
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2983

Abstract—Clustering algorithms help to understand the hidden
information present in datasets. A dataset may contain intrinsic and
nested clusters, the detection of which is of utmost importance. This
paper presents a Distributed Grid-based Density Clustering algorithm
capable of identifying arbitrary shaped embedded clusters as well as
multi-density clusters over large spatial datasets. For handling
massive datasets, we implemented our method using a ‘shared-
nothing’ architecture where multiple computers are interconnected
over a network. Experimental results are reported to establish the
superiority of the technique in terms of scale-up, speedup as well as
cluster quality.

Keywords—Clustering, Density-based, Grid-based, Adaptive
Grid.

I. INTRODUCTION

DENTIFICATION and extraction of hidden information and
patterns from huge datasets is a challenge in data mining.

Clustering is the process of division of a dataset into subsets
or clusters, so that the intra-cluster similarity is as high as
possible, while data in different clusters are dissimilar [1].
From the aspect of geometry, clustering is the process of
identifying dense regions from sparsely populated regions.
Clustering is very effective in discovering hidden patterns of
datasets and is an important research topic. Major clustering
techniques have been classified into partitional, hierarchical,
density-based, grid-based and model-based. Among these
techniques, the density-based approach is famous for its
capability of discovering arbitrary shaped clusters of good
quality even in noisy datasets [2].

In this paper, we present an efficient distributed intrinsic
cluster detection algorithm, which can handle massive spatial
datasets with better clustering quality. The proposed
algorithm, that uses a ‘shared-nothing’ architecture, can be
initiated in any of the available nodes (computers). The
initiator node of the Formatting Toolbar at the top of your
Word window starts a partitioning strategy thereby dividing
the whole data set into partitions and then distributing the
partitions to each of the available computers on the network
(one partition is also retained by itself). Every node clusters

Sauravjyoti Sarmah is with the Dept. of CS & Engg., Jorhat Engineering
College, Jorhat-785007, Assam, India and is pursuing his Ph.D. from the
Dept. of CS & Engg., Tezpur University, Tezpur-784028, Assam, India
(corresponding author phone-9707506445; e-mail: sauravjs@gmail.com).

Rosy Das is a research scholar with the Dept. of CS & Engg., Tezpur
University, Tezpur-784028, Assam, India (e-mail: rosy8@tezu.ernet.in).

Dhruba Kr. Bhattacharyya is Professor in the Dept. of CS & Engg., Tezpur
University, Tezpur-784028, Assam, India (e-mail: dkb@tezu.ernet.in).

only its local data. The initiator node manages the task of
dynamic load balancing and merges the cluster results
produced by each of the nodes. The clustering method exploits
a grid based technique to group the data points into blocks and
the density of each grid cell is calculated. The blocks are then
clustered by a topological search algorithm. For finer
clustering result, a triangle-subdivision method is used. The
algorithm finds quality clustering even over variable density
space. The rest of the paper is organized as follows. Section 2
provides a selected review on density based, grid based and
distributed clustering and also it reports the background of the
proposed work. Section 3 illustrates the proposed algorithm.
In section 4, we present the experimental results and the
performance analysis of the work. Lastly, we conclude with a
summary in section 5.

II. RELATED WORKS

This section reports a selected review on some of the
relevant density based as well as grid based clustering
techniques.

A. Density Based Approach
The idea behind density based clustering approach is

that the density of points within a cluster is higher as
compared to those outside of it. DBSCAN [2] is a density-
based clustering algorithm capable of discovering clusters of
various shapes even in presence of noise. The key idea of
DBSCAN is that for each point of a cluster, the neighborhood
of a given radius () has to contain at least a minimum number
of points and the density in the neighborhood has to exceed
some threshold. It is efficient for large spatial databases but,
for massive datasets, it becomes very time consuming, even if
the use of R* tree is made. Another drawback of DBSCAN is
that due to the use of the global density parameters, it fails to
detect embedded or nested clusters.

B. Grid Based Approach
Grid based methods divide the data space into a finite

number of cells that form a grid structure on which the
clustering operations are performed. There is high probability
that all data points that fall into the same grid cell belong to
the same cluster. Therefore all data points belonging to the
same cell can be aggregated and treated as one object [3]. It is
due to this nature that grid-based clustering algorithms are
computationally efficient which depends on the number of
cells in each dimension in the quantized space. It has many
advantages such as the total number of the grid cells is

A Distributed Algorithm for Intrinsic Cluster
Detection over Large Spatial Data

Sauravjyoti Sarmah, Rosy Das, and Dhruba Kr. Bhattacharyya

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2984

independent of the number of data points and is insensitive of
the order of input data points. Some of the popular grid-based
clustering techniques are STING [4], WaveCluster [5],
CLIQUE [6], pMAFIA [7] etc. STING [4] uses a multi-
resolution approach to perform cluster analysis. The
advantage of STING is that it is query-independent and easy
to parallelize. However the shapes of clusters have horizontal
or vertical boundaries but no diagonal boundary is detected.
WaveCluster [5] also uses a multidimensional grid structure. It
helps in detecting clusters of data at varying levels of
accuracy. It automatically removes outliers and is very fast.
However, it is not suitable for high dimensional data sets.
CLIQUE [6] is a hybrid clustering method that combines the
idea of both density-based and grid-based approaches. It
automatically finds subspaces of the highest dimensionality
and is insensitive to the order of input. Moreover, it has good
scalability as the number of dimensions in the data increases.
However, the accuracy of the clustering result may be
degraded at the expense of simplicity of the method. pMAFIA
[7] is an optimized and improved version of CLIQUE. It uses
the concept of adaptive grids for detecting the clusters. It
scales exponentially to the dimension of the cluster of the
highest dimension in the data set.

