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Abstract—In this paper a genetic algorithm (GA) with dual-

fitness function is proposed and applied to solve the deterministic 
identical machine scheduling problem. The mating fitness function 
value was used to determine the mating for chromosomes, while the 
selection fitness function value was used to determine their survivals. 
The performance of this algorithm was tested on deterministic 
identical machine scheduling using simulated data. The results 
obtained from the proposed GA were compared with classical GA 
and integer programming (IP). Results showed that dual-fitness 
function GA outperformed the classical single-fitness function GA 
with statistical significance for large problems and was competitive 
to IP, particularly when large size problems were used. 
 

Keywords—Machine scheduling, Genetic algorithms, Due dates, 
Number of tardy jobs, Number of early jobs, Integer programming, 
Dual Fitness functions.  

I. INTRODUCTION 
N classical genetic algorithm, a single-fitness function value 
determines the chance for a chromosome to mate and 

survive. In some biological systems the set of traits that allows 
the species to survive are different from the set of traits that 
allows them to find a suitable mate and thus reproduce. Traits 
like physical strength, speed, and strength of vision may be 
essential for some species to survive in their surroundings 
(avoiding danger and increasing ability to hunt) while these 
traits may have minor or no importance when it comes to 
reproduce (attracting a partner). Traits like color, size, and 
strength of smell can be essential in attracting a partner while 
these traits may have minor or no importance for surviving. To 
imitate this biological system in genetic algorithms, two 
different fitness functions need to be used; one for mating and 
another one for selection. 

The purpose of the mating fitness function (MFF) is to 
select chromosomes for mating, while the purpose of the 
selection fitness function (SFF) is to select chromosomes for 
the next generation. This means that the MFF considers the 
relation between the genes among the perspective mating 
couple to have a "successful” crossover while the SFF 
considers the genes of only one chromosome to determine its 
chances for survival.  

In this study we claim that using two different fitness 
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functions enhances the quality of the solution found by genetic 
algorithms that adapt this strategy, hence, a dual-fitness 
function genetic algorithm is proposed. This algorithm is 
applied to deterministic identical parallel machine scheduling 
problem to test its effectiveness. The problem is solved by the 
proposed algorithm and is compared to solutions generated by 
both classical GA and IP.  

The rest of the paper will be organized as follows: Section 
II presents the literature review, Section III presents the 
problem statement, Section IV presents the proposed genetic 
algorithm, Section V presents an IP formulation for the 
problem in hand, Section VI presents illustrative example, 
Section VII presents the experimentations and results, and 
Section VIII presents the discussion and conclusions.  

II. LITERATURE REVIEW 
A comprehensive review of research in parallel machine 

scheduling problems and solution methodologies is provided 
by Cheng and Sin [1]. Different approaches to the problem 
include heuristics, exact methods and a number of 
approximate algorithms. Bedworth and Bailey [2] suggested a 
simple heuristic in their book. Suer et al. [3] presented three 
heuristics (SBC-1, SBC-2, SBC-3) to minimize the number of 
tardy jobs in identical machine scheduling. A decomposition-
based branch and bound approach for minimizing the number 
of tardy jobs, total weighted earliness and tardiness criteria for 
problems with common due date was proposed by Chen and 
Powell [4]. 

Evolutionary Computation (EC) techniques have also found 
application in this domain. Cheng and Gen [5] proposed a 
genetic algorithm combined with a local optimizer to 
minimize the maximum weighted absolute lateness in parallel 
machine scheduling. An evolutionary computation approach 
for minimizing the number of tardy jobs was presented by Liu 
and Wu [6]. The solution was encoded as a segmented digit 
string with the list of jobs in the first segments and the 
machine order in the second segment. A Gaussian mutation 
operator and neighborhood-based local search mechanism 
were employed in the algorithm. Genetic algorithms have also 
been applied to non due date related objectives. A hybrid 
approach which combines a greedy heuristic with a pure 
genetic algorithm through an insertion method was proposed 
by Luu et al. [7] for the parallel machine batch sequencing 
problem. Min and Cheng [8] presented a genetic algorithm 
approach for minimizing the make span in scheduling 
identical machines. Integer Programming Model for parallel 

