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Abstract—The problems with high complexity had been the 

challenge in combinatorial problems. Due to the none-determined and 
polynomial characteristics, these problems usually face to 
unreasonable searching budget. Hence combinatorial optimizations 
attracted numerous researchers to develop better algorithms. In recent 
academic researches, most focus on developing to enhance the 
conventional evolutional algorithms and facilitate the local heuristics, 
such as VNS, 2-opt and 3-opt. Despite the performances of the 
introduction of the local strategies are significant, however, these 
improvement cannot improve the performance for solving the 
different problems. Therefore, this research proposes a meta-heuristic 
evolutional algorithm which can be applied to solve several types of 
problems. The performance validates BBEA has the ability to solve 
the problems even without the design of local strategies. 
 

Keywords—Combinatorial problems, Artificial Chromosomes, 
Blocks Mining, Block Recombination 

I. INTRODUCTION 
N real world, discrete optimization is regarded as 
combinatorial optimization for decreasing the cost by the 

optimal solution from numerous feasible solutions. Discrete 
optimization is a branch of optimization in applied mathematics 
and computer science. Discrete optimization contains two main 
fields. One is combinatorial optimization, another one is integer 
programming. Combinatorial optimization is a topic in 
theoretical computer science and applied mathematics that 
consists of finding the least-cost solution to a mathematical 
problem in which each solution is associated with a numerical 
cost. For decades, numerous algorithms were proposed in 
solving combinatorial optimization problems (COPs), for one 
reason more concerned on this domain is hard to reach a 
reasonable solution, which with steady and better quality. 

In our earlier researches (Chang et al. 2008 [1], 2008 [2], 
2010 [3]), ACGA has been very successful in injecting ACs 
into the evolutionary process of GA to speed up the 
convergence. However, the solution quality still can be further 
improved when compared with other approaches. Here we 
proposed a block-based AC generation approach which is for 
better combination and competitive AC. However, due to the 
computation of the probability matrix, we adopt the Estimation 
of Distribution Algorithms (EDAs) for the conditional 
probabilities.  
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That means, all of the connections of pairs of cities are 

considered with better probabilities to link. Therefore, the 
composed probability matrix represents the dominance matrix 
of the whole cities. This idea of the AC injection is used to 
improve the slow convergence and escape trapped in local 
optima.  

II. LITERATURE REVIEW 

A. Meta-heuristic algorithms 
In the research domain of the combinatorial problems, the 

Traveling Salesman Problem is a classical problem in the area 
of Operations Research. There are several practical uses for this 
problem, such as Vehicle Routing [4] and Drilling Problems 
[5]. TSP has been extensively used as a comparison basis in 
order to improve different optimization techniques, such as 
Genetic Algorithms [6], Simulated Annealing [7], Tabu Search 
[8], Local Search [9], Ant Colony [10], and Neural Networks 
[11]. 

On the other hand, common, problem-independent heuristics 
like simulated annealing (SA) [12] and genetic algorithms 
(GAs) [13]-[15] deliver poor performance on large TSP 
instances [16]. They require high execution times for solutions 
whose quality is often not comparable with those achieved in 
much less time by their domain-specific local search 
counterparts. Therefore, a large number of approaches have 
been developed for solving TSPs. A very promising direction is 
the genetic algorithm (GA) combining with problem specific 
operators which is named as a Memetic Algorithm (MA) [17]. 
MA adopts the strategy of encoding the population and the 
genetic operations, so as to direct the individuals’ heuristic 
study and searching direction. The technique does not ensure 
an optimal solution, however it usually gives good 
approximations in a reasonable amount of time. This paper 
aims at developing a meta-heuristic approach to improve the 
efficiency of the conventional algorithm via the injection of AC 
and recombine the blocks to speed up the process of the 
evolution; meanwhile, the efficiency can be improved during 
the later experimental results. 