C. Clustering over Multi Density Data Space
One of the main applications of clustering spatial databases

is to find clusters of spatial objects which are close to each
other. Most traditional clustering algorithms try to discover
clusters of arbitrary densities, shapes and sizes. Very few
clustering algorithms show preferable efficiency when
clustering multi-density datasets. This is also because small
clusters with small number of points in a local area are
possible to be missed by a global density threshold. Some
clustering algorithms that can cluster on multi-density datasets
are Chameleon [8], SNN [9] (shared nearest neighbor), and
the multi-stage density-isoline algorithm [10] and so on.
Chameleon [8] can handle multi-density datasets, but for large
datasets the time complexity is too high. SNN [9] algorithm
can find clusters of varying shapes, sizes and densities and can
also handle multi-density dataset. The disadvantage of SNN is
that the degree of precision is low on the multi-density
clustering and finding outliers. The multi-stage density-isoline
algorithm [10] clusters datasets by the multi-stage way and the
idea of density-isoline. The disadvantage of the algorithm is
that each cluster cannot be separated efficiently. DGCL [11]
is based on density-grid based clustering approach. But, since
it uses a uniform density threshold it causes the low density
clusters to be lost.

D. Clustering Over Variable Density Space
Most of the real life datasets have a skewed distribution and

may also contain nested cluster structures the discovery of
which is very difficult. Therefore, we discuss two density
based approaches, OPTICS [12] and EnDBSCAN [13], which
attempt to handle the datasets with variable density

successfully. OPTICS can identify embedded clusters over
varying density space. However, its execution time
performance degrades in case of large datasets with variable
density space and it can not detect nested cluster structures
successfully over massive datasets. In EnDBSCAN [13], an
attempt is made to detect embedded or nested clusters using
an integrated approach. Based on our experimental analysis in
light of very large synthetic datasets, it has been observed that
EnDBSCAN can detect embedded clusters; however, with the
increase in the volume of data, the performance of it also
degrades. EnDBSCAN is highly sensitive to the parameters
MinPts and . In addition to the above mentioned parameters,
OPTICS requires an additional parameter i.e. /.

E. Massive Data Clustering Using Distributed and
Parallel Approach

Parallel and distributed computing is expected to relieve
current clustering methods from the sequential bottleneck,
providing the ability to scale massive datasets and improving
the response time. Such algorithms divide the data into
partitions, which are processed in parallel. The results from
the partitions are then merged.

In [14], a parallel implementation of the DBSCAN
algorithm based on low cost distributed memory multi-
computers is presented. Here, a centrally located dataset is
spatially divided into nearly equal partitions with minimum
overlap. Each such partition is sent to one of the
processors for parallel clustering. The clustering results of
the partitions are then collected by the central processor in an
orderly manner and they are merged together to obtain the
final clustering. The algorithm is scalable both in terms of
speedup and scale-up and significantly reduces the
computation time. In [15], a parallel version of the k-means
algorithm was proposed based on shared nothing architecture.
This algorithm was designed based on the Single Program
Multiple Data (SPMD) model having several processors, each
having its own local memory, connected together with a
communication network. Another parallel version of
DBSCAN, called PDBSCAN [16], also uses a shared-nothing
architecture with multiple computers interconnected through a
network. Here, as a data structure, the dR*-tree was
introduced which is a distributed spatial index structure in
which the data is spread among multiple computers and the
indexes of the data are replicated on every computer. The
master distributes the entire dataset to every slave. Each slave
locally clusters the replicated data and the interference
between computers is minimized due to local access of data.
The slave-to-slave and master-to-slaves communication is
done via message passing. The master manages the task of
dynamic load balancing and merges the result produced by the
slaves. PDBSCAN offers nearly linear speedup and has
excellent scale-up and size-up behavior. In [17], a Density
Based Distributed Clustering (DBDC) algorithm was
presented where the data are first clustered locally at different
sites independent of each other. The aggregated information
about locally created clusters are extracted and transmitted to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2985

a central site. On the central site, a global clustering is
performed based on the local representatives and the result is
sent back to the local sites. The local sites update their
clustering based on the global model, that is, merge two local
clusters to one or assign local noise to global clusters. For
both the local and global clustering, density-based algorithms
are used. This approach is scalable to large datasets and
gives clusters of good quality. In [18], a parallel version of
the AutoClass system, P-AutoClass is described. In [19], a
Collective Hierarchical Clustering (CHC) algorithm for
analyzing distributed and heterogeneous data was presented.

Based on our selected survey and experimental analysis, it
has been observed that:
1) Density based approach is most suitable for quality cluster

detection over massive datasets.
2) Grid based approach is suitable for fast processing of large

datasets.
3) Almost all clustering algorithms require input parameters,

determination of which are very difficult, especially for
real world data sets containing high dimensional objects.
Moreover, the algorithms are highly sensitive to those
parameters.

4) Distribution of most of the real-life datasets are skewed in
nature, so, handling of such datasets for all types for
qualitative cluster detection based on a global input
parameter seems to be impractical.

5) None of the techniques discussed above, is capable in
handling multi-density datasets as well as multiple intrinsic
or nested clusters over massive datasets qualitatively.

F. Motivation
An algorithm which is capable of handling voluminous data

and at the same time effectively detects multiple nested or
embedded clusters even in presence of noise is of utmost
importance. This paper presents a clustering algorithm which
can effectively address the previously mentioned clustering
challenges. The density-grid clustering algorithm (GDCT)
[20] finds clusters according to the structure of the embedding
space. For handling massive datasets, a distributed clustering
technique is presented which can effectively address the
scalability problem. Better speedup and scale-up are the major
attractions of the proposed technique.

