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Abstract—Clustering algorithms help to understand the hidden 
information present in datasets. A dataset may contain intrinsic and 
nested clusters, the detection of which is of utmost importance. This 
paper presents a Distributed Grid-based Density Clustering algorithm 
capable of identifying arbitrary shaped embedded clusters as well as 
multi-density clusters over large spatial datasets. For handling 
massive datasets, we implemented our method using a ‘shared-
nothing’ architecture where multiple computers are interconnected 
over a network. Experimental results are reported to establish the 
superiority of the technique in terms of scale-up, speedup as well as 
cluster quality. 

Keywords—Clustering, Density-based, Grid-based, Adaptive 
Grid. 

I. INTRODUCTION

DENTIFICATION and extraction of hidden information and 
patterns from huge datasets is a challenge in data mining. 

Clustering is the process of division of a dataset into subsets 
or clusters, so that the intra-cluster similarity is as high as 
possible, while data in different clusters are dissimilar [1]. 
From the aspect of geometry, clustering is the process of 
identifying dense regions from sparsely populated regions. 
Clustering is very effective in discovering hidden patterns of 
datasets and is an important research topic. Major clustering 
techniques have been classified into partitional, hierarchical, 
density-based, grid-based and model-based. Among these 
techniques, the density-based approach is famous for its 
capability of discovering arbitrary shaped clusters of good 
quality even in noisy datasets [2].  

In this paper, we present an efficient distributed intrinsic 
cluster detection algorithm, which can handle massive spatial 
datasets with better clustering quality. The proposed 
algorithm, that uses a ‘shared-nothing’ architecture, can be 
initiated in any of the available nodes (computers). The 
initiator node of the Formatting Toolbar at the top of your 
Word window starts a partitioning strategy thereby dividing 
the whole data set into partitions and then distributing the 
partitions to each of the available computers on the network 
(one partition is also retained by itself). Every node clusters 
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only its local data. The initiator node manages the task of 
dynamic load balancing and merges the cluster results 
produced by each of the nodes. The clustering method exploits 
a grid based technique to group the data points into blocks and 
the density of each grid cell is calculated. The blocks are then 
clustered by a topological search algorithm. For finer 
clustering result, a triangle-subdivision method is used. The 
algorithm finds quality clustering even over variable density 
space. The rest of the paper is organized as follows. Section 2 
provides a selected review on density based, grid based and 
distributed clustering and also it reports the background of the 
proposed work. Section 3 illustrates the proposed algorithm. 
In section 4, we present the experimental results and the 
performance analysis of the work. Lastly, we conclude with a 
summary in section 5.

II. RELATED WORKS

This section reports a selected review on some of the 
relevant density based as well as grid based clustering 
techniques.  

A. Density Based Approach 
The  idea  behind  density  based  clustering  approach  is  

that  the  density  of  points  within  a  cluster  is higher as 
compared to those outside of it. DBSCAN [2] is a density-
based clustering algorithm capable of discovering clusters of 
various shapes even in presence of noise. The key idea of 
DBSCAN is that for each point of a cluster, the neighborhood 
of a given radius ( ) has to contain at least a minimum number 
of points and the density in the neighborhood has to exceed 
some threshold. It is efficient for large spatial databases but, 
for massive datasets, it becomes very time consuming, even if 
the use of R* tree is made. Another drawback of DBSCAN is 
that due to the use of the global density parameters, it fails to 
detect embedded or nested clusters. 

B. Grid Based Approach 
Grid based methods divide the data space into a finite 

number of cells that form a grid structure on which the 
clustering operations are performed. There is high probability 
that all data points that fall into the same grid cell belong to 
the same cluster. Therefore all data points belonging to the 
same cell can be aggregated and treated as one object [3].  It is 
due to this nature that grid-based clustering algorithms are 
computationally efficient which depends on the number of 
cells in each dimension in the quantized space. It has many 
advantages such as the total number of the grid cells is 
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independent of the number of data points and is insensitive of 
the order of input data points. Some of the popular grid-based 
clustering techniques are STING [4], WaveCluster [5], 
CLIQUE [6], pMAFIA [7] etc. STING [4] uses a multi-
resolution approach to perform cluster analysis. The 
advantage of STING is that it is query-independent and easy 
to parallelize. However the shapes of clusters have horizontal 
or vertical boundaries but no diagonal boundary is detected. 
WaveCluster [5] also uses a multidimensional grid structure. It 
helps in detecting clusters of data at varying levels of 
accuracy. It automatically removes outliers and is very fast. 
However, it is not suitable for high dimensional data sets. 
CLIQUE [6] is a hybrid clustering method that combines the 
idea of both density-based and grid-based approaches. It 
automatically finds subspaces of the highest dimensionality 
and is insensitive to the order of input. Moreover, it has good 
scalability as the number of dimensions in the data increases. 
However, the accuracy of the clustering result may be 
degraded at the expense of simplicity of the method. pMAFIA
[7] is an optimized and improved version of CLIQUE. It uses 
the concept of adaptive grids for detecting the clusters. It 
scales exponentially to the dimension of the cluster of the 
highest dimension in the data set.

