
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

914

Abstract—The problems with high complexity had been the

challenge in combinatorial problems. Due to the none-determined and
polynomial characteristics, these problems usually face to
unreasonable searching budget. Hence combinatorial optimizations
attracted numerous researchers to develop better algorithms. In recent
academic researches, most focus on developing to enhance the
conventional evolutional algorithms and facilitate the local heuristics,
such as VNS, 2-opt and 3-opt. Despite the performances of the
introduction of the local strategies are significant, however, these
improvement cannot improve the performance for solving the
different problems. Therefore, this research proposes a meta-heuristic
evolutional algorithm which can be applied to solve several types of
problems. The performance validates BBEA has the ability to solve
the problems even without the design of local strategies.

Keywords—Combinatorial problems, Artificial Chromosomes,
Blocks Mining, Block Recombination

I. INTRODUCTION
N real world, discrete optimization is regarded as
combinatorial optimization for decreasing the cost by the

optimal solution from numerous feasible solutions. Discrete
optimization is a branch of optimization in applied mathematics
and computer science. Discrete optimization contains two main
fields. One is combinatorial optimization, another one is integer
programming. Combinatorial optimization is a topic in
theoretical computer science and applied mathematics that
consists of finding the least-cost solution to a mathematical
problem in which each solution is associated with a numerical
cost. For decades, numerous algorithms were proposed in
solving combinatorial optimization problems (COPs), for one
reason more concerned on this domain is hard to reach a
reasonable solution, which with steady and better quality.

In our earlier researches (Chang et al. 2008 [1], 2008 [2],
2010 [3]), ACGA has been very successful in injecting ACs
into the evolutionary process of GA to speed up the
convergence. However, the solution quality still can be further
improved when compared with other approaches. Here we
proposed a block-based AC generation approach which is for
better combination and competitive AC. However, due to the
computation of the probability matrix, we adopt the Estimation
of Distribution Algorithms (EDAs) for the conditional
probabilities.

Huang, Wei-Hsiu is with the Department of Information Management, Yuan
Ze University Taoyuan 32026, Taiwan, R.O.C.

Chang, Pei-Chann is with the Department of Information Management,
Yuan Ze University Taoyuan 32026, Taiwan, R.O.C.

(Corresponding Author’s E-mail: iepchang@saturn.yzu.edu.tw).
Wang, Lien-Chun is with the Department of Information Management,

Yuan Ze University Taoyuan 32026, Taiwan, R.O.C.

That means, all of the connections of pairs of cities are

considered with better probabilities to link. Therefore, the
composed probability matrix represents the dominance matrix
of the whole cities. This idea of the AC injection is used to
improve the slow convergence and escape trapped in local
optima.

II. LITERATURE REVIEW

A. Meta-heuristic algorithms
In the research domain of the combinatorial problems, the

Traveling Salesman Problem is a classical problem in the area
of Operations Research. There are several practical uses for this
problem, such as Vehicle Routing [4] and Drilling Problems
[5]. TSP has been extensively used as a comparison basis in
order to improve different optimization techniques, such as
Genetic Algorithms [6], Simulated Annealing [7], Tabu Search
[8], Local Search [9], Ant Colony [10], and Neural Networks
[11].

On the other hand, common, problem-independent heuristics
like simulated annealing (SA) [12] and genetic algorithms
(GAs) [13]-[15] deliver poor performance on large TSP
instances [16]. They require high execution times for solutions
whose quality is often not comparable with those achieved in
much less time by their domain-specific local search
counterparts. Therefore, a large number of approaches have
been developed for solving TSPs. A very promising direction is
the genetic algorithm (GA) combining with problem specific
operators which is named as a Memetic Algorithm (MA) [17].
MA adopts the strategy of encoding the population and the
genetic operations, so as to direct the individuals’ heuristic
study and searching direction. The technique does not ensure
an optimal solution, however it usually gives good
approximations in a reasonable amount of time. This paper
aims at developing a meta-heuristic approach to improve the
efficiency of the conventional algorithm via the injection of AC
and recombine the blocks to speed up the process of the
evolution; meanwhile, the efficiency can be improved during
the later experimental results.