III. THEORETICAL BACKGROUND OF THE WORK

The distribution of data in a data set is not uniform in
general. Some portions of the data space are highly dense
while some portions are sparse. Therefore, the data space is
divided into grid cells and the grid cells whose densities are
similar are merged. These similar dense grid cells are together
called the adaptive grid cell. Once merging of grid cells
according to density terminates, a rough cluster is obtained.
Thus, adaptive grid cell represents the maximal space that can
be covered by the similar dense grid cells. Here, we introduce
some definitions which are used in the proposed algorithm:

A. Density Based Approach
Definition 1 Cell Density: The number of spatial point

objects within a particular grid cell.
Definition 2 Useful Cell: Only those cells which are

populated i.e., which contain data points will be treated as
useful cell.

Definition 3 Neighbor Cell: Those cells which are edge
neighbors or vertex neighbors of a current cell are the
neighbors of the current cell. Fig. 1 shows the neighbor cells
(shaded) of the current cell P.

Definition 4 Density Confidence of a cell: If the ratio of the
densities of the current cell and one of its neighbors is less
than some (user input) then is the density confidence
between them. The density confidence plays an important role
in cluster formation. For two cells P1 and Q1 to be merged into
the same cluster the condition, dn (P1) / dn (Q1) where dn

represents the density of that particular cell, should be
satisfied.

Fig. 1 The white cell is the current cell and all its neighbors are in the
gray cells

Definition 5 Reachability of a cell: A cell p is reachable
from a cell q if p is a neighbor cell of q and cell p satisfies the
density confidence condition w.r.t. cell q.

Triangle is a special form of a quadrilateral i.e. triangles are
degenerated quadrilaterals with two of the vertices merged
together. Triangle-subdivision is adopted for interpolation of
data with better accuracy as compared to that in rectangle.
This is because of the fact that partitioning of the data set can
be performed more efficiently in triangular shape than in
rectangular shape due to its smaller space dimension. The
definitions that we have introduced for triangle-subdivision
are as follows:

Definition 6 Triangle Density: The number of spatial point
objects within a particular triangle of a particular grid cell.

Definition 7 Useful Triangle: Only those triangles which
are populated i.e., which contain data points will be treated as
useful triangle.

Definition 8 Neighbor Triangle: Those triangles which have
a common edge to the current triangle are the neighbors of the
current triangle. Figure 2 shows the neighbor triangles
(shaded) of the current triangle P.

Definition 9 Density Confidence of a triangle: If the ratio of
the densities of the current triangle and one of its neighbors is
less than /4 then the two triangles can be merged into the
same cluster. Therefore the following condition should be
satisfied: /4 dn (TP1) / dn (TQ1) where dn represents the
density of the particular triangle.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2986

Fig. 2 Neighbor triangles (shaded) of the triangle P

Definition 10 Reachability of a triangle: A triangle p is
reachable from a triangle q if p is a neighbor triangle of q and
triangle p satisfies the density confidence condition w.r.t.
triangle q.

Definition 11 Cluster: A cluster is defined to be the set of
points belonging to the set of reachable cells and triangles. A
cluster C w.r.t. is a non-empty subset satisfying the
following condition,

qp, : if p C and q is reachable from p w.r.t. , then
q C, where p and q are either cells or triangles respectively.

Both cell-reachability and triangle-reachable relation
follows symmetric and transitive property within a cluster C.

Definition 12 Noise: Noise is simply the set of points
belonging to the cells (or triangles) not belonging to any of its
clusters. Let C1, C2,Ck be the clusters w.r.t. , then

}_:,|_{ iCpnoinnppnonoise (1)
where no_p is the set of points in cell p and Ci (i=1,...,k).

B. Density Confidence
The density confidence for a given set of cells reflects the

general trend of that set. If the density of one cell is abnormal
from the others it will not be included in the set. Similarly,
each useful cell has a density confidence with each of its
neighbor cells. If the density confidence of a current cell with
one of its neighbor cell does not satisfy the density confidence
condition than that neighbor cell is not included into the local
dense area. On the contrary, if it satisfies the condition than
we treat the neighbor cell as a part of the local dense area and
merge the cell with the dense area. In comparison to other
methods of setting a global threshold, this method has the
ability to recognize the local dense areas in the data space
where multi-density clusters exist.

In light of the above definitions, following lemmas are
stated.

Lemma 1 Let C be a cluster w.r.t. and let p be any cell in
C. Also, let Tp be a triangle in p. Then C can be defined as the
set, S = {s st | s is cell-reachable from p w.r.t. and st is
triangle-reachable from Tp w.r.t. }

Proof: Suppose r is a cell or a triangle, where r s st and r
is neither cell-reachable nor triangle-reachable from p w.r.t. .
But, a cluster according to Def. 11 will be the set of points
which are cell-reachable or triangle-reachable from p.
Therefore, we come to a contradiction and hence the proof.

Lemma 2 A cell (or triangle) corresponding to noise points
is not cell-reachable (or triangle-reachable) from any of the
clusters. For a cell p we have, p: p is not reachable from
any cell (or triangle) in C i.e. p C.

Proof: Suppose, C be a cluster w.r.t and let p be a cell (or

triangle) corresponding to noise points. Let p be cell-reachable
(or triangle-reachable) from C, then p C. But, this violates
the Def. 12 that noise points are belonging to cells that are
neither cell-reachable nor triangle-reachable from any of the
clusters. Therefore, we come to the conclusion that p is not
reachable from any cell (or triangle) in C.