A Dual Fitness Function Genetic Algorithm: 
Application on Deterministic Identical Machine 

Scheduling 
Saleem Z. Ramadan, Gürsel A. Süer  

I 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:1, 2013

164

 

 

machine scheduling is given in Suer et al. [9]. Fariborz et al. 
[10] used GA to optimize bi-criteria for a single machine 
scheduling. The two criteria used were maximizing the 
earliness and minimizing the tardiness. Seeded initial 
population was used in this GA. The fitness function used was 
the weighted average of the two criterions. Roulette-wheel 
strategy was used for selection and three different crossover 
strategies were used, one point, two points and cycle 
crossover. Cycle crossover showed the best results. Johnny 
and Long [11] proposed job-focused and machine-focused 
approaches to minimize number of tardy jobs in m parallel 
machine scheduling. Hui-Yuan et al., [12] proposed a dual 
fitness function genetic algorithm to distinguish the local 
optima basin from the global optima basin. The results showed 
its effectiveness. 

III. PROBLEM STATEMENT  
Deterministic identical machine scheduling problem is 

defined when n deterministic jobs have to be scheduled on m 
machines with identical capabilities, i.e., when the processing 
time of a job is the same on all machines. However, 
processing times vary from one job to another. All ready times 
are assumed to be zero and a job becomes tardy when its 
completion time exceeds its due date. The objective for this 
problem is to schedule the jobs such that the number of tardy 
jobs (nT) is minimized.  

The assumptions made in this problem are as follows: 
• m identical machines are used, i.e., the processing time for 

each job doesn't differ from one machine to the other. 
• Each machine can only process one job at a time before 

another job can be processed, i.e., no multiple processing 
in any machine. 

• No preemption, i.e., each job must be finished totally 
before another job can be started.  

• Processing times, due dates, and completion dates are all 
deterministic. 

• Set-up times are sequence-independent and can be 
included in the process time. 

• Number of machines, m, is fixed and number of jobs, n, is 
also fixed such that n>m. 

• All jobs and all machines are available and ready at time 
zero. 

• Jobs are independent and equally important.  
The following notations are used throughout this study: 
n number of jobs to be scheduled. 
m number of machines used. 
pi processing time of job i. 
di due date of job i. 
Ci completion time of job i. 
nTj number of tardy jobs on machine j.  

IV. THE PROPOSED GENETIC ALGORITHM 
Evolutionary algorithms (EAs), as metaheuristic 

optimization techniques, are characterized with a population 
that evolves over time. The underlying principle for EAs can 
be traced back to Darwin’s theory of evolution. The principle 

is easy; given a population of individuals, the environmental 
pressure will dictate which individual will survive by a 
process called natural selection. In short, the strong individual 
will adapt to the surrounding and survives and the weak one 
will not adapt to the surrounding and eventually dies out. GAs 
have certain traits that make them the most popular among 
different EAs. GAs use both crossover and mutation operators 
which make their population more diverse and consequently 
more immune to be trapped in a local optima. In theory, the 
diversity helps the algorithm to be faster in reaching the global 
optima as it allows the algorithm to explore the solution space 
faster. 

A. Overview of the Algorithm  
The following strategies were adopted in the proposed 

genetic algorithm: 

1. Chromosome Representation 
The chromosome representation for this GA consists of a 

row vector of N genes, where N is computed as given in (1): 
 

 m×) ) )
m
n

floor(-
m
n

(-(1+n=N                 (1)  

 
where )

m
n

floor(  is the smallest integer of the fraction 
m
n . From 

these N genes there are ( )nN -  dummy jobs with zero 
processing times and infinite due dates. The first 

m
N  genes 

are for the first machine, the second 
m
N  genes are for the 

second machine, and the jth 
m
N  genes are for the jth 

machine. 