B. Estimation of Distribution Algorithms
In EDAs, the problem specific interactions among the

variables of individuals are taken into consideration. In
Evolutionary Computations the interactions are kept implicitly
in mind whereas in EDAs the interrelations are expressed
explicitly through the joint probability distribution associated
with the individuals of variables selected at each generation.
The probability distribution is calculated from a database of

Huang, Wei-Hsiu Chang, Pei-Chann, Wang, Lien-Chun

A Fast Block-based Evolutional Algorithm for
Combinatorial Problems

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

915

selected individuals of previous generation. Then sampling this
probability distribution generates offspring. Neither crossover
nor mutation has been applied in EDAs. But the estimation of
the joint probability distribution associated with the database
containing the selected individuals is not an easy task. The
flowchart of EDA is shown in the Figure 1.

Fig. 1 EDA flowchart

III. METHODOLOGY

This paper aims at to develop an effective meta-heuristic
algorithm which contains two phases. The first phase is to
consider the mining approach which is adopted to find out the
effective blocks. Meanwhile, these blocks will recombine via
the competition and keep the blocks with high advantage. The
second phase is to develop the approach of the AC
composition. In this paper, we take advantage of NN and the
designed approach in this paper to combine the competitive
blocks and those remaining cities to combine the new AC with
higher competition. At the same time, BBEA will supervise the
AC and the solutions last iteration to select a proper partial
linkage to reassemble. Then the reassembled solutions will be
considered to select the solutions with satisfactory efficiency to
update the probability matrix. The process will be repeated
until the defined iteration number is met. The systematic
diagram is given as Figure 2.

Fig. 2 Research systematic diagram

A. BBEA Framework
The process of this research is as the following description.

The initial solutions are generated randomly. Then the fitness
of each of the solutions is computed. We will select the solution
with the higher competition to update the probability matrix
according their performance. During the evolutional process,
the occasion of injecting AC is decided according to the
convergence angle and iteration number. Whenever the AC is
decided to inject, the injected AC will be selected and combine
the blocks according the probability matrix. The combined
blocks will continue to be adopted to assemble the new AC and
the blocks in each AC will be exchanged. The EHBSA here is
adopted to divide and be optimal. Finally, the new population
will be generated for the next evolution until the stopping
criteria are met. The flowchart is represented as Figure 3.

N Iteration≥

*threI k IΔ ≥ Δ

 > I thre threor I Iθ θ Δ ≥ Δ

Fig. 3 BBEA flowchart

For further explanation of the flow, the pseudo-code is given

as follows. The number of the initial solutions is assigned as
100. The next step is to select the top 20 performance to update
the probability matrix. Since the matrix is built, the criterion is
given to decide the occasion of injecting AC. If the criterion
judge not to inject, every solution will be reassembled, then
select the solutions with the top 100 performance via the binary
selection for the next evolution. If it decide to inject, then the
solutions will be stochastically selected, then if the injections
do not update the best known solution, it will use the Nearest
Neighbor (NN) to construct the AC and exchange the blocks
until all the solutions are been proceed.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

916

[]λ : AC matrix

[]μ : Generations matrix

1. []1 2, ,..., mμ μ μ μ←Random Initialization
2. Calculate fitness
3. while The stopping criterion is not met do
4. Update probability matrix
5. while The optima has not been update for i iteration do
6. Blocks Re-construction by probability matrix
7. Blocks competition by Conflict Block
8. End while
9. while The convergence angle threθ θ≤ or optima has

not been update for j iteration do
10. []1 2, ,..., nλ λ λ λ← AC re-production based on

Block
11. ' ' '

1 2, ,..., nλ λ λ λ⎡ ⎤⎣ ⎦ ← Block interexchange in

[]1 2, ,..., nλ λ λ λ

12. End while
13. '' '' ''

1 2, ,..., nλ λ λ λ⎡ ⎤⎣ ⎦ , ' ' '
1 1, ,..., mμ μ μ μ⎡ ⎤⎣ ⎦ ← []λ , []μ

partial solns. recombination by EHBSA
14. current []1 2, ,..., mμ μ μ μ← Selection by

[]λ , []μ

15. Fitness Evaluation
16. End while
17. End

1. A Gene Linkage Probability Matrix
A Gene Linkage Probability Matrix is applied to identify the

strength between city to city by the probability updating
strategy. In the beginning, a Gene Linkage Probability matrix is
initialized by selecting chromosomes μi with best fitness from
the population in the first generation as shown in Figure 4. The
initial probability matrix for the index to evaluate the
probability from cityi to cityj is represented as Pij. The Pij is
calculated via the specific probability Pij among the whole
routes.

