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A discretizing method for reliability computation in
complex stress-strength models

Alessandro Barbiero

Abstract—This paper proposes, implements and evaluates an
original discretization method for continuous random variables, in
order to estimate the reliability of systems for which stress and
strength are defined as complex functions, and whose reliability is not
derivable through analytic techniques. This method is compared to
other two discretizing approaches appeared in literature, also through
a comparative study involving four engineering applications. The
results show that the proposal is very efficient in terms of closeness
of the estimates to the true (simulated) reliability. In the study we
analyzed both a normal and a non-normal distribution for the random
variables: this method is theoretically suitable for each parametric
family.

Keywords—approximation, asymmetry, experimental design, inter-
ference theory, Monte Carlo simulations.

I. INTRODUCTION

WHEN dealing with stress-strength models, we usually
refer to a component (or system) that encounters a

random stress during its functioning, and has got an intrinsic
random strength which makes it work only when the strength
is greater than the stress. The probability that it happens is
denoted as reliability of the component.

A lot of literature has been written on reliability, its com-
putation and its estimation under many statistical parametric
assumptions on stress and strength. If the distributions of
both strength and stress are known, the distribution of their
difference can be determined using ordinary transformation
techniques, like interference theory (see [3], [6]). Yet, these
analytic approaches are cumbersome, if not impossible to
apply, even for apparently simple problems. Moreover, the
distributions of stress and strength are often unknown, or such
are their parameters. A particular case occurs when stress
and strength depend upon several stochastic factors through
a known functional relationship: unless this relationship and
the distribution of the factors are elementary (e.g. the ratio
of two independent normal r.v., see [7]), almost never the
exact continuous distributions of stress and strength can be
analytically derived. The availability of samples by which
making inference depends on the existence of a testing system,
which is not likely for design problems. Therefore, reliability
can be estimated merely by Monte Carlo simulation, which
unluckily can require a lot of computation time in the model
development phase. A continuous approximation exploiting
Taylor expansion has been proposed for the normal case
[9]. An approximating/discretizing approach may represent a
pragmatic solution to these issues.
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In this paper a straightforward discretization procedure is
proposed for the evaluation of reliability in stress-strength
models. The procedure can be applied to any continuous
distribution, which is approximated through a number (chosen
by the user) of points, whose calculation is strictly related
to the typical standard normal intervals. Their probability
are easily calculated using the original probability density
function. The application of this novel procedure involves four
engineering problems in the structural and electrotechnical
fields. The proposed procedure is implemented and compared
to other methods available in literature, and reveals very
efficient. Some advice is given about the number of points
of the discretized r.v.

The paper is structured as follows: in Section II some
of the available discretization methods are described, from
the stress-strength model perspective; Section III introduces
and illustrates the proposal and its properties, exploring its
wide applicability; Section IV describes the simulation study
performed on four practical engineering cases, focusing on the
performance of the new and existing approaches; Section V
gives some final remarks and comments.

II. THE METHODS

As said in the previous section, approximation through a
discrete variable represents an alternative solution to numer-
ical integration methods and Monte Carlo simulation for the
evaluation of reliability in stress-strength models, where stress
and strength are two functions of several stress and strength
r.v. components. Giving the details, let the system strength
be modeled by a r.v. X , that is a function of n sub-factors
of strength: X = f1(X1, X2, . . . , Xn). Let the stress be
modeled by a r.v. Y , that is a function of m sub-factors of
stress: Y = f2(Y1, Y2, . . . , Ym). The reliability is defined as
R = P (X > Y ).

The main contribute to the solution of this problem through
a discretization approach has been given by Taguchi [14],
who suggested a factorial experiment approach, based on
a discretization of the continuous r.v. modeling stress and
strength. The discretization consists in synthesizing the con-
tinuous r.v. modeling stress, function of m stochastic factors,
into 3-point discrete distributions, with equal probabilities,
and in constructing a table of 3m combinations on which an
approximate value of reliability can be easily computed.