B. Estimation of Distribution Algorithms 
In EDAs, the problem specific interactions among the 

variables of individuals are taken into consideration. In 
Evolutionary Computations the interactions are kept implicitly 
in mind whereas in EDAs the interrelations are expressed 
explicitly through the joint probability distribution associated 
with the individuals of variables selected at each generation. 
The probability distribution is calculated from a database of 
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selected individuals of previous generation. Then sampling this 
probability distribution generates offspring. Neither crossover 
nor mutation has been applied in EDAs. But the estimation of 
the joint probability distribution associated with the database 
containing the selected individuals is not an easy task. The 
flowchart of EDA is shown in the Figure 1. 
 

 
Fig. 1 EDA flowchart 

 
III. METHODOLOGY 

This paper aims at to develop an effective meta-heuristic 
algorithm which contains two phases. The first phase is to 
consider the mining approach which is adopted to find out the 
effective blocks. Meanwhile, these blocks will recombine via 
the competition and keep the blocks with high advantage. The 
second phase is to develop the approach of the AC 
composition. In this paper, we take advantage of NN and the 
designed approach in this paper to combine the competitive 
blocks and those remaining cities to combine the new AC with 
higher competition. At the same time, BBEA will supervise the 
AC and the solutions last iteration to select a proper partial 
linkage to reassemble. Then the reassembled solutions will be 
considered to select the solutions with satisfactory efficiency to 
update the probability matrix. The process will be repeated 
until the defined iteration number is met. The systematic 
diagram is given as Figure 2. 
 

 
Fig. 2 Research systematic diagram 

A. BBEA Framework 
The process of this research is as the following description. 

The initial solutions are generated randomly. Then the fitness 
of each of the solutions is computed. We will select the solution 
with the higher competition to update the probability matrix 
according their performance. During the evolutional process, 
the occasion of injecting AC is decided according to the 
convergence angle and iteration number. Whenever the AC is 
decided to inject, the injected AC will be selected and combine 
the blocks according the probability matrix. The combined 
blocks will continue to be adopted to assemble the new AC and 
the blocks in each AC will be exchanged. The EHBSA here is 
adopted to divide and be optimal. Finally, the new population 
will be generated for the next evolution until the stopping 
criteria are met. The flowchart is represented as Figure 3. 

 

N Iteration≥

*threI k IΔ ≥ Δ

 >   I thre threor I Iθ θ Δ ≥ Δ

 
Fig. 3 BBEA flowchart 

 
For further explanation of the flow, the pseudo-code is given 

as follows. The number of the initial solutions is assigned as 
100. The next step is to select the top 20 performance to update 
the probability matrix. Since the matrix is built, the criterion is 
given to decide the occasion of injecting AC. If the criterion 
judge not to inject, every solution will be reassembled, then 
select the solutions with the top 100 performance via the binary 
selection for the next evolution. If it decide to inject, then the 
solutions will be stochastically selected, then if the injections 
do not update the best known solution, it will use the Nearest 
Neighbor (NN) to construct the AC and exchange the blocks 
until all the solutions are been proceed.
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[ ]λ : AC matrix  

[ ]μ : Generations matrix 

1.  [ ]1 2, ,..., mμ μ μ μ←Random Initialization 
2.  Calculate fitness 
3.     while The stopping criterion is not met do 
4.        Update probability matrix 
5.           while The optima has not been update for i iteration do 
6.              Blocks Re-construction by probability matrix 
7.              Blocks competition by Conflict Block 
8.           End while 
9.           while The convergence angle threθ θ≤ or optima has 

not been update for j iteration do 
10.             [ ]1 2, ,..., nλ λ λ λ← AC re-production based on 

Block 
11.             ' ' '

1 2, ,..., nλ λ λ λ⎡ ⎤⎣ ⎦ ← Block interexchange in 

[ ]1 2, ,..., nλ λ λ λ
 

12.          End while 
13.    '' '' ''

1 2, ,..., nλ λ λ λ⎡ ⎤⎣ ⎦ , ' ' '
1 1, ,..., mμ μ μ μ⎡ ⎤⎣ ⎦ ← [ ]λ , [ ]μ  

partial solns. recombination by EHBSA 
14.        current [ ]1 2, ,..., mμ μ μ μ← Selection by 

[ ]λ , [ ]μ
 

15.        Fitness Evaluation 
16.     End while 
17.  End 

1. A Gene Linkage Probability Matrix 
A Gene Linkage Probability Matrix is applied to identify the 

strength between city to city by the probability updating 
strategy. In the beginning, a Gene Linkage Probability matrix is 
initialized by selecting chromosomes μi with best fitness from 
the population in the first generation as shown in Figure 4. The 
initial probability matrix for the index to evaluate the 
probability from cityi to cityj is represented as Pij. The Pij is 
calculated via the specific probability Pij among the whole 
routes. 