Fig. 4 Initial Gene Linkage Probability Matrix

Later on, the probability matrix is updated by population

stored in the μ archive. The population is composited by the
chromosomes with better performance which are evaluated by
the EDA. For example, in this research, the population is
assigned as 100. From the end of evolution at the last iteration,
the population contains two sources, which are the solutions of
the current and last iterations. The number of the population is
larger than what we really need.

Therefore, this research takes advantage of the strategy of
EDA to filter the population into 100 to decide the population
of the next iteration. Next, we select the top 20 best fit
chromosomes in μ from the archive and compute Pij of each
pair of cities. Finally, the probability matrix will be updated by
these 20 chromosomes as mentioned in the initial probability
matrix. Due to the composition of the matrix is updated by the
accumulation of the probability to maintain the competitive
approach. The probability matrix is so-called Accumulative
Probability Matrix which is represented as Figure 5.

Fig. 5 New Gene Linkage Probability Matrix

A block mining procedure is applying the Gene Linkage
Probability Matrix to extract the blocks from the set of high fit
chromosomes. It is a process of linkage learning which is
applied to discover the hidden knowledge within the dependent
variables. The block consists of a series of genes linked to each
other continuously. To mine the blocks from the set of high fit
chromosomes, two methods can be applied: static block size,
on which equally sized blocks are created or dynamic block
size where are created blocks with random sizes. In this
research, we will focus on static block size.

A static block with size K can be generated according to the
following procedures:

1. According to the gene linkage probability matrix, a city is
picked randomly and then the K connected cities with highest
probabilities will be branched.

2. The probability for each block will be calculated from city
to city among these KK-1 combinations.

3. The one with the shortest distance will be saved into the
block archive.

4. The procedures will be repeated again until a pre-defined
number of blocks is met, i.e., M, are identified. If any block
with a city overlaps with the blocks previous generated, it will
be abandoned.

For example, city 38 is selected randomly and the next K, i.e.,

5 here, cities with the probability in non-descending orders will
be 9, 33, 47, 5, and 8. Again, for each city branched it can be
further expanded in the next level. For example, city 9 will be
selected and further branched for next 5 cities, until all cities in
the same level are branched. The same procedure repeats again
and again until it reaches the fourth level. In the final level,
there will have 625 cities, i.e., 5x5x5x5 cities, exploded.
Finally, block {38, 9, 40, 18} will be selected since it has the
shortest distance, i.e., 15. A branching strategy is applied in
generating the possible blocks.

2. A Block Mining Procedure

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

917

The branching rule prescribes how the current problem
should be partitioned into sub problems. In this research, we
adopt a forward branching strategy that prescribes which sub
problems should be expanded next and Best First Search (BFS)
which solves the most promising sub problem first, usually the
sub problem with the largest value of the probability.

A legal block is a set of cities connecting cities from level
one up to level 4. In this research, we branch three times to form
a legal block with the length of 4. The reason is to decrease the
computational times especially when the problem size is large,
i.e., thousand or up to ten thousands of cities. In addition, the
block is just like a micro-structure of the chromosome. They
can be easily recombined by a good heuristic function R in the
recombination process to form a longer block.

The final set of blocks, i.e., puzzles, mined from the
probability matrix are stored in the archive as shown in Figure
6.

38 35 17toDis =

38 19 21toDis =

38 36 19toDis =

38 18 15toDis =

38 44 20toDis =

Fig. 6 A set of Blocks mined from the Probability Matrix

The common sequences are regarded as having high
potential for good substructure or the Blocks because they
appear identically in different selected chromosomes which are
assumed to be good or highly fit. Therefore they will be
retained in the original structures. The next problem is how to
compose these blocks with the rest of the cities to form a legal
chromosome.

Once the set of blocks are identified and stored in the archive,
the rest of cities not in the blocks are also saved together. We
name this archive as a Puzzle archive as shown in Figure 7.

Fig. 7 The composition of Puzzle Archive

The next mission is to reconstruct these blocks and cities to

forma legal chromosome. There are numerous methods to
recombine these blocks and cities for solving the puzzle to
construct a feasible chromosome.

The mission next is how to reconstruct these blocks and
cities to form legal chromosomes. There are numerous methods
to recombine these blocks and cities for solving the puzzle to
construct a feasible chromosome. The Nearest Neighbor (NN)
approach has been applied here in this research. The NN
method was initially introduced by Skellam [18] where the ratio
of expected and observed mean value of the nearest neighbor
distances is used to determine if a data set is clustered. A
diagram by using the NN to form a legal tour is illustrated in
Figure 7.