D’Errico and Zaino [5] provided a modification to Taguchi’s
approach, by suggesting a 3-point discrete distribution which
retains the first five raw moments of a normal r.v., by using
unequal probabilities; this modification is shown to be uni-
formly more efficient for any function of normal stochastic
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factors. D’Errico and Zaino present a discretization approach
according to which each point (or node) is placed αi standard
deviations from the mean, whereas the probability that the
discrete r.v. assumes a given value μ+αiσ is some weigth wi.
They present an improved methodology based upon a Gaussian
quadrature rule to determine these values, which depend upon
the number of points. The method can be applied to any r.v. for
which the first two moments are finite, even if it is conceived
for the normal case.

English et al. [4] implemented this method to solve four
engineering problems, performing a simulation study which
shew that departures from the normal hypothesis slightly
influence the results, at least when dealing with high values
of reliability; yet the errors introduced with the approximation
are reasonably small.

Roy and Dasgupta [10] further adjusted the previous pro-
posals trying to better reproduce the original continuous r.v.
through the discrete distribution, by considering not only the
moments as a synthesis of a distribution, but also other aspects,
specifically the form of the density function or the survival
function. With this in mind, they proposed a discretization
procedure particularly suited for symmetrical unimodal r.v.,
characterized by a flexible choice of the number of points.

Given a continuous r.v. Z with c.d.f. Fz(z), the method
discretizes it by the r.v. Zd; Zd takes integer values such that
for each integer i

P (Zd = i) = Fz(i + δ) − Fz(i − [1 − δ]) (1)

where 0 < δ < 1 is a parameter we will discuss later.
To reduce the range of Zd, a standard form of Equation 1
can be first considered. For example, if Z∗ ∼ N(μ, σ2), the
discretized form of Z∗ is

Z∗
d = μ + σ · Zd (2)

where Zd is the discretized version of Z ∼ N(0, 1). For the k-
point discretization, with k odd, i takes the integer values from
−(k−1)/2 to (k−1)/2. The optimal value of δ in Equation 1
can be derived imposing that the discrete r.v. Zd yields the first
two raw moments of the original continuous variable. For the
normal case, and also for some other symmetrical unimodal
distributions, the optimal value of δ is 0.5, so that

P (Zd = i) = Fz(i + 0.5) − Fz(i − 0.5) (3)

The choice of the number of points by which discretize
Z should derive from a compromise between the accuracy
of the results, which would suggest a high value, and the
computational load, which would instead suggest a low value.
The values 5 and 7 are suggested. In the following Table,
the probability mass function of the discrete variable Zd is
reported for k = 3, . . . , 10.

Whatever discretizing approach is applied, the reliability of
the system can be approximately computed as

R ≈
∑

· · ·
∑[

n∏
l=1

P (Xd,l = xd,l)

]
·
⎡
⎣ m∏

j=1

P (Yd,j = yd,j)

⎤
⎦

· I [f1(xd,1, . . . , xd,n) > f2(yd,1, . . . , yd,m)]
(4)

TABLE I
PMF OF THE DISCRETE R.V. Zd (ROY-DASGUPTA ALGORITHM)

k zi pi k zi pi

3 ∓1 0.308538 4 ∓1.5 0.158655
0 0.382925 ∓0.5 0.341345

5 ∓2 0.308538 6 ∓2.5 0.022750
∓1 0.241730 ∓1.5 0.135905
0 0.382925 ∓0.5 0.341345

7 ∓3 0.006210 8 ∓3.5 0.001350
∓2 0.060598 ∓2.5 0.021400
∓1 0.241730 ∓1.5 0.135905
0 0.382925 ∓0.5 0.341345

9 ∓4 0.000233 10 ∓4.5 0.000032
∓3 0.005977 ∓3.5 0.001318
∓2 0.060598 ∓2.5 0.021400
∓1 0.241730 ∓1.5 0.135905
0 0.382925 ∓0.5 0.341345

where I [E] is the indicator function: 1 if E is true, = if E
is false, and the sums extend over all possible xd,l and yd,j

which are the values that the discretized versions of Xl (Xd,l)
and Yj (Yd,j), l = 1, . . . , n, j = 1, . . . , m, can assume.