C. Clustering over Multi Density Data Space 
One of the main applications of clustering spatial databases 

is to find clusters of spatial objects which are close to each 
other. Most traditional clustering algorithms try to discover 
clusters of arbitrary densities, shapes and sizes. Very few 
clustering algorithms show preferable efficiency when 
clustering multi-density datasets. This is also because small 
clusters with small number of points in a local area are 
possible to be missed by a global density threshold. Some 
clustering algorithms that can cluster on multi-density datasets 
are Chameleon [8], SNN [9] (shared nearest neighbor), and 
the multi-stage density-isoline algorithm [10] and so on. 
Chameleon [8] can handle multi-density datasets, but for large 
datasets the time complexity is too high. SNN [9] algorithm 
can find clusters of varying shapes, sizes and densities and can 
also handle multi-density dataset. The disadvantage of SNN is 
that the degree of precision is low on the multi-density 
clustering and finding outliers. The multi-stage density-isoline 
algorithm [10] clusters datasets by the multi-stage way and the 
idea of density-isoline. The disadvantage of the algorithm is 
that each cluster cannot be separated efficiently.  DGCL [11] 
is based on density-grid based clustering approach. But, since 
it uses a uniform density threshold it causes the low density 
clusters to be lost. 

D. Clustering Over Variable Density Space 
Most of the real life datasets have a skewed distribution and 

may also contain nested cluster structures the discovery of 
which is very difficult. Therefore, we discuss two density 
based approaches, OPTICS [12] and EnDBSCAN [13], which 
attempt to handle the datasets with variable density 

successfully.  OPTICS can identify embedded clusters over 
varying density space. However, its execution time 
performance degrades in case of large datasets with variable 
density space and it can not detect nested cluster structures 
successfully over massive datasets. In EnDBSCAN [13], an 
attempt is made to detect embedded or nested clusters using 
an integrated approach. Based on our experimental analysis in 
light of very large synthetic datasets, it has been observed that 
EnDBSCAN can detect embedded clusters; however, with the 
increase in the volume of data, the performance of it also 
degrades. EnDBSCAN is highly sensitive to the parameters 
MinPts and . In addition to the above mentioned parameters, 
OPTICS requires an additional parameter i.e. /.

E. Massive Data Clustering Using Distributed and 
Parallel Approach 

Parallel and distributed computing is expected to relieve 
current clustering methods from the sequential bottleneck, 
providing the ability to scale massive datasets and improving 
the response time. Such algorithms divide the data into 
partitions, which are processed in parallel. The results from 
the partitions are then merged. 

In [14], a parallel implementation of the DBSCAN 
algorithm based on low cost distributed memory multi-
computers is presented. Here, a centrally located dataset is 
spatially divided into nearly equal partitions with minimum 
overlap.  Each  such  partition  is  sent  to  one  of  the  
processors  for  parallel  clustering.  The clustering results of 
the partitions are then collected by the central processor in an 
orderly manner and they are merged together to obtain the 
final clustering. The algorithm is scalable both in terms of 
speedup and scale-up and significantly reduces the 
computation time. In [15], a parallel version of the k-means 
algorithm was proposed based on shared nothing architecture. 
This algorithm was designed based on the Single Program 
Multiple Data (SPMD) model having several processors, each 
having its own local memory, connected together with a 
communication network. Another parallel version of 
DBSCAN, called PDBSCAN [16], also uses a shared-nothing 
architecture with multiple computers interconnected through a 
network. Here, as a data structure, the dR*-tree was 
introduced which is a distributed spatial index structure in 
which the data is spread among multiple computers and the 
indexes of the data are replicated on every computer. The 
master distributes the entire dataset to every slave. Each slave 
locally clusters the replicated data and the interference 
between computers is minimized due to local access of data. 
The slave-to-slave and master-to-slaves communication is 
done via message passing. The master manages the task of 
dynamic load balancing and merges the result produced by the 
slaves. PDBSCAN offers nearly linear speedup and has 
excellent scale-up and size-up behavior. In [17], a Density 
Based Distributed Clustering (DBDC) algorithm was 
presented where the data are first clustered locally at different 
sites independent of each other. The aggregated information 
about locally created clusters are extracted and transmitted to 
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a central site. On the central site, a global clustering is 
performed based on the local representatives and the result is 
sent back to the local sites. The local sites update their 
clustering based on the global model, that is, merge two local 
clusters to one or assign local noise to global clusters. For 
both the local and global clustering, density-based algorithms 
are used. This  approach  is  scalable  to  large  datasets  and  
gives  clusters  of  good  quality. In [18], a parallel version of 
the AutoClass system, P-AutoClass is described. In [19], a 
Collective Hierarchical Clustering (CHC) algorithm for 
analyzing distributed and heterogeneous data was presented. 

Based on our selected survey and experimental analysis, it 
has been observed that: 
1) Density based approach is most suitable for quality cluster 

detection over massive datasets. 
2) Grid based approach is suitable for fast processing of large 

datasets.   
3) Almost all clustering algorithms require input parameters, 

determination of which are very difficult, especially for 
real world data sets containing high dimensional objects. 
Moreover, the algorithms are highly sensitive to those 
parameters. 

4) Distribution of most of the real-life datasets are skewed in 
nature, so, handling of such datasets for all types for 
qualitative cluster detection based on a global input 
parameter seems to be impractical.  