2. Initial Population 
A seeded initial population strategy is used in which S 

chromosomes are constructed as follows: jobs are sorted 
according to their processing times descending order. After 
that, jobs are assigned to machines from the top of the list in a 
systematic way such that all of the machines are covered with 
almost the same working hours. Of course this does not 
guarantee to have the minimum total number of tardy jobs, but 
it is believed that it will balance the load on the machines 
better than random assignment, consequently it will form a 
better initial solutions. This process is repeated S times with 
different random starting points to form S different initial 
chromosomes. 

3. Mating 
The mating strategy used in this GA is based on the average 

variance of the processing times such that the higher the 
average variance the fitter the parents to mate. The MFF is 
given as in (2): 

 

m

(P) Var

=

∑
m

1=j
j

MFF          (2) 
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where P is the set of distinct jobs in machine j in both 
chromosomes under consideration without considering any 

dummy jobs. In this mating strategy ( )∑
m

1=j

j-m  distinct couples 

are mate. These couples are ranked, descending, based on their 
MFF values such that the higher the fitness value the fitter the 
couple is. The top β of these couples are chosen for possible 
crossover.  

The reasoning behind this mating strategy can be explained 
as follows: it is expected that as the variance of the processing 
times for a group of jobs scheduled on a certain machine 
increases, the variance of the due dates for this group of jobs 
will also increase. A high variance of the due dates for a group 
of jobs increases the probability of low number of tardy jobs 
on the group's machine. Consequently, the total number of 
tardy jobs for the whole schedule is expected to decrease. 

4. Selection 
Enlarged sample space strategy )+(s λ  is available 

selection in this GA. In this strategy λ offspring and S parents 
will compete for their survivals using elitist selection strategy 
based on their SFF value. 

The SFF value is calculated by adding the number of tardy 
jobs on each machine for the entire schedule as given in (3) 
where nTj denotes the number of tardy jobs on machine j: 

 

∑
1=

=SFF 
m

j
jnT           (3) 

5. Crossover 
Mating fitness values will determine the best couples for 

crossover. Let P1Mj be the genes for machine j in parent 1 and 
P2Mj be the genes for machine j in parent 2. Furthermore, 
assume that the mating fitness value for parent 1 and parent 2 
permits them to have a crossover. Crossover will be done 
between P1Mj and P2Mj for all values of j = 1, 2, … m. The 
total number of crossovers that will be done for any pair of 
parents are m. The crossover will take place on the positions 
of the common-set of genes between the pair of machines 
under consideration such that the positions of the common-set 
genes for P1Mj will be replaced by the positions of the 
common-set of P2Mj and vice versa. The remaining genes will 
be assigned randomly. This crossover strategy guarantees that 
the generated offspring is feasible. This procedure is explained 
in section VI in details. A 70% crossover rate is used. The 
reason for using such a high crossover rate is to increase the 
diversity in the population to explore the solution space 
adequately and to reduce the chances of premature 
convergence problem. 

6. Mutation 
Random mutation strategy will be adopted in which two 

distinct gene's locations are randomly selected and the values 

of the two genes are switched. This guarantees that the 
mutated chromosome is feasible. This procedure is explained 
in details in section VI. A mutation rate of 10% is used. 

7. Termination Criterion 
The GA will terminate when N୥ generations are reached.  

V. INTEGER PROGRAMMING  
For the sake of comparison, the deterministic identical 

machine scheduling problem will be solved using IP model. It 
should be noticed that Minimizing number of tardy jobs (nT) 
is equivalent to maximizing number of early jobs (nE). This IP 
model was presented in Suer et al. [3]. 