The methods here described suffer from some drawbacks.
English and Sargent approach, that considers points symmetri-
cally disposed around the mean, looks suitable for symmetric
r.v. only. Roy and Dasgupta’s discretization is suggested for the
normal case, since it is based on the concept of standardized
variable, which is strictly connected to the normal case. In fact,
it is well known that a normal variable is still normal after stan-
dardization, but this is no longer true for other r.v. If extended
to other families, like the Weibull [11], this concept has to
be properly modified and adapted; a set of parameters which
makes the Weibull almost symmetrical has to be first searched,
a discretization (through the first 9 integers) is proposed for
this standard case; for all the other sets of parameters, the
discretization changes only the support, using a transformation
connected with the cumulative density function, and retains the
probability mass function for the standard case. Yet, there is
no advice for other parametric families. Roy [12] and Roy and
Ghosh [13] consider the discretization of a Rayleigh r.v., based
on failure rate considerations; the same do Krishna and Pundir
[8], deriving a discrete Maxwell distribution: their proposal
is based on assigning the probability S(x) − S(x + 1) to
the integer values x = 0, 1, . . . of the discrete r.v., where
S(x) = 1 − F (x) is the survival function of the continuous
r.v. Yet, here the authors are more interested on assuring to
the discrete r.v. so obtained some features related to the failure
rate, e.g. IFR or IFRA properties (see for example [1], chap.
2).

The next Section is devoted to the introduction of a new
proposal for discretization.

III. THE PROPOSAL

Here a procedure for discretizing continuous r.v. from the
perspective of assessing reliability in complex stress-strength
models will be presented and discussed. The new discretization
approach is as straightforward as the just examined proce-
dures. Yet, its advantage stands in the applicability to other
distribution than the normal, without any modification, thus
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overcoming an issue that the other techniques seem not able
to deal with.

Let us consider the problem of synthesizing a continuous r.v.
X with pdf fx through a discrete random r.v. Xd whose sup-
port consists of k points. Let first consider for simplicity the
particular case of a standard normal Z. Define g = (k−1)/2,
and the points zdi as follows: zdi = g− 1 + i, i = 1, 2, . . . , k.
Let be d′i = φ(zdi) where φ(·) is the probability density
function of the standard normal r.v.; denote with d′i = di/

∑
di

the normalized version of the di’s summing up to one. The
variable Zd, defined by the couple (zdi, d

′
i), i = 1, . . . , k, can

be an intuitive discretization of the standard normal: it can be
easily shown that E(Zd) = 0 whereas V ar(Zd) ≈ 1, i.e. the
discretization retains the first moment and approximately the
second one. In Table II, the results of its implementation for
some values of k are reported:

TABLE II
PROBABILITY MASS FUNCTION OF Zd FOR SOME VALUES OF k

(STANDARD NORMAL CASE).

k zdi pi k zdi pi

3 ∓1 0.274069 4 ∓1.5 0.134471
0 0.451863 ∓0.5 0.365529

5 ∓2 0.054489 6 ∓2.5 0.01756
∓1 0.244201 ∓1.5 0.129748
0 0.40262 ∓0.5 0.352692

7 ∓3 0.004433 8 ∓3.5 0.000873
∓2 0.054006 ∓2.5 0.017529
∓1 0.242036 ∓1.5 0.129522
0 0.39905 ∓0.5 0.352077

9 ∓4 0.000134 10 ∓4.5 0.000016
∓3 0.004432 ∓3.5 0.000873
∓2 0.053991 ∓2.5 0.017528
∓1 0.241971 ∓1.5 0.129518
0 0.398943 ∓0.5 0.352065

How can this discretization approach be extended to a
generic (non-normal, specifically asymmetrical) r.v. variable
X? Let us consider the points xdi = zdi, and calculate
the corresponding cumulate probabilities ci = Φ(zdi), where
Φ(·) is the cumulative distribution function of the standard
normal. Compute the corresponding quantiles for the study
r.v.: qi = F−1

x (ci); then calculate the density function on the
qi’s: fi = fx(qi) and normalize them: f ′

i = fi/
∑

fi. The r.v.
Xd defined by the couple (xdi, f

′
i) represent a discretization

of the generic r.v. X .

A. Example: Gamma variable

Let us consider the following example: we need to discretize
a Gamma r.v. with parameters α = 8 and β = 2. In Table III,
the details of the discretization with 5 points. The expected
value of Xd is 3.68 (against 4 for the original continuous
variable X) and the variance 1.70 (against 2 for X).

Figure 1 graphically displays the discretization procedure.