5) None of the techniques discussed above, is capable in 
handling multi-density datasets as well as multiple intrinsic 
or nested clusters over massive datasets qualitatively.  

F. Motivation 
An algorithm which is capable of handling voluminous data 

and at the same time effectively detects multiple nested or 
embedded clusters even in presence of noise is of utmost 
importance. This paper presents a clustering algorithm which 
can effectively address the previously mentioned clustering 
challenges. The density-grid clustering algorithm (GDCT) 
[20] finds clusters according to the structure of the embedding 
space. For handling massive datasets, a distributed clustering 
technique is presented which can effectively address the 
scalability problem. Better speedup and scale-up are the major 
attractions of the proposed technique. 

III. THEORETICAL BACKGROUND OF THE WORK

The distribution of data in a data set is not uniform in 
general. Some portions of the data space are highly dense 
while some portions are sparse. Therefore, the data space is 
divided into grid cells and the grid cells whose densities are 
similar are merged. These similar dense grid cells are together 
called the adaptive grid cell. Once merging of grid cells 
according to density terminates, a rough cluster is obtained. 
Thus, adaptive grid cell represents the maximal space that can 
be covered by the similar dense grid cells. Here, we introduce 
some definitions which are used in the proposed algorithm: 

A. Density Based Approach 
Definition 1 Cell Density: The number of spatial point 

objects within a particular grid cell. 
Definition 2 Useful Cell: Only those cells which are 

populated i.e., which contain data points will be treated as 
useful cell. 

Definition 3 Neighbor Cell: Those cells which are edge 
neighbors or vertex neighbors of a current cell are the 
neighbors of the current cell. Fig. 1 shows the neighbor cells 
(shaded) of the current cell P.

Definition 4 Density Confidence of a cell: If the ratio of the 
densities of the current cell and one of its neighbors is less 
than some  (user input) then  is the density confidence 
between them. The density confidence plays an important role 
in cluster formation. For two cells P1 and Q1 to be merged into 
the same cluster the condition, dn (P1) / dn (Q1) where dn

represents the density of that particular cell, should be 
satisfied. 

Fig. 1 The white cell is the current cell and all its neighbors are in the 
gray cells 

Definition 5 Reachability of a cell: A cell p is reachable 
from a cell q if p is a neighbor cell of q and cell p satisfies the 
density confidence condition w.r.t. cell q.

Triangle is a special form of a quadrilateral i.e. triangles are 
degenerated quadrilaterals with two of the vertices merged 
together. Triangle-subdivision is adopted for interpolation of 
data with better accuracy as compared to that in rectangle. 
This is because of the fact that partitioning of the data set can 
be performed more efficiently in triangular shape than in 
rectangular shape due to its smaller space dimension. The 
definitions that we have introduced for triangle-subdivision 
are as follows: 

Definition 6 Triangle Density: The number of spatial point 
objects within a particular triangle of a particular grid cell. 

Definition 7 Useful Triangle: Only those triangles which 
are populated i.e., which contain data points will be treated as 
useful triangle. 

Definition 8 Neighbor Triangle: Those triangles which have 
a common edge to the current triangle are the neighbors of the 
current triangle. Figure 2 shows the neighbor triangles 
(shaded) of the current triangle P. 

Definition 9 Density Confidence of a triangle: If the ratio of 
the densities of the current triangle and one of its neighbors is 
less than /4 then the two triangles can be merged into the 
same cluster. Therefore the following condition should be 
satisfied: /4 dn (TP1) / dn (TQ1) where dn represents the 
density of the particular triangle. 
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Fig. 2 Neighbor triangles (shaded) of the triangle P 

Definition 10 Reachability of a triangle: A triangle p is 
reachable from a triangle q if p is a neighbor triangle of q and 
triangle p satisfies the density confidence condition w.r.t. 
triangle q.

Definition 11 Cluster: A cluster is defined to be the set of 
points belonging to the set of reachable cells and triangles. A 
cluster C w.r.t.  is a non-empty subset satisfying the 
following condition, 

qp, : if p C and q is reachable from p w.r.t. , then 
q C, where p and q are either cells or triangles respectively. 

Both cell-reachability and triangle-reachable relation 
follows symmetric and transitive property within a cluster C.

Definition 12 Noise: Noise is simply the set of points 
belonging to the cells (or triangles) not belonging to any of its 
clusters. Let C1, C2, ....Ck be the clusters w.r.t. , then

}_:,|_{ iCpnoinnppnonoise  (1)                                                            
where no_p is the set of points in cell p and Ci (i=1,...,k).

B. Density Confidence 
The density confidence for a given set of cells reflects the 

general trend of that set. If the density of one cell is abnormal 
from the others it will not be included in the set. Similarly, 
each useful cell has a density confidence with each of its 
neighbor cells. If the density confidence of a current cell with 
one of its neighbor cell does not satisfy the density confidence 
condition than that neighbor cell is not included into the local 
dense area. On the contrary, if it satisfies the condition than 
we treat the neighbor cell as a part of the local dense area and 
merge the cell with the dense area. In comparison to other 
methods of setting a global threshold, this method has the 
ability to recognize the local dense areas in the data space 
where multi-density clusters exist.  