Fig. 7 The composition of Puzzle Archive

The recombined chromosome here is called AC, which is

explained in previous section. AC is the key to maintain the
population in GA. Since AC is produced via the block
recombination and stored in the AC archive, shown as Figure 8,
these β chromosomes will be injected to the population mating
pool. These ACs with very good infrastructures can play a
paramount role in speeding up the convergence process. In
addition, these small blocks within the ACs also provide a good
chance to come out with a better fit chromosome when
crossover or mutated with other chromosomes.

Fig. 8 A new population of Chromosomes

B. Artificial Chromosome
The mechanism of the AC in this research represented as

follows. The first step is to compute the average length of all
effective routes. From those routes, we stochastically select 10
cities and pick those cities whose routes are shorter than the
previous average length. If the selections do not update the
optima for three times, NN will be adopted for searching the
routes for the next connected cities. These processes will be
repeated until all of the remaining cities are assigned. Figure 9
shows the idea of the design of BBEA.

3. Blocks Recombination

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

918

Randomly Choose Start City

Satrt

Start City in Block Archive?

Insert City Insert Block

Calculate Average Distance

N <=3

Randomly Choose 10 City

With Avg. Compared with

Distance < Avg.

Choose Best Distance

NN

The City in Block Archive?

Insert City Insert Block

City is All Used?

Stop

T

T

T

T

F

F

N + 1

F

F

Fig. 9 The mechanism of AC generation

C. Population Recombination
EHMt described in a marginal edge histogram. It has no

explicit graphical structure. EHBSA/WT is intended to make
up for this disadvantage by using a template in sampling a new
string. In generating each new individual, a template individual
is chosen from P(t) (normally, randomly). The n (n>1) cut
points are applied to the template randomly. When n cut points
are obtained for the template, the template should be divided
into n segments. Then, we choose one segment randomly and
sample nodes for the segment. Nodes in other n-1 segments
remain unchanged. We denote this sampling method by
EHBSA/WT/n. Since average length of one segment is L/n,
EHBSA/WT/n generates new strings which are different at
most L/n nodes on average from their templates.

... ...

'
1μ
'
2μ

'
nμ

1μ

2μ

nμ

Fig. 10 Population Recombination

IV. SOME EXPERIMENTAL RESULT

A. Environment description
In this section we present the experimental results of the

BBEA and compare the performance of BBEA with other
algorithms. Each algorithm is executed for 30 times on each
instance and the computing hardware consists of Intel Core2
(1.86GHz) and with DDR2 800 (2GB Memory). The
programming language is Microsoft Visual C++ 2008 Express.
All test cases were chosen from website TSPLIB and with the
best known solutions.

All algorithms implemented have a number of parameters to
be tuned before they can be applied to a given TSP instance.

B. Comparisons with Meta-heuristics
Due to BBEAs adopts the concept of pheromone update for

block mining and the evolving operators of GA, two
well-known algorithms, GA and ACO are applied to compare.
GA code is from http://www.codeproject.com and ACO is from
http://www.aco-metaheuristic.org.The comparisons of BBEAs
with GA and ACO are listed in Table I.

C. Comparisons with the-state-of-the-art
The results to be presented here are the best, mean and

standard deviation of the cost (tour length) taken over 30 runs.
These two approaches, i.e., RABNET-TSP [19] and SME [20],
are selected for comparison with our proposed approach. These
two approaches are based on Self-Organized Map (SOM)
network with very effective and efficient performances. The
comparisons of the experimental results for EDAs, p-ACGA,
RABNET, and SME are presented in Table II. The results show
that EDAs algorithm outperformed than these two researches.
The effectiveness of the proposed approach can be observed in
the reduced average error rate for all instances. The results of
EDAs show that the algorithm is capable of finding the best
solution in most cases even for those instances with larger
numbers of cities.

From the results in Table II and III, the efficiencies of BBEA
and other compared algorithms all have satisfactory
performance. Especially the comparison of computational time,
BBEA has significant performance than the other algorithms.
However, not for every instance, BBEA’s searching abilities
are worse than the compared algorithms on four specific
instances of all the instances.

