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A Family of Zero Stable Block Integrator for the
Solutions of Ordinary Differential Equations
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Abstract—In this paper, linear multistep technique using power
series as the basis function is used to develop the block methods
which are suitable for generating direct solution of the special second
order ordinary differential equations with associated initial or
boundary conditions. The continuous hybrid formulations enable us
to differentiate and evaluate at some grids and off — grid points to
obtain two different four discrete schemes, each of order (5,5,5,5)",
which were used in block form for parallel or sequential solutions of
the problems. The computational burden and computer time wastage
involved in the usual reduction of second order problem into system
of first order equations are avoided by this approach. Furthermore, a
stability analysis and efficiency of the block methods are tested on
linear and non-linear ordinary differential equations and the results
obtained compared favorably with the exact solution.

Keywords—Block Method, Hybrid, Linear Multistep Method,
Self — starting, Special Second Order.

1. INTRODUCTION

ET us consider the numerical solution of the special
second order ordinary differential equation of the form

y' =f(xy), a<x<b 1)

with associated initial or boundary conditions. The
mathematical models of most physical phenomena especially
in mechanical systems without dissipation leads to special
second order initial value problem of type (1). Solutions to
initial value problem of type (1) according to Fatunla [1], [2]
are often highly oscillatory in nature and thus, severely restrict
the mesh size of the conventional linear multistep method.
Such system often occurs in mechanical systems without
dissipation, satellite tracking, and celestial mechanics.

Lambert [3] and several authors such as Onumanyi et al [4],
Awoyemi [5], and Fudziah et al. [6], have written on
conventional linear multistep method

Z]!;o % Yn4j = h? Z]k=0 ijn+j k=2 )
or compactly in the form

p(E)yn = h?3(EDf, ©)
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where E is the shift operator specified by Ely, = Yn+j While
p and o are characteristics polynomials and are given as

p() = Tieo %8, 3(5) = TfoB; 4)

yn is the numerical approximation to the theoretical solution
y(x) and £, = f(Xn, yn)-

In the present consideration, our motivations for the study
of this approach is a further advancement in efficiency, i.e
obtaining the most accuracy per unit of computational effort,
that can be secured with the group of methods proposed in this
paper over Awoyemi [5] and Adeboye [7].

A. Definition: Consistent, Lambert [3]

The linear multistep method (2) is said to be consistent if it
has order p > 1, that is if

Yoo =0and Tioj o — o B =0 5

Introducing the first and second characteristics polynomials
(4), we have from (5) LMM type (2) is consistent if

p(1) =0, p'(1) = 8(2)

B. Definition: Zero stability, Lambert [3]

A linear multistep method type (2) is zero stable provided
the roots &,j = 0(1)k of first characteristics polynomial p(§)

specified as p(§) = det|2}‘=0 A(i)é(k_i)| = 0 satisfies |§j| <1
and for those roots with |§].| = 1 the multiciplicity must not

exceed two. The principal root of p(§) is denoted by
§=¢§=1

C. Definition: Convergence, Lambert [3]

The necessary and sufficient conditions for the linear
multistep method type (2) is said to be convergent if it is
consistent and zero stable.

D. Definition: Order and Error Constant, Lambert [3]

The linear multistep method type (2) is said to be of order p
if cg = ¢ =+ cpyqy =0butcyy, # 0and ¢y, is called the
error constant, where
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Co =YKo o = g+ o +0C+ ... +0
Ci =Z]k:oj o= (o + 2 o+ 3 3+ ..+ ko)
—(By +B B+ B
&= X5 )? 6 = Zito B,
(ot 2% 0t 3% ot .+ k2 o)
—(B, +2B, + 3B, + ..+ kB,)

1
42
) Bl
$(0c1+ 29 0,4 39 oc5+ ... + k9 oq)

-2 - - _ (©6)
(-1 (Bl + 2@ 1)52 + 3@ 1)[33 + ...+ k@ 1)Bk)

=yk (liq o _
Cq= j=1{q!l X;

E. Theorem: Lambert, [3]

Let f (X, y) be defined and continuous for all points (X, y) in
the region D defined by{(X, y) : a <x < b, —0 <y < oo} where
a and b finite, and let there exist a constant L such that for
every X, Y, y* such that(x, y) and (x, y* ) are both in D:

fY)—fFXy*)ISLly-y¥ 7

Then if n is any given number, there exist a unique solution
y(x) of the initial value problem (1), where y(X) is continuous
and differentiable for all (x, y) in D. The inequality (7) is
known as a Lipschitz condition and the constant L as a
Lipschitz constant.