Lemma 3 A cell (or a triangle) r can be cell-reachable (or a
triangle-reachable) from only a single unique cluster.

Proof: Let C1 and C2 are two clusters w.r.t. and let p be
any cell (or a triangle) in C1 and q is any cell (or a triangle)
in C2. Suppose a cell r is cell-reachable (or a triangle-
reachable) from both p and q, then r C1 and r C2. This will
mean that the clusters C1 and C2 should be merged. This
violates the basic notion that clusters are unique sets. Thus, we
can conclude that if r is cell-reachable (or a triangle-
reachable) from p w.r.t. , r is not cell-reachable (or a
triangle-reachable) from q w.r.t. , i.e. r C1 and r C2.
Therefore the lemma has been proved.

IV. THE PROPOSED TECHNIQUE

In this section, we discuss the proposed distributed
algorithm. We adopt the shared nothing architecture and
consider a system having k-nodes where the entire dataset D is
located in any of the nodes (say node 1). Node 1 executes a
fast partitioning technique to generate the k initial partitions.
The partitions are then sent to k nodes (including itself) for
cluster detection using a grid-density based clustering
technique (GDCT) which can operate over variable density
space. Finally, the local cluster results are received from the
nodes at the initiator node (node 1) and a merger module is
used to obtain the final cluster results. Basically the technique
works in three phases and the output of each phase becomes
the input of the subsequent phase.

Fig. 3 The Shared-nothing architecture

An overview of the hardware architecture is shown in Fig.
3. It consists of a number of nodes (e.g. PCs) connected via a
network (e.g. Ethernet). Next, we describe the architecture as
shown in Fig. 4, phase-wise:

A. Phase I: Partitioning the dataset
Phase I of the architecture is executed in one of the nodes

(node 1). The dataset is spatially divided into equal size
square grid cells and density of each grid cell is computed.
The square mesh is then partitioned with some overlap
between adjacent partitions and distributed over k available
computers (nodes). No subsequent movement of data between
partitions will take place.

Node 1 Node 1 Node 1

 Network

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2987

Initially, the data space is divided into n×n non-overlapping
square grid cells, where n is a user input, and maps the data
points to each cell. It then calculates the density of each cell.

Assuming, the grid mesh D contains the set of n×n objects
say, D = O0, O1, O2,, O(n×n) 1. Suppose, Oj = (a0j, a1j,
a2j,….., a(d-1) j; dn) represents a grid cell with d real-valued
attributes ai, i=0,….,d-1 and density dn. The ith attribute value
of object Oj is drawn from domain aj. If there are k clients, the
grid mesh D is partitioned into k subsets D0, D1,, Dk 1

ordered in sequence. We refer the clients by the corresponding
partition Dj that it receives for processing.

1,....,0,

,
....... 1210

kji
DD

DDDDD

ji

k
 (2)

The partially overlapped partitions are shown in Fig. 5 for
2D case. An overlap of one grid cell occurs between two
adjacent partitions. The overlapped regions are much smaller
than the partitions. The grid cells in the overlapped regions
are locally clustered in both the adjacent partitions. Thus they
provide the information for merging together the local
clustering results of two adjacent partitions. The overlapped
width should be at least one cell width because adjacent cells
are neighbors according to Definition 3.

Fig. 4 The architecture of the Proposed Technique

The grid mesh D is partitioned in this manner based on the
values of a selected attribute of the data objects say as. The
values of as have a range of [min_as, max_as]. We need to
select (k + 1) constants in the given range. Let ci, i = 1,…, k+1
represent the constants such that ci = min_as, ck+1 = max_as

and ci < ci+1. Therefore the overlapped region can be
represented as:

1,...,2
,_|)(1

ki
cawidthcellcDOjD isjiji (3)

1

,_|)(1

i
widthcellcacDOjD isjiji (4)

1

,_|)(1

i
cawidthcellcDOjD isjiji (5)

The constant cj should be selected in such a manner that
cardinality of set Dj becomes nearly equal to kN / , where
N is total number of data points in the dataset.

Fig. 5 Overlapped spatial partitioning of a 2D data set

Moreover, those grid cells which fall within the overlapped
regions are marked. Care has been taken for load balancing.
The k partitions thus obtained are then sent to k nodes for
global as well as intrinsic cluster detection (Fig. 6).

Fig. 6 Here the dataset is divided into three partitions and transmitted
to three computers (Ndk) for local clustering, k = 3

A previous version of the clustering algorithm to detect
intrinsic clusters is given in [20]. However, it was not scalable
to huge datasets and there was no precise method to calculate
the number of grid interval.

Computing the Number of Grid Intervals (n)

The following formula is used to calculate the number of
intervals n.

M
Nn (6)

]5,5[nnn (7)

where N is the number of data points and M is a coefficient

Cell_width Cell_width

Min_as Split_dimension max_as

 Partition 2
Partition 1 Partition 3

 Partition 2
 Partition 1 Partition 3

Nd3

 Nd1
 Nd2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2988

to adjust the value of n’. It is a positive integer. In fact, it
stands for the average number of data samples in a cell.

A detailed experimentation on the number of data points
(N) and the coefficient M has been carried out and the graph is
shown in Fig. 7. The value of n’ is calculated as in Eq. (6).
Based on our wide range of experiments, it is observed that n
varies within the range as given in Eq. (7).