TABLE I
COMPARISON WITH OTHER META HEURISTIC

TSP

Instances

BBEAs ACO GA

Mean Std. Best
Error

Rate
Mean Std. Best

Error

Rate
Mean Std. Best

Error

Rate

kroA100 21285 0.0 21285 0.01 26577.2 520.3 26019 24.9 27230.2 24960.7 1866.39 27.95

kroA150 26881.5 161.3 26598 1.4 33860.0 924.6 32470 27.7 34770.2 31504.1 3090.91 31.09

kroA200 30038.0 236.2 29693 2.3 39927.0 601.8 39058 36.0 44577.2 39609.5 4581.08 51.79

pr299 49709.5 329.0 48894 3.2 66697.5 1392.0 63795 38.4 115648.8 99315 10242.23 139.98

pcb442 53616.3 334.0 52742 5.6 68547.5 1734.5 65741 35.0 136426.3 125779 7768.42 168.67

pr1002 279270.5 1009.1 278040 7.8 360559.1 4764.7 353632 39.2 1229439 1193770 25263.57 374.60

pcb1173 62066.1 219.7 61638 9.1 78336.1 1185.0 76086 37.7 282746.4 270264 8952.91 396.99

pr2392 414710.0 1753.3 411449 9.7 539686.2 7023.9 530915 42.8 3418356 3355720 52932.60 804.25

pcb3038 151787.2 327.3 151305 10.2 245724.2 2698.8 242969 78.2 1282795.0 1257040 13282.15 831.63

Avg. 5.5 40.0 314.1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

919

Therefore, BBEA is with fast speed and an effective
algorithm in solving most instances. Due to the lack of the
execution of RABNET-TSP and SME, the result is not
presented here.

V. CONCLUSION
In recent academic researches, most focus on developing to

enhance the conventional evolutional algorithms and facilitate
the local heuristics, such as VNS, 2-opt and 3-opt. Despite the
performances of the introduction of the local strategies are
significant, however, these improvement cannot improve the
performance for solving the different problems. Therefore, this
research proposes a meta-heuristic evolutional algorithm which
can be applied to solve several types of problems. The
performance validates BBEA has the ability to solve the
problems even without the design of local strategies.

In this paper, we proposed a block-based AC generation
approach which is for better combination and competitive AC.
However, due to the computation of the probability matrix, we
adopt the Estimation of Distribution Algorithms (EDAs) for the
conditional probabilities. That means, all of the connections of
pairs of cities are considered with better probabilities to link.
Therefore, the composed probability matrix represents the
dominance matrix of the whole cities. This idea of the AC
injection is used to improve the slow convergence and escape
trapped in local optima. The results from the experiments
validate the idea of application of the AC injection and block
mining can help the evolutional algorithm to enhance the
searching ability.

REFERENCES
[1] P. C. Chang, S. H. Chen, C. Y. Fan, “Mining gene structures to inject

artificial chromosomes for genetic algorithm in single machine
scheduling problems,” Applied Soft Computing Journal, vol. 8, no. 1, pp.
767-777, 2008.

[2] P. C. Chang, S. H. Chen, C. Y. Fan, C. L. Chan, “Genetic Algorithm with
Artificial Chromosomes for Multi-Objective Flow shop Scheduling
Problems,” Applied Mathematics and Computation, vol. 205, no. 2, pp.
550-561, 2008.

[3] P. C. Chang, S. H. Chen, C. Y. Fan, “Generating Artificial Chromosomes
with Probability Control in Genetic Algorithm for Machine Scheduling
Problems,” Annals of Operations Research, vol. 180, no. 1, pp. 197-211,
2010.

[4] G. Laporte, “The vehicle routing problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, no. 2, pp. 345-358, 1992.

[5] G. C. Onwubolu, M. Clerc, “Optimal path for automated drilling
operations by a new heuristic approach using particle swarm
optimization,” International Journal of Production Research, vol. 44, no.
3, pp. 473-491, 2004.

[6] M. Affenzeller, S. Wanger, “A Self-Adaptive Model for Selective
Pressure Handling within the Theory of Genetic Algorithms,” Lecture
Notes in Computer Science, vol. 2809, no. 1, pp. 384-393, 2003.

[7] M. Budinich, “A self-organizing neural network for the traveling
salesman problem that is competitive with simulated annealing” Neural
Computing, vol. 8, 416-424, 1996.