II. DERIVATION OF THE PROPOSED METHODS

We proposed an approximate solution to (1) in the form

yx) = N2 taxt =y i=0(Dm+t—1  (8)
y'(x) = DIl - Dagx' ™2 = £y )

i=2@)m+t—1withm=5,t=2and p=m+t-1

where the aj,j =0,1,(m+t—1)are the parameters to be
determined, t and m are points of interpolation and collocation
respectively. Where P, is the degree of the polynomial
interpolant of our choice.

Specifically, we collocate (9) at X = Xq4,j = 0(1)k and
interpolate (8) at x = Xp,j, j = 0(1)k — 2 using the method
described above. Putting in the matrix equation form and then
solved to obtain the values of parameters o, j = 0, 1, ...
which is substituted in (8) yields, after some algebraic
manipulation, the new continuous form for the solution

yx) = Z]!(:_oz & (X)Yn+j + Z]!(:o Bj (X)an- (10)

A. Derivation of First Block Method

Let us consider the numerical solution of the second order
differential system of type (1). Put (8) and (9) in matrix
equation form, which when solved either by matrix inversion
techniques or Gaussian elimination method to obtain the
values of the parameters o,j=0,1,m+t—1 and then
substituting them into (8) to give the continuous form:

Y(X) = ao(X)yn + 01(X)yae1 + DB + Br(X) ot + Ba(X)fea+
Ban(X)faras + B2(X)fni3]
(11)

Wesetp = (X — Xp41)
If we let k = 3, after some algebraic manipulations we
obtain a continuous form of solution

h+
y&) = {=(E)}yn + {(Tp)}ym
N {6(p)6 —30h(p)5 + 45h?(p)* — 20h3(p)® + 101h5(p)}f

1440h*
(—6(p)® + 21h(p)® + 5h%(p)* — 70h*(p)* )
+60h*(p)? + 108h3(p )
+ 120h* fis1

\ )

(—6(p)® + 12h(p)° + 25h%(p)* — 20h3(p)3 )
+{ +27h5(p) $ ¢

240h*

\ )

(54(p)® — 162h(p)°® — 135h%(p)* + 540h3(p)3 )

—459h5(p)
+ 800h* fn+§
6(p)®—3h(p)5—15h?(p)*+10h3(p)® —16h°(p)
+ { 1800h* } fars (3

(12)

Evaluating (12) at X = X473, X = Xp4p and X = X3, yield the
following schemes:
4 1 h2
(a). yn% = 3Vn+1 t 30 = "o {10135fn +
146580f,,1 + 15690f,,, — 73953f, 4,5 — 1252f,,3}
h2
(®): Ynrz= 2¥ne1 + Y = 5550 (85F + 1180f, +
190f,,, — 243f,,4/5 — 12,3}

h2
(©) Yass = Fass + 2yn = 1o {1556 + 264065, +
1470, = 729f, 4 + 64fy45)
(13)
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Taking the first derivative of (12), thereafter, evaluate the
resulting continuous polynomial solution at x = x, yields

h2

(d). hZg — Voss +yn = 7200{—1625fn — 6060f,,, —
1110f,,, + 5103fn+§ +92f45)
(14)
B. Derivation of Second Block Method

Using the same procedure as in first block method, but with
one off grid point at interpolation, we obtain another

y(X) = 0(X)yn T 0 (X)Ynr1 + 043(X)Yntas + hz[ﬁo(x)fn + Bi(x)fas
+ Bo(x)fns2 + Ba(¥)fii3]