VI. ILLUSTRATION EXAMPLE FOR THE GA STRATEGIES USED   
In this section, the different strategies used in the proposed 

GA are illustrated. Suppose we have 13 jobs that need to be 
scheduled on three identical machines, i.e., n =13 and m = 3. 
Moreover, suppose that the processing times and the due dates 
for these jobs are as given in Table I: 

 
TABLE I 

DATA FOR THE ILLUSTRATION EXAMPLE 
Job # Processing Time (Pi) Due date (di) 

1 8.3325 53.3263 
2 9.1521 49.3816 
3 2.1429 15.9718 
4 9.2204 59.0218 
5 6.6912 11.6783 
6 1.8779 29.2215 
7 3.5065 23.6932 
8 5.9216 10.8038 
9 9.6176 43.4556 
10 9.6840 32.5532 
11 2.4185 3.9672 
12 9.7353 53.0977 
13 9.6145 32.5989 

 
Using (1), the total number of genes, N, used in any 

chromosome is:  
 

15=3×) ) )
3

13
floor(-

3
13

(-(1+13=N  

 
and the number of dummy jobs are 
 

( ) .2=1315=- nN  
 
This means that each of the three machines will have 5 jobs. 
The chromosome representation for this problem is 

represented as shown in Fig. 1. 
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Fig. 1 Chromosome representation used in the proposed GA 

 
For a population size of 3, the initial population is generated 

as follows: 
- jobs are sorted according to their processing times 

descending as shown in Table II. 
- jobs are assigned to machines starting from a random job 

according to the following trend { machine 1 machine 2 
machine 3 machine 3 machine 2 machine 1 machine 1 
...}. Starting from job 12, the assignment results are 
shown in Table III.  

 
TABLE II 

SORTED JOBS BASED ON PROCESSING TIMES 
Job # Processing Time (Pi) Due date (di) 

12 9.7353 53.0977 
10 9.6840 32.5532 
9 9.6176 43.4556 
13 9.6145 32.5989 
4 9.2204 59.0218 
2 9.1521 49.3816 
1 8.3325 53.3263 
5 6.6912 11.6783 
8 5.9216 10.8038 
7 3.5065 23.6932 
11 2.4185 3.96720 
3 2.1429 15.9718 
6 1.8779 29.2215 
14 0 Inf 
15 0 Inf 

TABLE III 
ASSIGNING JOBS TO MACHINE 

Machine 1 Machine 2 Machine 3 
Job # (Pi) Job # (Pi) Job # (Pi) 

12 9.7353 10 9.6840 9 9.6176 
2 9.1521 4 9.2204 13 9.6145 
1 8.3325 5 6.6912 8 5.9219 
3 2.1429 11 2.4185 7 3.5065 
6 1.8779 14 0 15 0 

Total time 31.2407 28.0141 28.6605 

 
The corresponding chromosome is shown in Fig. 2. 
This process is repeated 2 more times with same assignment 

trend and different random starting points to form two more 
different chromosomes as shown in Fig. 3. The starting point 
for chromosome 2 is job 4 and for chromosome 3 is job 3. 

 
 
 
 
 
 
 
 
 

 

 

 
Fig. 2 First chromosome in the initial population 

 

 
Fig. 3 Second and third chromosomes in the initial population 

 

For the mating strategy, ( )∑
1=

3=3)-(3+2)-(3+1)-(3=
m

j

jm  

different pairs of parents are available for crossover namely, 
Ch1/Ch2, Ch1/Ch3, Ch2/Ch3. The MFF value calculations for 
one pair only will be shown, say Chromosome 1 with 
Chromosome 2 (Ch1/Ch2).  

In this scenario, the P set for machine 1 is { job 12, job 2, 
job 1, job 3, job 6, job 4, job 7, job 11, job 10 }, the variance 
for processing times for these jobs can be calculated as: 

( , , , , , , , , )1 12 2 1 3 6 4 7 11 10

(9.7353, 9.1521, 8.3325, 2.1429, 1.8779,
13.12271

9.2204, 3.5065, 2.4185, 9.864)

Var P P P P P P P P P

Var= =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 
Calculations for machine 2 and machine 3 are as follows: 

 
8988.9=)9,3,8,2,11,5,4,10(2 PPPPPPPPVar  

job 12 job 2 job 1 job 3 job 6 job 10 job 4 job 5 job 11 job 14 job 9 job 13 job 8 job 7 job 15

Chromosome 1
Machine 1 Machine 2 Machine 3

job 4 job 7 job 11 job 12 job 10 job 2 job 8 job 3 job 15 job 9 job 1 job 5 job 6 job 14 job 13
Machine 1 Machine 2 Machine 3