 
Fig. 4 Initial Gene Linkage Probability Matrix 

 
Later on, the probability matrix is updated by population 

stored in the μ archive. The population is composited by the 
chromosomes with better performance which are evaluated by 
the EDA. For example, in this research, the population is 
assigned as 100. From the end of evolution at the last iteration, 
the population contains two sources, which are the solutions of 
the current and last iterations. The number of the population is 
larger than what we really need.  

Therefore, this research takes advantage of the strategy of 
EDA to filter the population into 100 to decide the population 
of the next iteration. Next, we select the top 20 best fit 
chromosomes in μ from the archive and compute Pij of each 
pair of cities. Finally, the probability matrix will be updated by 
these 20 chromosomes as mentioned in the initial probability 
matrix. Due to the composition of the matrix is updated by the 
accumulation of the probability to maintain the competitive 
approach. The probability matrix is so-called Accumulative 
Probability Matrix which is represented as Figure 5. 
 

 
Fig. 5 New Gene Linkage Probability Matrix 

A block mining procedure is applying the Gene Linkage 
Probability Matrix to extract the blocks from the set of high fit 
chromosomes. It is a process of linkage learning which is 
applied to discover the hidden knowledge within the dependent 
variables. The block consists of a series of genes linked to each 
other continuously. To mine the blocks from the set of high fit 
chromosomes, two methods can be applied: static block size, 
on which equally sized blocks are created or dynamic block 
size where are created blocks with random sizes. In this 
research, we will focus on static block size. 

A static block with size K can be generated according to the 
following procedures: 

1. According to the gene linkage probability matrix, a city is 
picked randomly and then the K connected cities with highest 
probabilities will be branched.  

2. The probability for each block will be calculated from city 
to city among these KK-1 combinations.  

3. The one with the shortest distance will be saved into the 
block archive. 

4. The procedures will be repeated again until a pre-defined 
number of blocks is met, i.e., M, are identified. If any block 
with a city overlaps with the blocks previous generated, it will 
be abandoned. 

 
For example, city 38 is selected randomly and the next K, i.e., 

5 here, cities with the probability in non-descending orders will 
be 9, 33, 47, 5, and 8. Again, for each city branched it can be 
further expanded in the next level. For example, city 9 will be 
selected and further branched for next 5 cities, until all cities in 
the same level are branched. The same procedure repeats again 
and again until it reaches the fourth level. In the final level, 
there will have 625 cities, i.e., 5x5x5x5 cities, exploded. 
Finally, block {38, 9, 40, 18} will be selected since it has the 
shortest distance, i.e., 15. A branching strategy is applied in 
generating the possible blocks.  

 
 

2. A Block Mining Procedure 
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The branching rule prescribes how the current problem 
should be partitioned into sub problems. In this research, we 
adopt a forward branching strategy that prescribes which sub 
problems should be expanded next and Best First Search (BFS) 
which solves the most promising sub problem first, usually the 
sub problem with the largest value of the probability. 

A legal block is a set of cities connecting cities from level 
one up to level 4. In this research, we branch three times to form 
a legal block with the length of 4. The reason is to decrease the 
computational times especially when the problem size is large, 
i.e., thousand or up to ten thousands of cities. In addition, the 
block is just like a micro-structure of the chromosome. They 
can be easily recombined by a good heuristic function R in the 
recombination process to form a longer block. 

The final set of blocks, i.e., puzzles, mined from the 
probability matrix are stored in the archive as shown in Figure 
6. 