Fig.7 M depends on the number of data points

Load Balancing

Partition Di is sent to processor Pi, =1,2,..,k for concurrent
clustering. Since no data movement takes place after the
partitions are created, care should be taken so that each
processor receives nearly equal number of data objects for
processing. This will ensure that all the processors finish the
clustering job at the same time provided the processors have
same processing speed. If the processing speeds are different,
then the input data should be distributed to the processors
proportionate to their processing speed. We assume that the
processing speeds of the processors are equal, so they receive
nearly equal amount of data. For doing this the range of as is
divided into intervals of width of one cell-width and the
frequencies of data in each interval is counted.
Let widthcellaab ss _/)min_(max_

kNN /

sad min_1

biwidthcelldd ii ,...,3,2,_1

bi
dadDOjF isjiji

,...,3,2
,|)(1 (8)

fi = Cardinality of set Fi

Now, the constants ci defined earlier are computed as ci = ds

such that

kifNif
s

j

s

j
jj ,...,2,1,'.

1

1

1

 (9)

which will ensure that each partition gets number of objects
nearly equal to N/k.

Minimized communication cost

The proposed method saves transmission cost by avoiding
inter-node communication during the process of local
clustering. To achieve this goal, each concurrent process of
GDCT in each of the nodes, Nd = 1,2,…,k, should avoid
accessing those data located on any of the other computers,
because the access of the remote data requires some form of
communication. Therefore, nearby objects should be
organized on the same computer. This is why an overlap of
one cell_width has been taken into consideration.

B. Phase II: Local Clustering
Phase II of the architecture is executed in each of the k

nodes. This phase plays the actual role of clustering. In this
phase, each node executes the proposed algorithm, GDCT
over the partition of data received from the initiator node to
detect the global and nested clusters. The aim of our
clustering algorithm unlike our previous version [20] is to
discover intrinsic as well as global clusters over large spatial
datasets of variable density.

Grid-Density Clustering using Triangle Sub-division
(GDCT)
In any node, the cells of the partition received are sorted

according to their density values. The result is an ordered
sequence <CP(i)>, where P(i) denotes a permutation of the
index i defining the sorted order of the cells C. The algorithm
uses the cell information (density) of the grid structure and
clusters the data points according to their surrounding cells.

The cell with the highest density becomes the cluster
initiators. The remaining cells are then clustered iteratively in
order of their densities, thereby building new clusters or
merging with existing clusters. The useful cells adjacent to a
cluster can only be merged. A neighbor search is conducted,
starting at the highest density cell and inspecting adjacent
cells. If a neighbor cell is found which satisfies the density
confidence condition of a cell, then the neighbor cell is
merged with the current cell to form the adaptive grid, and the
search proceeds recursively with this neighbor cell. This
search is similar to a graph traversal where the nodes represent
the cells and an edge between two nodes exists if the
respective cells are adjacent and satisfies the density
confidence condition of a cell.

The adaptive grid formed is an approximation of the
innermost cluster or the cluster with the maximum density,
minus the boundary region. The cells falling inside a
particular adaptive grid are classified with the same cluster id.
The adaptive grid will reflect the rough cluster formed.

The cluster shape in the boundary region of the cluster
varies more since there is a transition from denser region to
sparser region when we are considering intrinsic or variable
density clusters. Therefore, this region needs special analysis.
So, after the adaptive grid is formed, there might still be some
points of the approximate clusters that lie outside the adaptive
grid as shown by the red ellipse (black color ellipse for gray
scale images) in Fig. 8. Since the points inside these regions

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2989

do not enter the adaptive grid though they are a part of the
cluster, we therefore expand the cell in the boundary region
with the help of triangles. The points in the boundary region
of the cluster have been left out because the cells in which
they reside have not satisfied the density confidence of a cell
with its neighbor belonging to the adaptive grid so formed.
This is because only a small portion of that part of the cluster
has fallen in a different cell. Therefore the density of that cell
is much less than its adaptive grid neighbor.

Fig. 8 Example grid approximation for a dataset (n = 25)

Therefore, for finding the finer clustering, a cell is
triangulated i.e. the cell is divided into four triangles. Only
those cells in the adaptive grid are triangulated which have at
least one of its useful neighbor cells as unclassified. The cells
which are unclassified and have at least one of its neighbor
cells belonging to the most recent adaptive grid formed are
also triangulated. The data points of the cells that have been
triangulated are mapped to the respective triangles in which
they fall. The Barycentric coordinates [21] have been used for
finding which point falls in which triangle. This method has
been chosen since it is independent of the cyclic order of the
vertices.

Procedure of GDCT

The execution of the algorithm includes the following 9
steps:
1) Create the grid structure.
2) Compute the density of each cell.
3) Sort the cells according to their densities.
4) Identify the maximum dense cell from the set of

unclassified cells.
5) Traverse the neighbor cells starting from the dense cell and

form the adaptive grid (rough cluster).
6) Triangle-subdivision of the border cells of the adaptive

grid which has at least one of its neighbors as a useful cell.
7) Triangle-subdivision of the unclassified neighbor cells of

those border cells.
8) Merge the triangles and assign cluster_id.

9) Repeat steps 4 through 9 till all cells are classified.

The process of forming the adaptive grid starts by
considering the cell P1 with the maximum density from the
sorted list. From P1, the first adaptive cell expands to the
neighboring cells P1i (where cell P1i is the ith neighbor of P1)
depending upon two conditions which are

1) If P1i is not a member of any adaptive cell, and
2) The densities of P1 and P1i differ by some threshold

which is an input parameter.