In light of the above definitions, following lemmas are 
stated.

Lemma 1 Let C be a cluster w.r.t. and let p be any cell in
C. Also, let Tp be a triangle in p. Then C can be defined as the 
set, S = {s st | s is cell-reachable from p w.r.t.  and st is 
triangle-reachable from Tp w.r.t. }

Proof: Suppose r is a cell or a triangle, where r s st and r
is neither cell-reachable nor triangle-reachable from p w.r.t. .
But, a cluster according to Def. 11 will be the set of points 
which are cell-reachable or triangle-reachable from p.
Therefore, we come to a contradiction and hence the proof.   

Lemma 2 A cell (or triangle) corresponding to noise points 
is not cell-reachable (or triangle-reachable) from any of the 
clusters. For a cell p we have, p: p is not reachable from 
any cell (or triangle) in C i.e. p C.

Proof: Suppose, C be a cluster w.r.t  and let p be a cell (or 

triangle) corresponding to noise points. Let p be cell-reachable 
(or triangle-reachable) from C, then p C. But, this violates 
the Def. 12 that noise points are belonging to cells that are 
neither cell-reachable nor triangle-reachable from any of the 
clusters. Therefore, we come to the conclusion that p is not 
reachable from any cell (or triangle) in C.

Lemma 3 A cell (or a triangle) r can be cell-reachable (or a 
triangle-reachable) from only a single unique cluster. 

Proof: Let C1 and C2 are two clusters w.r.t.  and let p be 
any cell (or a triangle)   in C1 and q is any cell (or a triangle) 
in C2. Suppose a cell r is cell-reachable (or a triangle-
reachable) from both p and q, then r C1 and r C2. This will 
mean that the clusters C1 and C2 should be merged. This 
violates the basic notion that clusters are unique sets. Thus, we 
can conclude that if r is cell-reachable (or a triangle-
reachable) from p w.r.t. , r is not cell-reachable (or a 
triangle-reachable) from q w.r.t. , i.e. r C1 and r C2.
Therefore the lemma has been proved.                                    

IV. THE PROPOSED TECHNIQUE

In this section, we discuss the proposed distributed 
algorithm. We adopt the shared nothing architecture and 
consider a system having k-nodes where the entire dataset D is 
located in any of the nodes (say node 1).  Node 1 executes a 
fast partitioning technique to generate the k initial partitions. 
The partitions are then sent to k nodes (including itself) for 
cluster detection using a grid-density based clustering 
technique (GDCT) which can operate over variable density 
space. Finally, the local cluster results are received from the 
nodes at the initiator node (node 1) and a merger module is 
used to obtain the final cluster results. Basically the technique 
works in three phases and the output of each phase becomes 
the input of the subsequent phase.  

Fig. 3 The Shared-nothing architecture 

An overview of the hardware architecture is shown in Fig. 
3. It consists of a number of nodes (e.g. PCs) connected via a 
network (e.g. Ethernet). Next, we describe the architecture as 
shown in Fig. 4, phase-wise: 

A. Phase I: Partitioning the dataset 
Phase I of the architecture is executed in one of the nodes 

(node 1). The dataset is spatially divided into equal size 
square grid cells and density of each grid cell is computed. 
The square mesh is then partitioned with some overlap 
between adjacent partitions and distributed over k available 
computers (nodes). No subsequent movement of data between 
partitions will take place. 

Node 1 Node 1 Node 1 

            Network 
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Initially, the data space is divided into n×n non-overlapping 
square grid cells, where n is a user input, and maps the data 
points to each cell. It then calculates the density of each cell. 

Assuming, the grid mesh D contains the set of n×n objects 
say, D = O0, O1, O2, ...., O(n×n ) 1. Suppose, Oj = (a0j, a1j,
a2j,….., a(d-1) j; dn) represents a grid cell with d real-valued 
attributes ai, i=0,….,d-1 and density dn. The ith attribute value 
of object Oj is drawn from domain aj. If there are k clients, the 
grid mesh D is partitioned into k subsets D0, D1, ...., Dk 1

ordered in sequence. We refer the clients by the corresponding 
partition Dj that it receives for processing.

1,....,0,

,
....... 1210

kji
DD

DDDDD

ji

k
         (2) 

The partially overlapped partitions are shown in Fig. 5 for 
2D case. An overlap of one grid cell occurs between two 
adjacent partitions. The overlapped regions are much smaller 
than the partitions.  The grid cells in the overlapped regions 
are locally clustered in both the adjacent partitions. Thus they 
provide the information for merging together the local 
clustering results of two adjacent partitions. The overlapped 
width should be at least one cell width because adjacent cells 
are neighbors according to Definition 3. 

Fig. 4 The architecture of the Proposed Technique 

The grid mesh D is partitioned in this manner based on the 
values of a selected attribute of the data objects say as. The 
values of as have a range of [min_as, max_as]. We need to 
select (k + 1) constants in the given range. Let ci, i = 1,…, k+1
represent the constants such that ci = min_as, ck+1 = max_as

and ci < ci+1. Therefore the overlapped region can be 
represented as: 

1,...,2
,_|)( 1

ki
cawidthcellcDOjD isjiji     (3) 

1

,_|)( 1

i
widthcellcacDOjD isjiji      (4) 

1

,_|)( 1

i
cawidthcellcDOjD isjiji       (5)

The constant cj should be selected in such a manner that 
cardinality of set Dj becomes nearly equal to kN / , where 
N is total number of data points in the dataset. 

