II. FAST  NEURAL NETWORKS FOR DETECTING A CERTAIN 
CODE IN A STREAM OF ONE  DIMENSIONAL SERIAL DATA  

In [3,4], another symmetric form for the input one dimensional 
matrix so that fast neural networks can give the same correct 
results as conventional neural networks. The input matrix is 
converted into symmetric form by obtaining its mirror and 
testing both the matrix and its mirror version as a one 
(symmetric) matrix consists of two matrices. In this case, the 
symmetric matrix will have dimensions of (1x2N). Assume 
that the original input matrix (1xN dimensions) Xo is: 

 

Xo = [x1,x2, …..….,xN]                    (12) 

Then the symmetric matrix Xs (1x2N dimensions) after 
conversion from non-symmetric to symmetric one will be: 

      Xs = [x1,x2, …..….,xN,xN, …..….,x2,x1]           (13) 

By substituting in Eq.9 for the new dimensions, the number of 
computation steps required for cross correlating this new 
matrix with the weights in the frequency domain can be 
calculated as follows [3,4]:- 

σ=((2q+1)(5(2Nlog22N))+6q(2N)+q(2N-n)+q(2N) 

   +2N)                                            (14) 

which can be simplified to: 

σ=((2q+1)(10N(log22N)) +q(16N-n) +2N)          (15) 

So, the speed up ratio in this case can be calculated as [3,4]: 

   N2 n)-q(16N 2N) 1)(10Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η      (16) 

     The theoretical speed up ratio in this case with different 
sizes of the input matrix and different in size weight matrices 
is shown in Fig.1. Also, practical speed up ratio for 
manipulating matrices of different sizes and different in size 
weight matrices is shown in Fig.2 using 700 MHz processor 
and MATLAB.  

     There are critical errors in cross correlation equations 
presented in [13,15,16]. Eq.3 and Eq.4 (which is Eq.4 in [16] 
and also Eq.13 in [15] but in two dimensions) are not correct. 
Eq.3 is not correct because the definition of cross correlation 
is: 
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and then Eq.4 must be written as follows: 

( )ibiXZgih +⊗=                    (18) 

     Therefore, the cross correlation in the frequency domain 
given by Eq.5 does not represent Eq.4. This is because the fact 
that the operation of cross correlation is not commutative 
(W⊗Ψ ≠ Ψ⊗W). As a result, Eq.4 does not give the same 
correct results as conventional neural networks. This error 
leads the researchers in [1-10] who consider the references 
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[13,15,16] to think about how to modify the operation of cross 
correlation so that Eq.4 can give the same correct results as 
conventional neural networks. Therefore, the errors in these 
equations must be cleared to all the researchers. In [1-10], the 
authors proved that a symmetry condition must be found in 
input matrices (the input matrix under test and the weights of 
neural networks) so that fast neural networks can give the 
same results as conventional neural networks. In case of 
symmetry W⊗Ψ=Ψ⊗W, the cross correlation becomes 
commutative and this is a valuable achievement. In this case, 
the cross correlation is performed without any constrains on 
the arrangement of the input matrices.  
 
     The correct theoretical speed up ratio, given by Eq.11, with 
different sizes of the input matrix and different in size weight 
matrices is listed in Fig.3. Practical speed up ratio for 
manipulating matrices of different sizes and different in size 
weight matrices is listed in Fig. 4 using 700 MHz processor 
and MATLAB ver 5.3. In this case, both theoretical and 
practical results show that speed up ratios are faster than the 
previous speed up ratios listed in Figures 1 and 2. For different 
lengths of the detected code (n), a comparison between the 
numbers of computation steps required by fast and 
conventional neural networks is shown in Figures 5, 6 and 7. It 
is clear that the number of computation steps required by 
conventional neural networks is much more than that needed 
by fast neural networks. Furthermore, as shown in these three 
figures, the number of computation steps required by fast 
neural networks is the same. This is because the length of the 
code (n), which is required to be detected, does not affect the 
number of computation steps required by fast neural networks 
(Eq.10). Moreover, the number of computation steps required 
by conventional neural networks is increased with the length 
of the code (n). Thus, as shown in Figures 3 and 4, the speed 
up ratio is increased with the length of the input matrix. 