Let, dn(P1) and dn(P1i) denote the densities of P1 and P1i

respectively, then P1i will merge with P1, if dn(P1)/dn (P1i).
The cells that satisfy the conditions given above are merged to
form the adaptive cells. The process of adaptive cell formation
continues from P1i in the same way until no neighboring cells
P1j of P1i satisfy the condition. The process then backtracks to
P1i and the process restarts with the next neighbor cell of P1i

which has not already been processed. The adaptive grid
formation continues recursively until no more cells satisfy the
density confidence condition of a cell.

This adaptive grid is an approximation of the cluster with
the maximum density. The cells falling inside that particular
adaptive grid are classified with the same cluster_id which
reflects the rough cluster. The process then checks the
neighbors of the last formed adaptive grid cells. If any one of
the neighbors is an unclassified useful cell then both the
adaptive grid cell as well as the unclassified neighbor cell is
triangulated. Suppose Pm is a cell of the adaptive grid last
formed and cell Pi is one of it’s unclassified useful neighbor
cell where Pi {Pi1, Pi2,.…, Pi8}. Then Pi as well as Pm is then
triangulated in a manner as shown in Fig. 9. During Triangle-
subdivision, a particular grid cell is divided into four triangles.

Each of the triangles Tki inside the cell Pi is verified for the
following cases:

Case 1: If Tki has a neighbor triangle Tmi which is a part of
adaptive grid cell Pm, then their densities dn(Tmi) and dn(Tki)
are compared for the density confidence condition of a
triangle given as, / 4 dn(Tmi) / dn(Tki). If this condition is
satisfied, then triangle Tki is merged with the triangle Tmi of the
adaptive grid and obtains the cluster_id of Pm.

Fig. 9 Triangle-subdivision of grid cells (black polygon shows the
adaptive grid or a rough cluster)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2990

Case 2: Tki has a neighbor triangle Tji which has already
been classified and the densities of Tki and Tji satisfy the
condition given in case 1, then Tki will be merged with Tji and
Tki will be classified with the same cluster_id as Tji.

The process of triangle merging stops when no more
triangles satisfy the density confidence condition of a triangle.

The process then starts the next adaptive cell formation
from the next cell P2 which is the cell of maximum density
from the set of unclassified cells. The process continues
recursively merging neighboring cells that satisfy the density
confidence condition of a cell. Therefore, the adaptive grid
formation and triangle-subdivision method are repeated
alternately till all the useful cells have been classified. The
classified cells and triangles will now give the distinct clusters
and finally the data points receive the cluster_id of the
respective cells and triangles.

The cluster expansion based on the set of cells detects
embedded and nested cluster structures since after expansion
of a cluster the algorithm searches for the next candidate seed
cell which reflects a variation in density in the dataset. The
process starts expanding the new density region till there is
again a density variation. This process iterates till all the cells
have been classified. The triangle expansion gives a finer
clustering result since the cluster expansion based on cells
misses some border points as can be seen in Fig. 8. The
expansion based on triangle-subdivision detects the border
points which have been left out by cell based expansion.
Therefore, the quality of the clusters becomes highly accurate
in addition to detecting intrinsic and multi-density clusters.

During clustering, it considers only the grid cells to identify
the possible global and embedded clusters and assigns
cluster_id accordingly. For the partition Di in node i, the grid
cells in it will be assigned cluster_id according to the clusters
formed in that partition. The cluster_id will be used during the
server based merging process.

The cluster expansion based on grid cells reduces the
computation time as all the data points are not considered for
cluster expansion only the density information of each cell is
used. Moreover, the cluster_id information is used during
Phase III merging process. It saves the cost of merging to a
great extent. Finally, Phase II transmits the cluster objects to
the server along with the cluster_id information.

C. Phase III: Merging
In Phase III, the cluster results received from the k nodes

undergo a simplified, yet faster merging procedure to obtain
the final clusters. Since the Phase II process in a node may
yield more than one cluster along with the embedded clusters,
so there are always possibilities for merging during Phase III
operation. The Merger module works as follows:
1) Join the partitions received from the k nodes according to

their overlapping marks.
2) Consider the marked grid cells (overlapping cells) of the

candidate clusters.

3) If any of the marked grid cells is identified by different
cluster_ids by different partitions (say l, m), then assign
any one of the ids (say l) to that cell.

4) Assign all those cells having the same cluster_id as the
replaced id (m) with l.

D. Complexity Analysis
Phase I: The partitioning of the dataset into n×n non-

overlapping cells results in a complexity of O(N) where N is
the total number of data points. The grid mesh D is spatially
partitioned into k partitions with overlap of one cell width
which results in a complexity of O(n×n), where n << N. Each
of these k partitions will have nearly equal (approximately
N/k) data points. The data points along with the grid
information for each of k partitions will be sent to the k nodes.
Therefore (N/k) + t points will be sent, where t is the average
number of points present in an overlapped region. Next, to
transmit these (N/k) + t points to each node requires a
communication time of O((N/k) + t).

Phase II: This phase is executed in each of the k nodes.
Computing density of the cells in each node requires
O((n×r)×((N/k) + t)), where r is the average number of cells
along the selected attribute based on which partitioning in
Phase I has been performed. The sorting of cells according to
their density results in a complexity of O((n×r) log (n×r)).

The expansion of the adaptive grid results in O(m) time
complexity, where m is the number of cells in an adaptive
grid formed and m<<(n×r)/k in the average case. Cell
subdivision into triangles takes place only in case of the
border cells of the adaptive grid and its neighboring cells, Say,
there are p border and q neighbor cells where q >> p. This
step results in a complexity of O(p+q). If the number of
clusters obtained is nc then the overall time complexity for the
clustering will be O(nc × m × (p+q)).