Fig. 5 Overlapped spatial partitioning of a 2D data set 

Moreover, those grid cells which fall within the overlapped 
regions are marked. Care has been taken for load balancing. 
The k partitions thus obtained are then sent to k nodes for 
global as well as intrinsic cluster detection (Fig. 6). 

Fig. 6 Here the dataset is divided into three partitions and transmitted 
to three computers (Ndk) for local clustering, k = 3 

A previous version of the clustering algorithm to detect 
intrinsic clusters is given in [20]. However, it was not scalable 
to huge datasets and there was no precise method to calculate 
the number of grid interval. 

Computing the Number of Grid Intervals (n) 

The following formula is used to calculate the number of 
intervals n.

M
Nn                     (6)

        ]5,5[ nnn                              (7) 

where N is the number of data points and M is a coefficient 

Cell_width Cell_width

Min_as               Split_dimension              max_as

          Partition 2 
Partition 1 Partition 3

          Partition 2 
 Partition 1              Partition  3

Nd3

  Nd1                     
                     Nd2
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to adjust the value of n’. It is a positive integer. In fact, it 
stands for the average number of data samples in a cell. 

A detailed experimentation on the number of data points 
(N) and the coefficient M has been carried out and the graph is 
shown in Fig. 7.  The value of n’ is calculated as in Eq. (6). 
Based on our wide range of experiments, it is observed that n
varies within the range as given in Eq. (7).  

Fig.7 M depends on the number of data points 

Load Balancing 

Partition Di is sent to processor Pi, =1,2,..,k for concurrent 
clustering. Since no data movement takes place after the 
partitions are created, care should be taken so that each 
processor receives nearly equal number of data objects for 
processing. This will ensure that all the processors finish the 
clustering job at the same time provided the processors have 
same processing speed. If the processing speeds are different, 
then the input data should be distributed to the processors 
proportionate to their processing speed. We assume that the 
processing speeds of the processors are equal, so they receive 
nearly equal amount of data. For doing this the range of as is 
divided into intervals of width of one cell-width and the 
frequencies of data in each interval is counted.
Let widthcellaab ss _/)min_(max_

kNN /

sad min_1

biwidthcelldd ii ,...,3,2,_1

bi
dadDOjF isjiji

,...,3,2
,|)( 1             (8)

fi = Cardinality of set Fi

Now, the constants ci defined earlier are computed as ci = ds

such that

kifNif
s

j

s

j
jj ,...,2,1,'.

1

1

1

              (9) 

which will ensure that each partition gets number of objects 
nearly equal to N/k.

Minimized communication cost 

The proposed method saves transmission cost by avoiding 
inter-node communication during the process of local 
clustering. To achieve this goal, each concurrent process of 
GDCT in each of the nodes, Nd = 1,2,…,k, should avoid 
accessing those data located on any of the other computers, 
because the access of the remote data requires some form of 
communication. Therefore, nearby objects should be 
organized on the same computer. This is why an overlap of 
one cell_width has been taken into consideration. 

B. Phase II: Local Clustering
Phase II of the architecture is executed in each of the k

nodes. This phase plays the actual role of clustering. In this 
phase, each node executes the proposed algorithm, GDCT 
over the partition of data received from the initiator node to 
detect the global and nested clusters.  The aim of our 
clustering algorithm unlike our previous version [20] is to 
discover intrinsic as well as global clusters over large spatial 
datasets of variable density. 

Grid-Density Clustering using Triangle Sub-division   
(GDCT) 
In any node, the cells of the partition received are sorted 

according to their density values. The result is an ordered 
sequence <CP(i)>, where P(i) denotes a permutation of the 
index i defining the sorted order of the cells C. The algorithm 
uses the cell information (density) of the grid structure and 
clusters the data points according to their surrounding cells. 

The cell with the highest density becomes the cluster 
initiators. The remaining cells are then clustered iteratively in 
order of their densities, thereby building new clusters or 
merging with existing clusters. The useful cells adjacent to a 
cluster can only be merged. A neighbor search is conducted, 
starting at the highest density cell and inspecting adjacent 
cells. If a neighbor cell is found which satisfies the density 
confidence condition of a cell, then the neighbor cell is 
merged with the current cell to form the adaptive grid, and the 
search proceeds recursively with this neighbor cell. This 
search is similar to a graph traversal where the nodes represent 
the cells and an edge between two nodes exists if the 
respective cells are adjacent and satisfies the density 
confidence condition of a cell. 

The adaptive grid formed is an approximation of the 
innermost cluster or the cluster with the maximum density, 
minus the boundary region. The cells falling inside a 
particular adaptive grid are classified with the same cluster id. 
The adaptive grid will reflect the rough cluster formed. 