 

IV. A NEW FAST COMPLEX-VALUED CODE DETECTION 
ALGORITHM USING NEURAL NETWORKS 

     Detection of complex values has many applications 
especially in fields dealing with complex numbers such as 
telecommunications, speech recognition and image processing 
with the Fourier Transform [17,18]. For neural networks, 
processing complex values means that the inputs, weights, 
thresholds and activation function have complex values. For 
sequential data, neural networks accept serial input data with 
fixed size (n). Therefore, the number of input neurons equals 
to (n). Instead of treating (n) inputs, our  new idea is to collect 
the input data together in a long vector (for example 100xn). 
Then the successive input data is tested by fast neural 
networks as a single pattern with length L (for example 
L=100xn). Such test is performed in the frequency domain as 
described in section II. In this section, formulas for the speed 
up ratio with different types of inputs will be presented. The 
special case when the imaginary part of the inputs=0 (i.e. real 
input values) is considered. Also, the speed up ratio in case of 
one and two dimensional input matrix will be concluded. The 
operation of fast neural networks depends on computing the 
Fast Fourier Transform for both the input and weight matrices 

and obtaining the resulted two matrices. After performing dot 
multiplication for the resulted two matrices in the frequency 
domain, the Inverse Fast Fourier Transform is calculated for 
the final matrix. As the Fast Fourier Transform is already 
dealing with complex numbers, so there is no change in the 
number of computation steps required by fast neural networks. 
Therefore, the speed up ratio in case of fast neural networks 
dealing with different types of inputs can be evaluated as 
follows: 

1) In case of  real inputs and complex weights 

A) For one dimensional input matrix 

     Multiplication of (n) complex-valued weights by (n) real 
inputs requires (2n) real operations. This produces (n) real 
numbers and (n) imaginary numbers. The addition of these 
numbers requires (2n-2) real operations. Therefore, the 
number of computation steps required by conventional neural 
networks can be calculated as: 

θ=2q(2n-1)(N-n+1)                     (19) 

The speed up ratio in this case can be computed as follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η         (20) 

     A comparison between the numbers of computation steps 
required by conventional and fast neural networks with 
different code size is shown in Figures 8,9,10. The theoretical 
speed up ratio for searching of a short successive code of 
length (n) in a long input vector (L) using fast neural networks 
is shown in Fig.11. Also, practical speed up ratio for 
manipulating matrices of different sizes (L) and different in 
size complex-valued weight matrices (n) is shown in Fig.12 
using 700 MHz processor and MATLAB. It is clear that the 
speed up ratio is proportionally increased with the size of the 
code to be detected. This is very important for fast detecting 
large size codes. Such result proves that the proposed 
algorithm is a good achievement.  

 
B) For two dimensional input matrix 

     Multiplication of (n2) complex-valued weights by (n2) real 
inputs requires (2n2) real operations. This produces (n2) real 
numbers and (n2) imaginary numbers. The addition of these 
numbers requires (2n2-2) real operations. Therefore, the 
number of computation steps required by conventional neural 
networks can be calculated as: 
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θ=2q(2n2-1)(N-n+1)2                   (21)  

For two dimensional input matrix, the number of computation 
steps (σ) required by fast neural networks can be calculated as 
[19-23]: 

σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N        (22) 

Therefore, the speed up ratio in this case can be computed as 
follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22
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=η      (23) 

     A comparison between the numbers of computation steps 
required by conventional and fast neural networks for 
detecting (nxn) real-valued sub-matrix in a large real-valued 
matrix (NxN) is shown in Figures 13,14,15. The theoretical 
speed up ratio for detecting (nxn) real-valued sub-matrix in a 
large real-valued matrix (NxN) using fast neural networks is 
shown in Fig.16. Also, practical speed up ratio for 
manipulating real-valued matrices of different sizes (NxN) and 
different in size complex-valued weight matrices (n) is shown 
in Fig.17 using 700 MHz processor and MATLAB.  

2) In case of complex inputs and weights 

A) For one dimensional input matrix 

     Multiplication of (n) complex-valued weights by (n) 
complex inputs requires (6n) real operations. This produces 
(n) real numbers and (n) imaginary numbers. The addition of 
these numbers requires (2n-2) real operations. Therefore, the 
number of computation steps required by conventional neural 
networks can be calculated as: 

θ=2q(4n-1)(N-n+1)                      (24)  

The speed up ratio in this case can be computed as follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η           (25) 

     A comparison between the numbers of computation steps 
required by conventional and fast neural networks with 
different code size is shown in Figures 18,19,20. The 
theoretical speed up ratio for searching of a short complex-
valued successive code of length (n) in a long complex-valued 
input vector (L) using fast neural networks is shown in Fig.21. 
Also, practical speed up ratio for manipulating complex-
valued matrices of different sizes (L) and different in size 

complex-valued weight matrices (n) is shown in Fig.22 using 
700 MHz processor and MATLAB.  

B) For two dimensional input matrix 

     Multiplication of (n2) complex-valued weights by (n2) real 
inputs requires (6n2) real operations. This produces (n2) real 
numbers and (n2) imaginary numbers. The addition of these 
numbers requires (2n2-2) real operations. Therefore, the 
number of computation steps required by conventional neural 
networks can be calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (26)  

The speed up ratio in this case can be computed as follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(4n
222

2
2

22

+++
+

=η   (27) 

     A comparison between the numbers of computation steps 
required by conventional and fast neural networks for 
detecting (nxn) complex-valued sub-matrix in a large 
complex-valued matrix (NxN) is shown in Figures 23, 24, and 
25. The theoretical speed up ratio for detecting (nxn) complex-
valued sub-matrix in a large complex-valued matrix (NxN) 
using fast neural networks is shown in Fig.26. Also, practical 
speed up ratio for manipulating complex-valued matrices of 
different sizes (NxN) and different in size complex-valued 
weight matrices (n) is shown in Fig.27 using 700 MHz 
processor and MATLAB.  