[8] G. Liu, Y. He, Y. Fang, Y. Oiu, “A novel adaptive search strategy of
intensification and diversification in tabu search,” Proceedings of Neural
Networks and Signal Processing, Nanjing, China, 2003.

[9] L. Bianchi, J. Knowles, J. Bowler, “Local search for the probabilistic
traveling salesman problem: Correction to the 2-p-opt and 1-shift
algorithms.” European Journal of Operational Research, vol. 162, no. 1,
pp. 206-219, 2005.

[10] S. C. Chu, J. F. Roddick, J. S. Pan, “Ant colony system with
communication strategies,” Information Sciences, vol. 167, no. 1-4, pp.
63-76, 2004.

[11] K. S. Leung, H. D. Jin, Z. B. Xu, “An expanding self-organizing neural
network for the traveling salesman problem,” Neural computing, vol. 62,
pp. 267-292, 2004.

TABLE II
COMPARISON WITH THE STATE OF THE ART

TSP

Instances
BBEA p‐ACGA RABNET SME

 Mean Std. T‐test Mean Std. T‐test Mean Std. T‐test Mean Std. T‐test

eil51 428.0 0.0 430.7 4.3 0.3783 437.5 4.2 0.1263 440.6 3.4 0.0329

eil76 546.7 3.1 551.6 6.6 0.4495 556.3 5.3 0.2132 562.3 5.2 0.0970

eil101 649.9 4.1 645.4 9.1 0.2967 648.6 3.9 0.4531 655.6 6.0 0.3443

berlin52 7544.0 0.0 7608.9 115.2 0.3862 7932.5 277.3 0.2375 8025.1 248.8 0.1632

bier127 127465.1 405.2 120904.4 1450.7 0.0182 120886.3 1158.8 0.0050 121733.3 1240.0 0.0156

ch130 6222.7 22.2 6292.2 99.8 0.3295 6282.4 60.2 0.3175 6307.2 63.0 0.2595

ch150 6628.1 45.6 6649.1 83.5 0.4566 6738.4 76.1 0.2630 6751.1 62.2 0.2085

rd100 8031.4 30.0 8061.6 110.3 0.4720 8199.8 80.8 0.1608 8239.4 103.9 0.1646

lin105 14382.0 0.0 14519.7 205.7 0.2819 14400.2 44.0 0.4160 14475.6 118.2 0.3428

lin318 43667.3 189.2 43735.2 333.8 0.4460 43696.8 410.1 0.4866 43922.9 383.3 0.3798

kroA100 21285.0 0.0 21603.3 316.5 0.2890 21522.7 93.3 0.0994 21616.8 164.2 0.1529

kroA150 26881.5 161.3 27485.4 458.5 0.2803 27356.0 327.9 0.2539 27401.3 252.0 0.1887

kroA200 30038.0 236.2 30303.6 444.4 0.4645 30190.3 273.4 0.4145 30415.7 132.9 0.2387

kroB100 22241.7 77.8 22404 157.6 0.2890 22661.5 193.5 0.1538 22622.5 75.3 0.0400

kroB150 26351.1 135.6 26655.8 464.3 0.2773 26631.9 232.9 0.2974 26806.3 250.1 0.2079

kroB200 30348.9 167.2 30469.2 326.0 0.4913 30135.00 276.8 0.3675 30286.5 301.2 0.4629

kroC100 20751.9 6.0 21099.5 295.5 0.2947 20971.2 108.2 0.1525 21149.9 188.0 0.1419

kroD100 21345.6 95.8 21831.8 358.8 0.2318 21697.4 157.0 0.1658 21845.7 154.3 0.0830

kroE100 22168.4 65.7 22420.8 233.9 0.3136 22714.6 260.2 0.1511 22682.5 214.1 0.1230

rat575 7507.7 39.7 7132.2 39.9 0.0118 7115.7 37.5 0.0005 7173.6 39.5 0.0023

rat783 9506.5 41.3 9347.4 44.3 0.2277 9343.8 47.0 0.0950 9387.6 39.4 0.1456

rl1323 291142.5 2369.2 296926 2070.4 0.2068 305314.3 2315.8 0.0178 300899.0 2717.1 0.0865

fl1400 20933.8 112.5 21266 210.8 0.4704 21110.0 163.3 0.3249 20742.6 115.8 0.2727

d1655 68574.0 300.2 65924.6 299.2 0.0066 72113.2 698.6 0.0115 68046.4 379.3 0.2890