Chromosome 2
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0217.10=)6,5,1,7,8,13,9(3 PPPPPPPVar  

 
Note that for machine 2 and machine 3 jobs 14 and 15 were 

ignored from the calculations as they are dummy jobs.  
The mating fitness value for this pair of parents is: 
Ch1/Ch2: 

 

0144.11=3
0217.10+8988.9+1227.13

=3

∑
3

1=
)(

=MFF 
j iPjVar

 
 
The mating fitness values for the other two pairs are as 

follows: 
Ch1/Ch3:  
 

5255.9=
3

479059.6+69263.10+4049.11=
3

∑
3

1=
)(

=MFF j
iPjVar

 
 
Ch2/Ch3:  

83788.10=
3

44273.9+95602.10+11488.12=
3

∑
3

1=
)(

=MFF j
iPjVar

 
 

If we choose ( )1=β  then Ch1/Ch2 is the only two 
chromosomes that will mate according to the mating strategy 
as they have the highest mating fitness value. 

The crossover will take place on the positions of the 
common-set of genes between the pair of machines under 
consideration such that the positions of the common-set genes 
for P1Mj will be replaced by the positions of the common-set 
of P2Mj and vice versa. The remaining jobs will be assigned 
randomly for the remaining positions.  

From Figs. 1 and 2, the common-set of genes between the 
different pairs of machines are as follows: 

M1/M1: {job12}, the positions for this set is as follows: 
Ch1: {1} and for Ch2: {4}, for M2/M2 and M3/M3 there are 
no common jobs between them in this pair of chromosomes. 

Applying the crossover operator on Ch1/Ch2 couple will 
generate two offspring as shown in Figs. 4 and 5. 
 

 
Fig. 4 First offspring of Ch1/Ch2 couple 

 

 

Fig. 5 Second offspring of Ch1/Ch2 couple 
 

To mutate the offspring, two distinct locations will be 
randomly determined for each offspring and the values of 
these two genes will be switched. Assume location 10 and 
location 5 were randomly chosen for Offspring 1 and locations 

7 and 12 were randomly chosen for Offspring 2, the mutated 
offspring is given as in Fig. 6. 

job 12 job 2 job 1 job 3 job 6 job 10 job 4 job 5 job 11 job 14 job 9 job 13 job 8 job 7 job 15

job 2 job 6 job 3 job 12 job 1 job 4 job 5 job 10 job 14 job 11 job 13 job 8 job 7 job 9 job 15

job 4 job 7 job 11 job 12 job 10 job 2 job 8 job 3 job 15 job 9 job 1 job 5 job 6 job 14 job 13

Chromosome 1

Machine 1 Machine 2 Machine 3

Chromosome 2

Offspring1
Machine 1 Machine 2 Machine 3

Machine 1 Machine 2 Machine 3
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Fig. 6 The mutated offspring 

 
In this case 2=λ  corresponds to the two offspring, 

therefore, the enlarged sample space will consist of 5 
chromosomes available for selection ( )5=2+3=+ λm . 

Number of tardy jobs is computed by applying (3). Table 
IV shows the selection fitness value for each chromosome. 

 
TABLE IV 

SFF VALUES FOR THE ENLARGED POPULATION POOL 
Chromosome SFF value 

Ch1 6 
Ch2 6 
Ch3 3 
Off1 3 
Off2 3 

 
Ranking these chromosomes ascending, according to their 

fitness values, allows using elitist selection strategy for the 
next generation parents. The resulting parents for the next 
generation are: Off2, Off1, and Ch3. 

To evaluate the effectiveness of using dual-fitness function 
in GA, the same genetic algorithm described above will be 
used except that the SFF will be used for both mating 
selections and survival selections. This GA will be called 
classical GA to distinguish it from the proposed dual-fitness 
function GA. 

VII. EXPERIMENTATION AND RESULTS 
In this section, the experimentation performed is explained. 

Five problems were generated randomly and the relevant data 
is summarized in Table V. The five problems were solved 
using the proposed GA, the classical GA, and the IP. 