(15)
Weset 8§ = (X — Xp41)
y(x)
—486(8)6 + 1458h(8)5 + 1215h2(8)* — 4860h3(8)3
B +479h5(8)
- 3652h6
486(8)° — 1458h(8)° — 1215h%(8)*
+4860h3(8)3 — 3218h5(8) + 913h6
913h6 YII+1
—1458(8)° + 4374h(8)° + 3645h%(5)*
—14580h3(8)3 + 12393h5(8)
3652h6 n+e
(4410(8)% — 15969h(8)5 + 2670h2(8)*)
N +25840h3(8)3 — 2791h5(8) ¢
328680h* n
[ 9180(8) — 2480h(8)° — 32080h%(8)* )
N +82670h3(8)3 + 54780h*(8)2 — 25989h5(8) ¢
109560h* n+l

\

(—

+%
(720(8)¢ + 579h(8)5 — 1800h2(8)* )
N —1930h3(8)3 + 271h5(5)
328680h*

1170(8) + 771h(8)° + 7490h2(8)*)
+6560h3(8)3 — 1011h5(8) ¢
109560h* n+2
fn+3

(16)

Yn

Evaluating (16) at a certain point and taking the first and its
second derivatives w.r.t x at some selected points yield the
following schemes:

2187 1097

36
(a). Yn+2 = To2eVn+t "o Vntt T igpeYn =
h2 {118fn + 1594fn+1}
2739 (+316f,,,—18f, 4
b 6561 1635 1465 _
(b). Ynt3 - Tez6 n+t T 913 Yn#1 T Igpe¥n T
L{ 503f, + 10911f,, }
10956 (+12009f,,, + 6971, ;3
5400 _ 7200 1800 _
© 53 n+t T o1z Y+l o3 In T
10135f, + 146580f,
_h® ) —73953f .4 +15690f,,,
73953 3
—1252f,,5
15309 6016 8755
(). hzo + 20 Ynst ~ 53 Vo1 ¥ 35 Vn =

h2
41085

—156f,,,

[—5282fn + 23136fn+1}
+32f,,5

amn

Equations (13), (14), and (17) constitute the member of a
zero stable block integrators each of order (5,5,5,5)T with

_( 2351 7 1 143 )
&= 39366003600’ 600" 50400

and

_( 101 7 2351 32 )
7 = \82170" ~ 14608' 665577 95865

respectively. The application of the block integrators with n =
0 gives the accurate values of unknown as shown in tables I —
IV of forth section of this paper. To start the [VP integration
on the sub interval [X,, X3], we combine (13) and (14), when
n = 0 i.e the 1-block 4-point method.

III. STABILITY ANALYSIS

Recall, that, it is a desirable property for a numerical
integrator to produce solution that behave similar to the
theoretical solution to a problem at all times. Thus, several
definitions, which call for the method to posses some
“adequate” region of absolute stability, can be found in several
literatures. See Lambert [3], Fatunla [1], [2] etc.

The Fatunla’s approach states that the block method is
presented as a single block r-point multi-step method of the
form:

AOY,, = T A + 02 B BO By (18)
where, h is a fixed mesh size within a block, Al, B, i =0 (1)k
are r X r matrix coefficients, and A’ is r by r identity matrix,
Yum Ymi, Fn and F.; are vectors of numerical estimates.
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Following Fatunla [1], [2]; the four integrators proposed in
this report in (13) and (14) are put in the matrix equation form
and for easy analysis the result was normalized to obtain;

A. Convergence Analysis of the First Block Method with
One Off-Grid Point at Collocation

The method is expressed in the form of type (18) to give

100 o] o o -1 1]pn-
010 0Pz 1y g —f 3|73
00 10 Yn+2 Yn-1
0 0 0 1 00 -2 6
Yn+3 0 0 -1 3 L Vn
_ﬁ 523 _ 313 _E-
[ 5;(110 1415980 1091350 81 fn+1
o 120 10 L|fas2
243 49 4
w0 w75 ||
|52z =1 |l
_I_hz 800 240 182827 6 - (19)
[0 0 0 ]
87480 | rf
| 17 |[n2
|O 0 0 220 | fa-s
240 n
* 31|
000 = |If,
[0 00 —“J n
288

with y, = (}fz"o) usually giving along the initial value problem.