Therefore, total time complexity will be O((n×r) × ((N/k) +
t)) + O((n×r) log (n×r)) + O(nc × m × (p + q)). Thus the
complexity due to density calculation almost dominates the
other components, since (N/k) + t) >> (n×r). The clusters
detected in this phase are transmitted back to the initiator node
with a transmission cost of O((N/k) + t)).

Phase III: Merging of the clusters obtained from the k
nodes will take O(N+k.t) time.

Thus, the overall time complexity of distributed GDCT will
be O(N) + O(n×n) + O((N/k) + t)) + O((n×r) × ((N/k) + t)) +
O((N/k) + t)). Therefore, the time complexity becomes O(N)
since N >> (n×n).

Advantages of proposed distributed algorithm

The advantages of the proposed algorithm are:
1) Embedded cluster Detection,
2) O(N) complexity,
3) Handling of huge datasets,
4) Handling of single linkage problem.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2991

Fig. 10 The arrows show triangle reachability

The first three advantages can be understood from Sections
IV(A), IV(B), IV(D). For the fourth point we consider Fig.
10. Once the adaptive grid has been formed, the triangle
sub-division process starts. For neighbour traversal in
triangles there has to be at least a common edge between
triangles. Two triangles will be merged according to Def. 9.
As can be seen in figure the chain of single points will not
be merged as they do not satisfy Def. 10. The final cluster
obtained is shown in Fig. 11. Thus, the single linkage
problem which affects DBSCAN does not affect the
proposed algorithm.

Fig. 11 Single linkage problem handled

V. PERFORMANCE EVALUATION

To evaluate the technique in terms of quality of clustering,
we used the synthetic data set generated as shown in Fig. 12.

Fig. 12 Synthetic Dataset

The results of the synthetic dataset in Fig. 12 are shown in
Fig. 13.(a) and 13.(b).

Fig. 13.(a) After full expansion

 Fig. 13.(b) Final five clusters

The algorithm was experimented with several synthetic
datasets generated and the result of one of them is shown in
Fig. 14.

Fig. 14 Final four clusters

The algorithm was also applied on the Chameleon t4.8k.dat
and t7.10k.dat datasets [9]. The results obtained are shown in
Fig. 15(a) and 15(b) respectively. The result obtained when

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2992

the algorithm was applied on t5.8k.dat dataset is shown in
Fig.16. From our experiments it has been found that the
clustering result is dependent on the threshold which varies
in the interval [0.5, 0.7].

Fig 15.(a) t4.8k.dat dataset

Fig. 15(b) t7.10k.dat dataset

Fig. 16 Clusters obtained from t5.8k.dat dataset

From the experimental results given above, we can
conclude that GDCT is highly capable of detecting intrinsic as
well as multi-density clusters qualitatively.

A. Performance and Scalability Analysis
A sequential algorithm is evaluated in terms of its execution

time which is expressed as a function of its input size. On the
other hand, the execution time of a distributed algorithm
depends not only on the input size but also on the distributed
architecture and the number of processors employed. By
adding more processors we would like to decrease the
execution time or increase the volume of data handled by
using more processors. This section reports an empirical study
on the characteristics of the proposed distributed algorithm by
measuring execution time, speedup, efficiency and scale-up
factors.

Since there is no inter-processor communication except for
a single processor communicating with each of the remaining
processors. Each processor has the same specification i.e. PIV
with 1 GHz speed and 128 MB RAM and the processors are
connected through Ethernet LAN of speed 10/100 Mbps. To
smooth out any variation, each experiment was carried out for

five times and the average result were taken and each reported
data point is to be interpreted as an average over five
measurements. Our implementation is in C in Linux
environment. Next, we generated several synthetic datasets
containing arbitrary number of arbitrary shaped clusters
having 2,00,000, 4,00,000, 6,00,000, 8,00,000 and 10,000,000
objects respectively and experimentation was carried out.

Parallel Execution Time: The parallel execution time,
denoted by T(k), of a program is the time required to run the
program on a k-processor parallel computer. When k = 1, T(1)
denotes the sequential run time of a program on a single
processor. From our experiments we conclude that the
execution time decreases significantly as the number of
processors increase.

Speedup: Speedup is a measure of relative performance
between a multiprocessor system and a single processor
system, defined as, S(k) = T(1)/T(k). On experimenting it has
been found that the speedup factor increases with the increase
in the number of processors. The relation between speedup
and the number of processors used is shown in Fig. 17.

Fig. 17 Relative Speedup curves for two data sets with points N =
8 105 and 6 105. The number of dimensions and the number of
clusters are fixed for both the data sets. The solid line represents
“ideal” linear relative speedup. For each data set, a dotted line
connects observed relative speedup.

Scale-up: Scale-up measures how well the parallel
algorithm handles large datasets as the number of processors
increases. The scale-up characteristic of the proposed
algorithm has been found to be satisfactory with the increase
in the number of processors as can be seen from Fig. 18.

Fig. 18 Scale-up curve: The number of data points is scaled by the
number of processors while dimensions and number of clusters are
held constant.

VI. COMPARISON OF GDCT WITH ITS COUNTERPARTS

DBSCAN requires two input parameters MinPts and .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2993

Moreover, it cannot detect embedded clusters. OPTICS on the
other hand, requires three input parameters MinPts, and .
But, it can detect embedded clusters. However, its
performance degrades while detecting multiple nested clusters
over massive datasets. Again, GDLC and Density-isoline
algorithms can detect multi-density clusters but fail to detect
intrinsic cluster structures. GDCT requires the number of grid
cells, i.e. n and threshold as input parameters. Moreover,
from our experiments we conclude that the threshold does
not vary significantly with different datasets. GDCT can
effectively detect embedded clusters over variable density
space as well as multiple nested clusters. A detailed
comparison is given in Table I.