TABLE V 
CHARACTERISTICS OF THE PROBLEMS USED IN THE EXPERIMENTATION 

 Problem 
1 

Problem 
2 

Problem 
3 

Problem 
4 

Problem 
5 

n 10 20 30 50 100 
m 3 2 3 4 5 

Population 
size 50 100 150 200 500 

# generations 100 200 300 1000 2000 
 
The processing times are generated from the uniform 

distribution U[1,10] and the due date for job i is computed by 
equation (4) where k is distributed uniformly according to 
U[1,7]. All of the jobs have zero ready times and 50 
replications were made for each problem.  

 
k×p=d ii                              (4)  

 
The experimentation results are summarized in Tables VI, 

VII and VIII. Table VI shows the average number of tardy 
jobs for the 50 replications obtained from the classical GA, the 
proposed GA, and the IP. The results indicate that the 
proposed algorithm with dual-fitness function outperforms the 
classical single-fitness function algorithm in all of the 
problems. In addition, the results obtained by the proposed GA 
were also compared with IP model results. The results showed 
that the maximum deviation between the average number of 
tardy jobs obtained by the proposed GA and the optimal 
number of tardy jobs obtained by the IP model is 8.0% where 
this value was 24% for the classical GA.  

 
TABLE VI 

 RESULTS OF EXPERIMENTATION 
Method Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 

Classical GA ( )tradnT  4.22 7.44 10.30 14.64 30.14 
S.D. Classical 0.764 1.473 1.360 1.382 4.150 

Proposed GA ( )propnT  4.10 6.48 9.64 13.92 28.04 

S.D. Proposed 0.505 1.092 1.005 1.338 2.740 
Improvement% between proposed and classical 2.8% 12.9% 6.4% 7.2% 6.7% 

Integer Programming model ( )IPnT  4 6 9 13 26 
Deviation % (Dual/IP) 2.5% 8.0% 7.1% 7.1% 7.9% 
Deviation % (Class./IP) 5. 5% 24% 14.4% 12.6% 15.9% 

 
The number of tardy jobs for the 50 replications was used to 

test the hypotheses that the average number of tardy jobs for 
the proposed GA (µProp.) is significantly lower than the 

average number of tardy jobs for the classical GA (µClass.) at 
significant level of 0.05. Table VII shows the results for the 
following hypotheses: 

job 2 job 6 job 3 job 12 job 11 job 4 job 5 job 10 job 14 job 1 job 13 job 8 job 7 job 9 job 15

job12 job 10 job 11 job 4 job 7 job 3 job 14 job 2 job 9 job15 job 6 job 8 job 1 job 5 job 13

Mutated Offspring2
Machine 1 Machine 2 Machine 3

Mutated Offspring1
Machine 1 Machine 2 Machine 3
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TABLE VII 
 TEST OF HYPOTHESES FOR THE DIFFERENCE BETWEEN THE MEAN NUMBER 

OF TARDY JOBS FOR CLASSICAL AND PROPOSED GA 
Problem t-Value Degrees of Freedom P-value 

1 -0.927 85 0.1785 

2 -3.701 91 0.0002 

3 -2.761 91 0.0035 

4 -2.648 98 0.0047 

5 -2.986 85 0.0018 

 
At significance level of 0.05, Table VII shows that the mean 

number of tardy jobs for the proposed GA is significantly 
lower than the mean number of tardy jobs for the classical GA 
except for problem 1. This means that the dual-GA is better 
than the classical GA in terms of quality of solution for large 
problems. 

Table VIII compares the number of replications in which 
the optimal solution was found for the classical GA and the 
proposed GA. The results showed that the proposed GA 
outperformed the classical GA in all problems. 