TABLE III

COMPARISON WITH THE STATE OF THE ART OF TIME

TSP

Instances

BBEA p‐ACGA RABNET‐TSP SME

Time(s) Best
Error

Rate
Time(s) Best

Error

Rate
Best

Error

Rate
Best

Error

Rate

eil51 1.0 428 0.5 48.1 427 1.1 427 2.7 433 3.4

eil76 4.0 544 1.6 98.9 545 2.5 541 3.4 552 4.5

eil101 8.0 642 3.3 166.9 630 2.8 638 3.1 640 4.2

berlin52 2.0 7544 0.03 40.7 7542 0.9 7542 5.2 7715 6.4

bier127 13.0 126946 7.8 246.0 119106 2.2 118970 2.2 119840 2.9

ch130 14.0 6178 1.8 266.0 6221 2.9 6145 2.8 6203 3.2

ch150 19.0 6549 1.5 348.3 6549 1.9 6602 3.2 6631 3.4

rd100 8.0 8003 1.5 162.9 7910 1.9 7982 3.7 8028 4.2

lin105 8.0 14382 0.02 49.0 14379 1.0 14379 0.2 14379 0.7

lin318 113.7 43269 3.9 420.3 42820 4.1 42834 4.0 43154 4.5

kroA100 7.7 21285 0.01 45.0 21305 1.5 21333 1.1 21410 1.6

kroA150 19.0 26598 1.4 96.2 26875 3.6 26678 3.1 26930 3.3

kroA200 38.0 29693 2.3 167.7 29668 3.2 29600 2.8 30144 3.6

kroB100 7.0 22141 0.5 45.0 22199 1.2 22343 2.4 22548 2.2

kroB150 19.2 26192 0.9 96.3 26130 2.0 26264 1.9 26342 2.6

kroB200 38.9 30047 3.1 167.9 30108 3.5 29637 2.4 29703 2.9

kroC100 7.8 20750 0.01 45.0 20769 1.7 20915 1.1 20921 1.9

kroD100 7.8 21294 0.2 45.0 21389 2.5 21374 1.9 21500 2.6

kroE100 8.0 22106 0.5 45.0 22111 1.6 22395 2.9 22379 2.8

rat575 2174.3 7428 10.9 1382.4 7065 5.3 7047 5.1 7090 5.9

rat783 1213.2 9422 8.0 2558.7 9317 6.1 9246 6.1 9316 6.6

rl1323 2853.4 287234 7.8 7101.2 295671 9.9 300770 13.0 295780 11.4

fl1400 3185.4 20743 4.0 6531.4 20946 5.7 20851 4.9 20558 3.1

d1655 4875.7 67917 10.4 8769.4 65059 6.1 70918 16.1 67459 9.5

Avg. 3.00 3.13 3.97 4.06

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

920

[12] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[13] J. Grefenstette, R. Gopal, B. Rosimaita, D. van. Gucht, “Genetic
algorithms for the traveling salesman problem,” in Proc. Int. Conf.
Genetics Algorithms and Their Applications, pp.160-168, 1985.

[14] H. C. Braun, “On solving traveling salesman problems by genetic
algorithm,” Lecture Notes in Computer Science, vol. 496, pp. 129-133,
1991.

[15] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution
Programs, 3rd ed,” Berlin. Germany: Springer-Verlag, 1996.

[16] J. Fan, D. Li, “An overview of data mining and knowledge discovery,”
Journal of Computer Science and Technology, vol. 13, no. 4, pp. 348-368,
1998.

[17] P. Moscato, M. G. Norman, “A memetic approach for the traveling
salesman problem—implementation of a computational ecology for
combinatorial optimization on message-passing systems,” International
conference on parallel computing and transputer application, IOS Press,
Amsterdam, Holland, pp. 177–186, 1992.

[18] J. G. Skellam, “Studies in statistical ecology,” I. Spatial pattern
Biometrica, vol. 39, pp. 346-362, 1952.

[19] R. Pasti, L. N. de. Castro, “A Neuro-immune network for solving the
traveling salesman problem,” Proceedings of International Joint
Conference on Neural Networks, vol. 6, pp. 3760-3766, 2006.

[20] S. Somhom, A. Modares, T. Enkawa, “A self-organizing model for the
travelling salesman problem,” Journal of the Operational Research
Society, vol. 48, pp. 919-928, 1997.