The first characteristics polynomial of the proposed 1- block 4
— point method is given by

p(N) = det [\l — A (20)

[2 0 1
p(7\)=detl0 2 J @1

1

3

1 3
0 0 A+2 -6

1 A-=3

0 0
Solving the determinant of (18), yields
P =20A-1)
which implies,
M=A=A=00rA,=1
By definition of zero stable and (21), the 1 - block 4 - point
method is zero stable and is also consistent as its order

(5,5,5,5)" > 1, thus, it is convergent following Henrici [8] and
Fatunla [2].

B. Convergence Analysis of the Block Method with One
Off-Grid Point at Interpolation

The method expressed in the form of (18) to give:

1097 2399139 3291
1826 1460800 1826
10 0 )] |, _1465 640791 4395 |Vn-z
01 0 0f¥net|_ 1826 292160 1826 ||¥n-S
0 0 1 0f|ynez| |, _1800 19683 5400 |y, ,
0 0 0 1lyns 913 3652 913 (L yn
8755 3829437 26265
3652 584320 3652
316 6 26541 7247
2739 913 45650 913
4003 697 387909 3085 |[fn+1
3652 10956 146080 913 ||'n+t
5230 1252 72491 2800|[¢ -
24651 73953 123255  2739|lf,,,
52 32 9018 1528
+h2dl 13695 41085 22825 2739
[ 18 43011 118 1
2739 365200 913
, 503 366687 503 |[fn-2
+| 10956 2921600 3652 ||fa-2
, o135 54729 10135
73953 146080 24651 ][ £,
5282 641763 5282
41085 ~ 1826000 13695 A

(22)

IV. IMPLEMENTATION OF THE METHODS
This section deals with numerical experiments by
considering the derived discrete schemes in block form for
solution of second order initial value problems. The idea is to
enable us see how the proposed methods performs when
compared with exact solutions. The results are summarized in
Table I to IV.

A. Numerical Experiment

From Awoyemi [5];
Consider a Non-Linear IVP;

y'=2y%y() =1y'(1) = -1,
whose exact solution is

y() = 1/x

The first characteristics polynomial of the proposed method
(17) is given as in (18).

Substituting the values of Al and A(ll) in (20), gives,
p(D) =A3(A — 1) , which implies, ;; =2, =A; =0ori, =
1 which implies,A; =2, =0ori; =1

From (18) and (21), the block hybrid method (17) is zero
stable and is also consistent as its order (5,5,5,5)T > 1, thus, it
is convergent as in [8] and [2].

B. Numerical Experiment
From Adeboye [7]; Consider the BVP

y" —y=4x—"5;y(0) =y(1) =0,h=0.1,
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3