 
TABLE VIII 

 FREQUENCY OF OPTIMAL SOLUTION FOUND 

Method Problem 1 
1 

Problem 
2 

Problem 
3 

Problem 
4 

Problem 
5 

Classical GA 45 23 24 13 10 
Percentage found 90% 46% 48% 26% 20% 

Proposed GA 48 41 29 29 22 
Percentage found 96% 82% 58% 58% 44% 

 
Table IX compares the average execution time for those 

runs that reached the optimal solution for the proposed and the 
classical GA. The results showed that the proposed GA 
outperformed the classical GA in all problems. In addition, the 
proposed GA outperformed the IP model in problems 2, 3, 4, 
and 5. 

 
TABLE IX 

 AVERAGE EXECUTION TIME IN SECONDS NEEDED TO REACH THE OPTIMAL 
SOLUTION 

IP time Prop. GA time Class. GA time 

2.3 2.85 2.87 

6.19 5.77 6.53 

622 537.27 640.50 

85561 63210.00 75893.34 

181440 101993.728 156414.20 

 
The hypotheses that the average execution time to reach the 

optimal solution for the proposed GA (time Prop.) is 
significantly lower than the average execution time to reach 
the optimal solution for the classical GA (time Class.) at 
significant level of 0.05 will be tested next. Table X shows the 
results for the following hypotheses: 

 
 
 

TABLE X 
 TEST OF HYPOTHESES FOR THE EXECUTION TIME 

Problem t-value Degrees of Freedom P-value 

1 -0.428 88 0.3348 

2 -5.347 40 <0.0001 

3 -7.370 45 <0.0001 

4 -64.460 20 <0.0001 

5 -111.384 12 <0.0001 

 
Table X shows that at significance level of 0.05, the average 

execution time to reach the optimal solution for the proposed 
GA is lower than the average execution time to reach the 
optimal solution for the classical GA except for problem 1. 
Again this shows that at large problems the dual-GA is better 
than classical GA in terms of execution time. 

VIII.  DISCUSSION AND CONCLUSIONS 
Tables VII and X show that the proposed dual-fitness 

function genetic algorithm is significantly better than the 
classical single-fitness function genetic algorithms for large 
problems.  

Because the only difference between the classical single-
fitness function genetic algorithm and the dual-fitness function 
genetic algorithm is in using mating fitness function, we can 
conclude that using a dual-fitness function can help in 
enhancing the quality of the solution found, particularly, for 
large problem sizes as the improvement percentage showed in 
Table VI. The same result was confirmed using test of 
hypotheses in Table VII. 

Moreover, from Table VI, it is obvious that the deviations 
between the dual-fitness function genetic algorithm and the 
integer programming are less compared to the deviations 
between the classical single-fitness function and the integer 
programming. 

The performance of the classical single-fitness function and 
the dual-fitness function GA was also measured using the 
number of trials that the optimal solution was found for each 
GA. Table VIII shows that the dual-fitness function GA 
outperformed the single-fitness function GA in all of the 
problems. In problem 5 the single-fitness function GA was 
able to find the optimal solution in 10 occasions out of the 50 
replications while the proposed GA found it in 22 occasions 
out of the 50 replications.  

In addition, the performance for the proposed GA was 
measured using the execution time needed to reach the optimal 
solution. Table IX shows that the average execution time for 
the dual-fitness function GA outperformed the average 
execution time for the traditional GA in all problems and the 
deviation in the execution time increases as the problem size 
increases. The same result was found using Table X. The 
execution time for the dual-fitness function GA outperformed 
the IP model in problems 2, 3, 4, and 5 and the deviation 
percentage increases as the problem size increased. As for 
problem 1, the IP model did better than the dual-fitness 
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function GA. The reason for this was the problem size. The 
problem size for problem1 was small and thus IP model was 
able to reach the optimal solution in few sub problems. 

In conclusion, the results showed that using dual-fitness 
function, one for selection and a different one for mating, can 
improve the quality of the solution and the execution time for 
the GA especially when the problem size is large. It is 
believed that this result needs more experimentation on 
different domains to generalize it. This paper comes as one 
step on this road and we recommend to apply this idea on 
different domain problems to see if this result still holds and 
thus to see if this result can be generalized. The early 
experimentation results using deterministic identical machine 
scheduling problem supports this expectation.  
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