     For one dimensional matrix, from Figures 
8,9,10,11,12,18,19,20,21,22, we can conclude that the 
response time for vectors with small lengths are faster than 
those which have larger lengths. For example, the speed up 
ratio for the vector of length 10000 is faster that of length 
1000000. The number of computation steps required for a 
vector of length 10000 is much less than that required for a 
vector of length 40000. So, if the vector of length 40000 is 
divided into 4 shorter vectors of length 10000, the number of 
computation steps will be less than that required for the vector 
of length 40000. Therefore, for each application, it is useful at 
the first to calculate the optimum length of the input vector. 
The same conclusion can be drawn in case of processing the 
two dimensional input matrix. From Figures 
13,14,15,16,17,23,24,25,26,27, it is clear that the maximum 
speed up ratio is achieved at matrix size (N=200x200) when 
n=20, then at matrix size (N=300x300) when n=25, and at 
matrix size (N=400x400) when n=30. This confirms our 
previous results presented in [7] on fast sub-image detection 
based on neural networks and image decomposition. Using 
such technique, it was proved that the speed up ratio of neural 
networks becomes faster when dividing the input image into 
many sub-images and processing each sub-image in the 
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frequency domain separately using a single fast neural 
processor.  
 

V. CONCLUSION 

     A fast neural algorithm for detecting a certain code/data in 
a given sequential data has been presented. A new correct 
formula for the speed up ratio has been established. 
Furthermore, correct equations for one dimensional cross 
correlation in the spatial and frequency domains have been 
presented. Moreover, commutative cross correlation in one 
dimension has been achieved by converting the non-
symmetric input matrices into symmetric forms. Theoretical 
computations after these corrections have shown that fast 
neural networks requires fewer computation steps than 
conventional one. Simulation results have confirmed this 
approval by using MATLAB. The presented fast neural 
networks have been applied successfully to detect a small 
matrix with real/complex values in a given large input one/two 
dimensional matrix. Therefore, such algorithm can be used for 
communication applications such as detecting certain serial 
code in a given large stream of sequential input data. 
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Fig. 1 The theoretical speed up ratio in case of converting sequential data into symmetric form by mirroring the input matrix 
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Fig. 2 Practical simulation results for speed up ratio in case of converting sequential data into symmetric form by mirroring the input matrix 
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Fig. 3 The theoretical speed up ratio for detecting a certain code (n) in a stream of serial data 
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Fig. 4 Practical speed up ratio for detecting a certain code (n) in a stream of serial data 
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Fig. 5 A comparison between the numbers of computation steps required by fast and conventional neural networks (n=400) 
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Fig. 6 A comparison between the numbers of computation steps required by fast and conventional neural networks (n=625) 
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Fig. 7 A comparison between the numbers of computation steps required by fast and conventional neural networks (n=900) 
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Fig. 8 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=400) 
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Fig. 9 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=625) 
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Fig. 10 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=900) 
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Fig. 11 The relation between the speed up ratio and the length of one dimensional real-valued input matrix in case of complex-valued weights 
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Fig. 12 Practical speed up ratio in case of one dimensional real-valued input matrix and complex-valued weights 
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Fig. 13 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=20) 
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Fig. 14 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=25) 
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Fig. 15 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of real-valued two 

dimensional input matrix and complex-valued weight matrix (n=30) 
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Fig. 16 The relation between the speed up ratio and the size of two dimensional real-valued input matrix in case of complex-valued weights 
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Fig. 17 Practical speed up ratio in case of two dimensional real-valued input matrix and complex-valued weights 
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Fig. 18 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=400) 
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Fig. 19 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=625) 
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Fig. 20 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued 

one dimensional input matrix and complex-valued weight matrix (n=900) 
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Fig. 21 The relation between the speed up ratio and the length of one dimensional input real-valued matrix in case of complex-valued weights 
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Fig. 22  Practical speed up ratio in case of one dimensional complex-valued input matrix and complex-valued weights 
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Fig. 23 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=20) 
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Fig. 24 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=25) 
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Fig. 25 A comparison between the numbers of computation steps required by fast and conventional neural networks in case of complex-valued 

two dimensional input matrix and complex-valued weight matrix (n=30) 
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Fig. 26 The relation between the speed up ratio and the size of two dimensional real-valued input matrix in case of complex-valued weights 
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Fig. 27 Practical speed up ratio in case of two dimensional complex-valued input matrix in and complex-valued weights 

 
 
 
 
 
 