The cluster shape in the boundary region of the cluster 
varies more since there is a transition from denser region to 
sparser region when we are considering intrinsic or variable 
density clusters. Therefore, this region needs special analysis. 
So, after the adaptive grid is formed, there might still be some 
points of the approximate clusters that lie outside the adaptive 
grid as shown by the red ellipse (black color ellipse for gray 
scale images) in Fig. 8.  Since the points inside these regions 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2989

do not enter the adaptive grid though they are a part of the 
cluster, we therefore expand the cell in the boundary region 
with the help of triangles.  The points in the boundary region 
of the cluster have been left out because the cells in which 
they reside have not satisfied the density confidence of a cell 
with its neighbor belonging to the adaptive grid so formed. 
This is because only a small portion of that part of the cluster 
has fallen in a different cell. Therefore the density of that cell 
is much less than its adaptive grid neighbor. 

Fig. 8 Example grid approximation for a dataset (n = 25)

Therefore, for finding the finer clustering, a cell is 
triangulated i.e. the cell is divided into four triangles. Only 
those cells in the adaptive grid are triangulated which have at 
least one of its useful neighbor cells as unclassified. The cells 
which are unclassified and have at least one of its neighbor 
cells belonging to the most recent adaptive grid formed are 
also triangulated. The data points of the cells that have been 
triangulated are mapped to the respective triangles in which 
they fall. The Barycentric coordinates [21] have been used for 
finding which point falls in which triangle. This method has 
been chosen since it is independent of the cyclic order of the 
vertices.

Procedure of GDCT 

The execution of the algorithm includes the following 9 
steps:
1) Create the grid structure. 
2) Compute the density of each cell. 
3) Sort the cells according to their densities. 
4) Identify the maximum dense cell from the set of 

unclassified cells. 
5) Traverse the neighbor cells starting from the dense cell and 

form the adaptive grid (rough cluster). 
6) Triangle-subdivision of the border cells of the adaptive 

grid which has at least one of its neighbors as a useful cell. 
7) Triangle-subdivision of the unclassified neighbor cells of 

those border cells. 
8) Merge the triangles and assign cluster_id. 

9) Repeat steps 4 through 9 till all cells are classified. 

The process of forming the adaptive grid starts by 
considering the cell P1 with the maximum density from the 
sorted list. From P1, the first adaptive cell expands to the 
neighboring cells P1i (where cell P1i is the ith neighbor of P1)
depending upon two conditions which are 

1) If P1i is not a member of any adaptive cell, and 
2) The densities of P1 and P1i differ by some threshold 

which is an input parameter. 

Let, dn(P1) and dn(P1i) denote the densities of P1 and P1i

respectively, then P1i will merge with P1, if dn(P1)/dn (P1i).
The cells that satisfy the conditions given above are merged to 
form the adaptive cells. The process of adaptive cell formation 
continues from P1i in the same way until no neighboring cells 
P1j of P1i satisfy the condition. The process then backtracks to 
P1i and the process restarts with the next neighbor cell of P1i

which has not already been processed. The adaptive grid 
formation continues recursively until no more cells satisfy the 
density confidence condition of a cell.  

This adaptive grid is an approximation of the cluster with 
the maximum density. The cells falling inside that particular 
adaptive grid are classified with the same cluster_id which 
reflects the rough cluster. The process then checks the 
neighbors of the last formed adaptive grid cells. If any one of 
the neighbors is an unclassified useful cell then both the 
adaptive grid cell as well as the unclassified neighbor cell is 
triangulated. Suppose Pm is a cell of the adaptive grid last 
formed and cell Pi is one of it’s unclassified useful neighbor 
cell where Pi {Pi1, Pi2,.…, Pi8}. Then Pi as well as Pm is then 
triangulated in a manner as shown in Fig. 9. During Triangle-
subdivision, a particular grid cell is divided into four triangles. 

Each of the triangles Tki inside the cell Pi is verified for the 
following cases: 

Case 1: If Tki has a neighbor triangle Tmi which is a part of 
adaptive grid cell Pm, then their densities dn(Tmi) and dn(Tki)
are compared for the density confidence condition of a 
triangle given as,   / 4 dn(Tmi) / dn(Tki). If this condition is 
satisfied, then triangle Tki is merged with the triangle Tmi of the 
adaptive grid and obtains the cluster_id of Pm.

Fig. 9 Triangle-subdivision of grid cells (black polygon shows the 
adaptive grid or a rough cluster)
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Case 2: Tki has a neighbor triangle Tji which has already 
been classified and the densities of Tki and Tji satisfy the 
condition given in case 1, then Tki will be merged with Tji and 
Tki will be classified with the same cluster_id as Tji.

The process of triangle merging stops when no more 
triangles satisfy the density confidence condition of a triangle. 

The process then starts the next adaptive cell formation 
from the next cell P2 which is the cell of maximum density 
from the set of unclassified cells. The process continues 
recursively merging neighboring cells that satisfy the density 
confidence condition of a cell. Therefore, the adaptive grid 
formation and triangle-subdivision method are repeated 
alternately till all the useful cells have been classified. The 
classified cells and triangles will now give the distinct clusters 
and finally the data points receive the cluster_id of the 
respective cells and triangles.  