38 35 17toDis =

38 19 21toDis =

38 36 19toDis =

38 18 15toDis =

38 44 20toDis =

 
Fig. 6 A set of Blocks mined from the Probability Matrix 

The common sequences are regarded as having high 
potential for good substructure or the Blocks because they 
appear identically in different selected chromosomes which are 
assumed to be good or highly fit. Therefore they will be 
retained in the original structures. The next problem is how to 
compose these blocks with the rest of the cities to form a legal 
chromosome. 

Once the set of blocks are identified and stored in the archive, 
the rest of cities not in the blocks are also saved together. We 
name this archive as a Puzzle archive as shown in Figure 7. 
 

 
Fig. 7 The composition of Puzzle Archive 

 
The next mission is to reconstruct these blocks and cities to 

forma legal chromosome. There are numerous methods to 
recombine these blocks and cities for solving the puzzle to 
construct a feasible chromosome.  

The mission next is how to reconstruct these blocks and 
cities to form legal chromosomes. There are numerous methods 
to recombine these blocks and cities for solving the puzzle to 
construct a feasible chromosome. The Nearest Neighbor (NN) 
approach has been applied here in this research. The NN 
method was initially introduced by Skellam [18] where the ratio 
of expected and observed mean value of the nearest neighbor 
distances is used to determine if a data set is clustered. A 
diagram by using the NN to form a legal tour is illustrated in 
Figure 7. 
 

 
Fig. 7 The composition of Puzzle Archive 

 
The recombined chromosome here is called AC, which is 

explained in previous section. AC is the key to maintain the 
population in GA. Since AC is produced via the block 
recombination and stored in the AC archive, shown as Figure 8, 
these β chromosomes will be injected to the population mating 
pool. These ACs with very good infrastructures can play a 
paramount role in speeding up the convergence process. In 
addition, these small blocks within the ACs also provide a good 
chance to come out with a better fit chromosome when 
crossover or mutated with other chromosomes. 
 

 
Fig. 8 A new population of Chromosomes 

B. Artificial Chromosome 
The mechanism of the AC in this research represented as 

follows. The first step is to compute the average length of all 
effective routes. From those routes, we stochastically select 10 
cities and pick those cities whose routes are shorter than the 
previous average length. If the selections do not update the 
optima for three times, NN will be adopted for searching the 
routes for the next connected cities. These processes will be 
repeated until all of the remaining cities are assigned. Figure 9 
shows the idea of the design of BBEA. 

3. Blocks Recombination 
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Fig. 9 The mechanism of AC generation 

C. Population Recombination 
EHMt described in a marginal edge histogram. It has no 

explicit graphical structure. EHBSA/WT is intended to make 
up for this disadvantage by using a template in sampling a new 
string. In generating each new individual, a template individual 
is chosen from P(t) (normally, randomly). The n (n>1) cut 
points are applied to the template randomly. When n cut points 
are obtained for the template, the template should be divided 
into n segments. Then, we choose one segment randomly and 
sample nodes for the segment. Nodes in other n-1 segments 
remain unchanged. We denote this sampling method by 
EHBSA/WT/n. Since average length of one segment is L/n, 
EHBSA/WT/n generates new strings which are different at 
most L/n nodes on average from their templates. 
 

... ...

'
1μ
'
2μ

'
nμ

1μ

2μ

nμ
 

Fig. 10 Population Recombination 

IV. SOME EXPERIMENTAL RESULT 

A. Environment description 
In this section we present the experimental results of the 

BBEA and compare the performance of BBEA with other 
algorithms. Each algorithm is executed for 30 times on each 
instance and the computing hardware consists of Intel Core2 
(1.86GHz) and with DDR2 800 (2GB Memory). The 
programming language is Microsoft Visual C++ 2008 Express. 
All test cases were chosen from website TSPLIB and with the 
best known solutions.  

All algorithms implemented have a number of parameters to 
be tuned before they can be applied to a given TSP instance. 

B. Comparisons with Meta-heuristics 
Due to BBEAs adopts the concept of pheromone update for 

block mining and the evolving operators of GA, two 
well-known algorithms, GA and ACO are applied to compare. 
GA code is from http://www.codeproject.com and ACO is from 
http://www.aco-metaheuristic.org.The comparisons of BBEAs 
with GA and ACO are listed in Table I. 