VII. CONCLUSION

This paper presents a distributed clustering technique for
massive numeric datasets. The clustering algorithm is based
on a grid-density approach and can detect global as well as
embedded clusters qualitatively by sharing the computational
efforts among k processors. Experimental results are reported
to establish the superiority of the algorithm in light of several
synthetic data sets. Results in terms of scale-up and speedup
are reported to establish the superiority of the technique in
light of several synthetic datasets. In this paper we have only
considered two-dimensional objects. But, spatial databases
also contain extended objects such as polygons. Therefore,
there is scope for scaling GDCT to detect clusters in such
datasets with minor modifications, research of which is in
progress.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques. India:
Morgan Kaufmann Publishers, 2004.

[2] M. Ester, H. P. Kriegel, J. Sander and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise”, in International Conference on Knowledge Discovery in
Databases and Data Mining (KDD-96), Portland, Oregon, 1996, pp.
226-231.

[3] C. Hsu and M. Chen, “Subspace Clustering of High Dimensional Spatial
Data with Noises”, PAKDD, 2004, pp. 31-40.

[4] W. Wang, J. Yang, and R. R. Muntz, “STING: A Statistical Information
Grid Approach to Spatial data Mining”, in Proc. 23rd International
Conference on Very Large Databases, (VLDB), Athens, Greece,
Morgan Kaufmann Publishers, 1997, pp. 186 - 195.

[5] G. Sheikholeslami, S. Chatterjee and A. Zhang, “Wavecluster: A Multi-
resolution Clustering approach for very large spatial database”, in
SIGMOD'98, Seattle, 1998.

[6] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan, “Automatic
subspace clustering of high dimensional data for data mining

applications”, in SIGMOD Record ACM Special Interest Group on
Management of Data, 1998, pp. 94–105.

[7] H. S. Nagesh, S. Goil and A. N. Choudhary, “A scalable parallel
subspace clustering algorithm for massive data sets”, in Proc.
International Conference on Parallel Processing, 2000, pp. 477.

[8] L. Ertoz, M. Steinbach and V. Kumar, “Finding Clusters of Different
Sizes, Shapes, and Densities in Noisy, High Dimensional Data”, in SIAM
International Conference on Data Mining (SDM '03), 2003.

[9] G. Karypis, Han and V. Kumar, “CHAMELEON: A hierarchical
clustering algorithm using dynamic modeling”, IEEE Computer, 32(8),
pp 68-75, 1999.

[10] Y. Zhao, S. Mei, X. Fan, S. Jun-de. 2003. Clustering Datasets
Containing Clusters of Various Densities. Journal of Beijing University
of Posts and Telecommunications, 26(2):42-47.

[11] H. S. Kim, S. Gao, Y. Xia, G. B. Kim and H. Y. Bae, “DGCL: An
Efficient Density and Grid Based Clustering Algorithm for Large Spatial
Database”, Advances in Web-Age Information Management (WAIM'06),
pp. 362-371, 2006.

[12] M. Ankerst, M. M. Breuing, H. P. Kriegel and J. Sander, “OPTICS:
Ordering Points To Identify the Clustering Structure”, in ACM-
SIGMOD, pp. 49-60, 1999.

[13] S. Roy and D. K. Bhattacharyya, “An Approach to Find Embedded
Clusters Using Density Based Techniques”, in Proc. ICDCIT, LNCS
3816, pp. 523-535, 2005.

[14] B. Borah, D. K. Bhattacharyya and R. K. Das, “A Parallel Density-Based
Data Clustering Technique on Distributed Memory Multicomputers”, in
Proc. ADCOM, Ahmedabad, 2004.

[15] I. S. Dhilon and D. S. Modha, “A Data-Clustering Algorithm on
Distributed Memory Multiprocessors”, in International Conference on
Knowledge Discovery and Data Mining (SIGKDD 99), 1999.

[16] X. Xu, J. Jager and H. P. Kriegel, “A Fast Parallel Clustering Algorithm
for Large Spatial Databases”, Data Mining and Knowledge Discovery, 3,
Kluwer Academic Publisher, pp. 263-290, 1999.

[17] E. Januzaj, H. P. Kriegel and M. Pfeifle, “Towards Effective and
Efficient Distributed Clustering.Workshop on Clustering Large Data
Sets”, ICDM'03.Melbourne, Florida, 2003.

[18] D. Foti, D. Lipari, C. Pizzuti and D. Talia, “Scalable Parallel Clustering
for Data Mining on Multicomputers”,15 IPDPS workshops, pp. 390-398,
2000.

[19] E.K. Johnson and H. Kargupta, “Collective Hierarchical Clustering from
Distributed, Heterogeneous Data”, Large Scale Parallel data Mining,
LNCS 1759, Springer, 2000.

[20] S. Sarmah, R. Das and D. K. Bhattacharyya, “Intrinsic Cluster Detection
Using Adaptive Grids”, in Proc. ADCOM'07, Guwahati, 2007.

[21] Available: http//steve.hollasch.net /cgindex/math /barycentric.html

TABLE I
COMPARISON OF THE PROPOSED ALGORITHM WITH ITS COUNTERPARTS

Algorithms No. of
Parameters

Multi-
Density
Clusters

Embedded
Clusters Complexity

DBSCAN 2 (MinPts,) No No O(N log N)
using R* tree

OPTICS 3 (MinPts, ,
/)

Yes Yes O(N log N)
using R* tree

Proposed
Algorithm

2 (n,) Yes Yes O(N)