[e2x _ e—Zx] ——x

4

TABLEI
RESULTS FOR THE PROPOSED METHOD PRESENTED IN (13) AND (14) WITH ONE OFF - GRID POINT AT COLLOCATION

N X Exact Value Approximate Value Awoyemi [5] Error of Proposed Method
0 1 1 1 0 0
1 1.1 0.909090109 0.9090914826 2.8483722E-03 1.37360E-06
2 1.2 0.833333333 0.8333348875 2.26883436E-01 1.55450E-06
3 1.3 0.769230769 0.7692330259 7.3968630E+00 2.25690E-06
4 1.4 0.714285714 0.7142880945 2.1168783E-01 2.38050E-06
5 1.5 0.666666667 0.6666693006 3.3156524E-01 2.63360E-06
6 1.6 0.625 0.6250029040 4.3968593E-01 2.90400E-06
7 1.7 0.588235294 0.5882382492 5.3903097E-01 2.95520E-06
8 1.8 0.555555556 0.5555586357 6.3121827E-01 3.07970E-06
9 1.9 0.526315789 0.5263190397 7.1723621E-01 3.25070E-06
10 2.0 0.5 0.5000032814 7.9776590E-01 3.28140E-06
TABLEII
RESULTS FOR THE PROPOSED METHOD PRESENTED IN (13) AND (14) WITH ONE OFF - GRID POINT AT INTERPOLATION
N X Exact Value Approximate Value Awoyemi [5] Error of Proposed Method
0 1 1 1 0 0
1 1.1 0.909090109 0.9090914832 2.8483722E-03 1.37420E-06
2 1.2 0.833333333 0.8333348886 2.26883436E-01 1.55560E-06
3 1.3 0.769230769 0.7692330281 7.3968630E+00 2.25910E-06
4 1.4 0.714285714 0.7142880973 2.1168783E-01 2.38330E-06
5 1.5 0.666666667 0.6666693038 3.3156524E-01 2.63680E-06
6 1.6 0.625 0.6250029082 4.3968593E-01 2.90820E-06
7 1.7 0.588235294 0.5882382539 5.3903097E-01 2.95990E-06
8 1.8 0.555555556 0.5555586407 6.3121827E-01 3.08470E-06
9 1.9 0.526315789 0.5263190456 7.1723621E-01 3.25660E-06
10 2.0 0.5 0.5000032878 7.9776590E-01 3.28780E-06
TABLE III
RESULTS FOR THE PROPOSED METHOD PRESENTED IN (17) WITH ONE OFF - GRID POINT AT COLLOCATION
X Exact Solution  Approximate Value Adeboye [7] Error of Proposed Method
0.00  0.00000000000 0.0000000000 3.379500000E-06 0.000000000E+00
0.10  0.14735784232 0.1473578284 6.598600000E-06 1.390000000E-08
0.20  0.25015214537 0.2501521164 9.454000000E-06 2.890000000E-08
030  0.31341504348 0.3134150000 1.156300000E-05 4.340000000E-08
0.40  0.34178302747 0.3417825591 1.204180000E-05 4.680000000E-07
0.50  0.33954334810 0.3395424500 8.902600000E-06 8.981000000E-07
0.60  0.31067692433 0.3106755871 1.922800000E-06 1.337200000E-06
0.70  0.25889818576 0.2588965200 2.803580000E-05 1.665700000E-06
0.80  0.18769224781 0.1876902363 8.259870000E-05 2.011500000E-06
0.90  0.10034979197 0.1003474152 1.870490000E-04 2.376700000E-06
1.00  0.00000000000 -0.0000023895 3.379500000E-06 2.389500000E-06
TABLE IV
RESULTS FOR THE PROPOSED METHOD PRESENTED IN (17) WITH ONE OFF - GRID POINT AT INTERPOLATION
X Exact Solution Approximate Value Adeboye [7] Error of Proposed Method
0.00 0.00000000000 0.0000000000 3.379500000E-06 0.000000000E+00
0.10 0.14735784232 0.1473578412 6.598600000E-06 1.100000000E-09
0.20 0.25015214537 0.2501521422 9.454000000E-06 3.100000000E-09
0.30 0.31341504348 0.3134150392 1.156300000E-05 4.200000000E-09
0.40 0.34178302747 0.3417830695 1.204180000E-05 4.210000000E-08
0.50 0.33954334810 0.3395434361 8.902600000E-06 8.800000000E-08
0.60 0.31067692433 0.3106770602 1.922800000E-06 1.359000000E-07
0.70 0.25889818576 0.2588981266 2.803580000E-05 5.910000000E-08
0.80 0.18769224781 0.1876919924 8.259870000E-05 2.554000000E-07
0.90 0.10034979197 0.1003493386 1.870490000E-04 4.533000000E-07
1.00 0.00000000000 -0.000004362 3.379500000E-06 4.362000000E-07

In this paper, new block methods with uniform integrators
each of order (5,5,5,5)T were developed. The resultant
the following desirable

numerical
properties:

V. CONCLUSION

integrators

posses

il.

iii.
iv.

Zero stability

Convergent schemes

An addition of equation from the use of first derivative
Being self — starting as such it eliminate the use of

predictor — corrector method
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v. Facility to generate solutions at 4 points simultaneously
vi. Produce solution over sub intervals that do not overlaps
vii. Apply uniformly to both IVP; and BVP, with adjustment
to the boundary conditions

In addition, the new schemes compares favourably with the
theoretical solution and the results are more accurate than
Awoyemi [5] and Adeboye [7], see Table I - IV. Hence, the
present work is an improvement over other cited works.
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