C. Comparisons with the-state-of-the-art 
The results to be presented here are the best, mean and 

standard deviation of the cost (tour length) taken over 30 runs. 
These two approaches, i.e., RABNET-TSP [19] and SME [20], 
are selected for comparison with our proposed approach. These 
two approaches are based on Self-Organized Map (SOM) 
network with very effective and efficient performances. The 
comparisons of the experimental results for EDAs, p-ACGA, 
RABNET, and SME are presented in Table II. The results show 
that EDAs algorithm outperformed than these two researches. 
The effectiveness of the proposed approach can be observed in 
the reduced average error rate for all instances. The results of 
EDAs show that the algorithm is capable of finding the best 
solution in most cases even for those instances with larger 
numbers of cities. 

From the results in Table II and III, the efficiencies of BBEA 
and other compared algorithms all have satisfactory 
performance. Especially the comparison of computational time, 
BBEA has significant performance than the other algorithms. 
However, not for every instance, BBEA’s searching abilities 
are worse than the compared algorithms on four specific 
instances of all the instances.  

TABLE I 
COMPARISON WITH OTHER META HEURISTIC 

TSP 

Instances

BBEAs  ACO  GA 

Mean  Std.  Best 
Error

Rate
Mean  Std.  Best 

Error 

Rate 
Mean  Std.  Best 

Error 

Rate 

kroA100  21285  0.0  21285  0.01 26577.2  520.3  26019  24.9  27230.2  24960.7 1866.39  27.95 

kroA150  26881.5  161.3  26598  1.4  33860.0  924.6  32470  27.7  34770.2  31504.1 3090.91  31.09 

kroA200  30038.0  236.2  29693  2.3  39927.0  601.8  39058  36.0  44577.2  39609.5 4581.08  51.79 

pr299  49709.5  329.0  48894  3.2  66697.5  1392.0  63795  38.4  115648.8  99315  10242.23 139.98

pcb442  53616.3  334.0  52742  5.6  68547.5  1734.5  65741  35.0  136426.3  125779  7768.42  168.67

pr1002  279270.5 1009.1 278040 7.8  360559.1  4764.7  353632  39.2  1229439  1193770 25263.57 374.60

pcb1173  62066.1  219.7  61638  9.1  78336.1  1185.0  76086  37.7  282746.4  270264  8952.91  396.99

pr2392  414710.0 1753.3 411449 9.7  539686.2  7023.9  530915  42.8  3418356  3355720 52932.60 804.25

pcb3038  151787.2 327.3  151305 10.2 245724.2  2698.8  242969  78.2  1282795.0 1257040 13282.15 831.63

Avg.        5.5        40.0        314.1 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

919

 

 

Therefore, BBEA is with fast speed and an effective 
algorithm in solving most instances. Due to the lack of the 
execution of RABNET-TSP and SME, the result is not 
presented here. 

V. CONCLUSION 
In recent academic researches, most focus on developing to 

enhance the conventional evolutional algorithms and facilitate 
the local heuristics, such as VNS, 2-opt and 3-opt. Despite the 
performances of the introduction of the local strategies are 
significant, however, these improvement cannot improve the 
performance for solving the different problems. Therefore, this 
research proposes a meta-heuristic evolutional algorithm which 
can be applied to solve several types of problems. The 
performance validates BBEA has the ability to solve the 
problems even without the design of local strategies. 