The cluster expansion based on the set of cells detects 
embedded and nested cluster structures since after expansion 
of a cluster the algorithm searches for the next candidate seed 
cell which reflects a variation in density in the dataset. The 
process starts expanding the new density region till there is 
again a density variation. This process iterates till all the cells 
have been classified. The triangle expansion gives a finer 
clustering result since the cluster expansion based on cells 
misses some border points as can be seen in Fig. 8. The 
expansion based on triangle-subdivision detects the border 
points which have been left out by cell based expansion. 
Therefore, the quality of the clusters becomes highly accurate 
in addition to detecting intrinsic and multi-density clusters. 

During clustering, it considers only the grid cells to identify 
the possible global and embedded clusters and assigns 
cluster_id accordingly. For the partition Di in node i, the grid 
cells in it will be assigned cluster_id according to the clusters 
formed in that partition. The cluster_id will be used during the 
server based merging process. 

The cluster expansion based on grid cells reduces the 
computation time as all the data points are not considered for 
cluster expansion only the density information of each cell is 
used. Moreover, the cluster_id information is used during 
Phase III merging process. It saves the cost of merging to a 
great extent. Finally, Phase II transmits the cluster objects to 
the server along with the cluster_id information.  

C. Phase III: Merging 
In Phase III, the cluster results received from the k nodes 

undergo a simplified, yet faster merging procedure to obtain 
the final clusters. Since the Phase II process in a node may 
yield more than one cluster along with the embedded clusters, 
so there are always possibilities for merging during Phase III 
operation. The Merger module works as follows: 
1) Join the partitions received from the k nodes according to 

their overlapping marks. 
2) Consider the marked grid cells (overlapping cells) of the 

candidate clusters.  

3) If any of the marked grid cells is identified by different 
cluster_ids by different partitions (say l, m), then assign 
any one of the ids (say l) to that cell. 

4) Assign all those cells having the same cluster_id as the 
replaced id (m) with l.

D. Complexity Analysis 
Phase I: The partitioning of the dataset into n×n non-

overlapping cells results in a complexity of O(N) where N is 
the total number of data points. The grid mesh D is spatially 
partitioned into k partitions with overlap of one cell width 
which results in a complexity of O(n×n), where n << N. Each 
of these k partitions will have nearly equal (approximately 
N/k) data points. The data points along with the grid 
information for each of k partitions will be sent to the k nodes. 
Therefore (N/k) + t points will be sent, where t is the average 
number of points present in an overlapped region. Next, to 
transmit these (N/k) + t points to each node requires a 
communication time of O((N/k) + t).

Phase II: This phase is executed in each of the k nodes. 
Computing density of the cells in each node requires 
O((n×r)×((N/k) + t)), where r is the average number of cells 
along the selected attribute based on which partitioning in 
Phase I has been performed. The sorting of cells according to 
their density results in a complexity of O((n×r) log (n×r)).

The expansion of the adaptive grid results in O(m) time 
complexity, where m  is the number of cells in  an adaptive 
grid formed and m<<(n×r)/k in the average case. Cell 
subdivision into triangles takes place only in case of the 
border cells of the adaptive grid and its neighboring cells, Say, 
there are p border and q neighbor  cells where q >> p. This 
step results in a complexity of O(p+q). If the number of 
clusters obtained is nc then the overall time complexity for the 
clustering will be O(nc × m × (p+q)).

Therefore, total time complexity will be O((n×r) × ((N/k) +
t)) + O((n×r) log (n×r)) + O(nc × m × (p + q)). Thus the 
complexity due to density calculation almost dominates the 
other components, since (N/k) + t) >> (n×r). The clusters 
detected in this phase are transmitted back to the initiator node 
with a transmission cost of O((N/k) + t)).

Phase III: Merging of the clusters obtained from the k
nodes will take O(N+k.t) time. 

Thus, the overall time complexity of distributed GDCT will 
be O(N) + O(n×n) + O((N/k) + t)) + O((n×r) × ((N/k) + t)) + 
O((N/k) + t)).  Therefore, the time complexity becomes O(N)
since N >> (n×n).

Advantages of proposed distributed algorithm 

The advantages of the proposed algorithm are: 
1) Embedded cluster Detection, 
2) O(N) complexity, 
3) Handling of huge datasets, 
4) Handling of single linkage problem. 
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Fig. 10 The arrows show triangle reachability 

The first three advantages can be understood from Sections 
IV(A), IV(B), IV(D). For the fourth point we consider Fig. 
10. Once the adaptive grid has been formed, the triangle 
sub-division process starts. For neighbour traversal in 
triangles there has to be at least a common edge between 
triangles. Two triangles will be merged according to Def. 9.  
As can be seen in figure the chain of single points will not 
be merged as they do not satisfy Def. 10. The final cluster 
obtained is shown in Fig. 11. Thus, the single linkage 
problem which affects DBSCAN does not affect the 
proposed algorithm.

Fig. 11 Single linkage problem handled 

V. PERFORMANCE EVALUATION 

To evaluate the technique in terms of quality of clustering, 
we used the synthetic data set generated as shown in Fig. 12.  

Fig. 12 Synthetic Dataset 

The results of the synthetic dataset in Fig. 12 are shown in 
Fig. 13.(a) and 13.(b).  

Fig. 13.(a) After full expansion 

   Fig. 13.(b) Final five clusters 

The algorithm was experimented with several synthetic 
datasets generated and the result of one of them is shown in 
Fig. 14. 