In this paper, we proposed a block-based AC generation 
approach which is for better combination and competitive AC. 
However, due to the computation of the probability matrix, we 
adopt the Estimation of Distribution Algorithms (EDAs) for the 
conditional probabilities. That means, all of the connections of 
pairs of cities are considered with better probabilities to link. 
Therefore, the composed probability matrix represents the 
dominance matrix of the whole cities. This idea of the AC 
injection is used to improve the slow convergence and escape 
trapped in local optima. The results from the experiments 
validate the idea of application of the AC injection and block 
mining can help the evolutional algorithm to enhance the 
searching ability.  
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kroC100  20751.9  6.0    21099.5  295.5  0.2947  20971.2  108.2  0.1525  21149.9  188.0  0.1419

kroD100  21345.6  95.8    21831.8  358.8  0.2318  21697.4  157.0  0.1658  21845.7  154.3  0.0830

kroE100  22168.4  65.7    22420.8  233.9  0.3136  22714.6  260.2  0.1511  22682.5  214.1  0.1230

rat575  7507.7  39.7    7132.2  39.9  0.0118  7115.7  37.5  0.0005  7173.6  39.5  0.0023

rat783  9506.5  41.3    9347.4  44.3  0.2277  9343.8  47.0  0.0950  9387.6  39.4  0.1456

rl1323  291142.5  2369.2    296926  2070.4  0.2068  305314.3  2315.8  0.0178  300899.0 2717.1 0.0865

fl1400  20933.8  112.5    21266  210.8  0.4704  21110.0  163.3  0.3249  20742.6  115.8  0.2727

d1655  68574.0  300.2    65924.6  299.2  0.0066  72113.2  698.6  0.0115  68046.4  379.3  0.2890

 
TABLE III 

COMPARISON WITH THE STATE OF THE ART OF TIME 

TSP 

Instances 

BBEA  p‐ACGA  RABNET‐TSP  SME 

Time(s)  Best 
Error 

Rate 
Time(s)  Best 

Error 

Rate 
Best 

Error 

Rate 
Best 

Error 

Rate 

eil51  1.0  428  0.5  48.1  427  1.1  427  2.7  433  3.4 

eil76  4.0  544  1.6  98.9  545  2.5  541  3.4  552  4.5 

eil101  8.0  642  3.3  166.9  630  2.8  638  3.1  640  4.2 

berlin52  2.0  7544  0.03  40.7  7542  0.9  7542  5.2  7715  6.4 

bier127  13.0  126946  7.8  246.0  119106  2.2  118970  2.2  119840  2.9 

ch130  14.0  6178  1.8  266.0  6221  2.9  6145  2.8  6203  3.2 

ch150  19.0  6549  1.5  348.3  6549  1.9  6602  3.2  6631  3.4 

rd100  8.0  8003  1.5  162.9  7910  1.9  7982  3.7  8028  4.2 

lin105  8.0  14382  0.02  49.0  14379  1.0  14379  0.2  14379  0.7 

lin318  113.7  43269  3.9  420.3  42820  4.1  42834  4.0  43154  4.5 

kroA100  7.7  21285  0.01  45.0  21305  1.5  21333  1.1  21410  1.6 

kroA150  19.0  26598  1.4  96.2  26875  3.6  26678  3.1  26930  3.3 

kroA200  38.0  29693  2.3  167.7  29668  3.2  29600  2.8  30144  3.6 

kroB100  7.0  22141  0.5  45.0  22199  1.2  22343  2.4  22548  2.2 

kroB150  19.2  26192  0.9  96.3  26130  2.0  26264  1.9  26342  2.6 

kroB200  38.9  30047  3.1  167.9  30108  3.5  29637  2.4  29703  2.9 

kroC100  7.8  20750  0.01  45.0  20769  1.7  20915  1.1  20921  1.9 

kroD100  7.8  21294  0.2  45.0  21389  2.5  21374  1.9  21500  2.6 

kroE100  8.0  22106  0.5  45.0  22111  1.6  22395  2.9  22379  2.8 

rat575  2174.3  7428  10.9  1382.4  7065  5.3  7047  5.1  7090  5.9 

rat783  1213.2  9422  8.0  2558.7  9317  6.1  9246  6.1  9316  6.6 

rl1323  2853.4  287234  7.8  7101.2  295671  9.9  300770  13.0  295780  11.4 

fl1400  3185.4  20743  4.0  6531.4  20946  5.7  20851  4.9  20558  3.1 

d1655  4875.7  67917  10.4  8769.4  65059  6.1  70918  16.1  67459  9.5 

Avg.      3.00      3.13    3.97    4.06 
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