Fig. 14 Final four clusters 

The algorithm was also applied on the Chameleon t4.8k.dat 
and t7.10k.dat datasets [9]. The results obtained are shown in 
Fig. 15(a) and 15(b) respectively. The result obtained when 
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the algorithm was applied on t5.8k.dat dataset is shown in 
Fig.16. From our experiments it has been found that the 
clustering result is dependent on the threshold  which varies 
in the interval [0.5, 0.7].  

Fig 15.(a) t4.8k.dat dataset 

Fig. 15(b) t7.10k.dat dataset 

Fig. 16 Clusters obtained from t5.8k.dat dataset 

From the experimental results given above, we can 
conclude that GDCT is highly capable of detecting intrinsic as 
well as multi-density clusters qualitatively. 

A. Performance and Scalability Analysis
A sequential algorithm is evaluated in terms of its execution 

time which is expressed as a function of its input size. On the 
other hand, the execution time of a distributed algorithm 
depends not only on the input size but also on the distributed 
architecture and the number of processors employed. By 
adding more processors we would like to decrease the 
execution time or increase the volume of data handled by 
using more processors. This section reports an empirical study 
on the characteristics of the proposed distributed algorithm by 
measuring execution time, speedup, efficiency and scale-up 
factors.

Since there is no inter-processor communication except for 
a single processor communicating with each of the remaining 
processors. Each processor has the same specification i.e. PIV 
with 1 GHz speed and 128 MB RAM and the processors are 
connected through Ethernet LAN of speed 10/100 Mbps. To 
smooth out any variation, each experiment was carried out for 

five times and the average result were taken and each reported 
data point is to be interpreted as an average over five 
measurements. Our implementation is in C in Linux 
environment. Next, we generated several synthetic datasets 
containing arbitrary number of arbitrary shaped clusters 
having 2,00,000, 4,00,000, 6,00,000, 8,00,000 and 10,000,000 
objects respectively and experimentation was carried out. 

Parallel Execution Time: The parallel execution time, 
denoted by T(k), of a program is the time required to run the 
program on a k-processor parallel computer. When k = 1, T(1)
denotes the sequential run time of a program on a single 
processor. From our experiments we conclude that the 
execution time decreases significantly as the number of 
processors increase.

Speedup: Speedup is a measure of relative performance 
between a multiprocessor system and a single processor 
system, defined as, S(k) = T(1)/T(k). On experimenting it has 
been found that the speedup factor increases with the increase 
in the number of processors. The relation between speedup 
and the number of processors used is shown in Fig. 17. 

Fig. 17 Relative Speedup curves for two data sets with points N =
8 105 and 6 105. The number of dimensions and the number of 
clusters are fixed for both the data sets.  The solid line represents 
“ideal” linear relative speedup. For each data set, a dotted line 
connects observed relative speedup.

Scale-up: Scale-up measures how well the parallel 
algorithm handles large datasets as the number of processors 
increases. The scale-up characteristic of the proposed 
algorithm has been found to be satisfactory with the increase 
in the number of processors as can be seen from Fig. 18. 

Fig. 18 Scale-up curve: The number of data points is scaled by the 
number of processors while dimensions and number of clusters are 
held constant. 

VI. COMPARISON OF GDCT WITH ITS COUNTERPARTS

DBSCAN requires two input parameters MinPts and .
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Moreover, it cannot detect embedded clusters. OPTICS on the 
other hand, requires three input parameters MinPts,  and .
But, it can detect embedded clusters. However, its 
performance degrades while detecting multiple nested clusters 
over massive datasets. Again, GDLC and Density-isoline 
algorithms can detect multi-density clusters but fail to detect 
intrinsic cluster structures. GDCT requires the number of grid 
cells, i.e. n and threshold  as input parameters.  Moreover, 
from our experiments we conclude that the threshold  does 
not vary significantly with different datasets. GDCT can 
effectively detect embedded clusters over variable density 
space as well as multiple nested clusters. A detailed 
comparison is given in Table I.  

VII. CONCLUSION

This paper presents a distributed clustering technique for 
massive numeric datasets. The clustering algorithm is based 
on a grid-density approach and can detect global as well as 
embedded clusters qualitatively by sharing the computational 
efforts among k processors. Experimental results are reported 
to establish the superiority of the algorithm in light of several 
synthetic data sets.  Results in terms of scale-up and speedup 
are reported to establish the superiority of the technique in 
light of several synthetic datasets. In this paper we have only 
considered two-dimensional objects. But, spatial databases 
also contain extended objects such as polygons. Therefore, 
there is scope for scaling GDCT to detect clusters in such 
datasets with minor modifications, research of which is in 
progress.
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TABLE I
COMPARISON OF THE PROPOSED ALGORITHM  WITH ITS COUNTERPARTS

Algorithms No. of 
Parameters 

Multi-
Density
Clusters

Embedded 
Clusters Complexity 

DBSCAN 2 (MinPts, ) No No O(N log N)
using R* tree 

OPTICS 3 (MinPts, ,
/)

Yes Yes O(N log N)
using R* tree

Proposed 
Algorithm 

2 (n, ) Yes Yes O(N)