B. Example: Weibull variable

This example displays the discretization of a Weibull
r.v., whose density function is given by fx(x;α, β) =
(α/β)(x/β)(α−1) exp(−(x/β)α), with shape parameter α =
3.5 and scale parameter β = 5. A synthesis of the discretiza-
tion is given in Table IV.

TABLE III
EXAMPLE OF DISCRETIZATION (GAMMA VARIABLE)

zdi ci qi di d′i−2 0.02275 1.69532 0.06887 0.09165
−1 0.15866 2.61581 0.22750 0.30274

0 0.5 3.83462 0.28917 0.38480
+1 0.84134 5.38514 0.14019 0.18655
+2 0.97725 7.29500 0.02574 0.03425
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(a) Probability density function of the original r.v.
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(b) Probability mass function of the discretized r.v.

Fig. 1. Discretization of a Gamma variable

TABLE IV
EXAMPLE OF DISCRETIZATION (WEIBULL VARIABLE)

zdi ci qi di d′i−4 0.00003 0.25909 0.00043 0.00061
−3 0.00135 0.75708 0.00624 0.00882
−2 0.02275 1.70201 0.04625 0.06541
−1 0.15866 3.02756 0.16803 0.23766

0 0.50000 4.50289 0.26938 0.38101
+1 0.84134 5.95252 0.17174 0.24291
+2 0.97725 7.31261 0.04119 0.05826
+3 0.99865 8.57572 0.00364 0.00515
+4 0.99997 9.75156 0.00012 0.00017
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One can compare the support and probability mass function
for the discrete r.v. identified by the proposed procedure to the
one provided in [11]: they differ in a significative way.

Generally, the proposed approach does not retain the ex-
pected value of the original continuous variable (unless it is
symmetrical), yet it tries to retain its characteristic in terms of
density function, which is preferred to the cumulative density
function as it does not require further adjustments than the
normalization, whereas, as we noted, a proper shift is needed
for the method by Roy and Dasgupta in Equation 1 to get
the probability mass function of the discrete r.v. The approach
can be easily applied to every kind of continuous r.v, also
to r.v. defined on a finite interval (like the Beta family);
thus overcoming typical problems connected with previous
approaches. When applied to the most common normal case,
the difference with other specific methods is not so significant,
at least when the number of points is high: yet, the proposed
method tends to privilege in terms of probability mass function
the central points rather then the extremes, thus leading to an
underrated variance, whereas the expected value is unchanged.

The simplicity of the procedure makes it suitable for
software automation and implementation. The next section is
devoted to the illustration of some practical engineering prob-
lems, where the discretization methods presented in Sections
II and III can be usefully applied.

IV. EXAMPLES OF APPLICATION

In this section we will consider several engineering stress-
strength problems, whose reliability can be computed either re-
calling Monte Carlo simulations or the discretizing techniques
described in the previous sections.

A. Hollow cylinder

The maximum shear stress that a shaft with a hollow
cylindric section can transmit is given by:

Y =
16M · a

π(a4 − b4)
, (5)

where a and b are the outer and inner diameters, and M the
applied torque. The stress that the shaft has to withstand is
denoted as X .

1) Normal case: Let suppose a, b, M and X are r.v.
following a normal distribution with the parameters reported
in Table V (the mean of X is let vary from 600 to 1100).

TABLE V
STRENGTH PARAMETERS FOR APPLICATION A

component μ σ
a 2.4 0.02
b 2 0.02

M 1200 60
X 600 ÷ 1100 55

Following the approaches described in the previous sections,
we are going to compute the approximate value of P (Y > X).
Specifically, we will consider i) English and Sargent method
(abbreviated as ES), with 6 points (the value suggested by the
authors) ii) Roy and Dasgupta method (RD), with 5, 7 and

9 points iii) the new proposal (AB), with the same choice of
points as ii). As a true (estimated) value of R, we will consider
the value given by a Monte Carlo simulation: we will simulate
a huge number of independent samples from the distributions
of a, b, M and X; we will compute on each sample the
corresponding value of Y . The overall rate of samples for
which results Y > X will be considered as the Monte Carlo
estimate of R. An index for evaluating the performance of
the method is the absolute error, that is calculated under each
scenario (i.e. for each value of μx) and is an easy measure of
closeness. As an overall performance index, following Roy-
Dasgupta, we will take into account the Mean Absolute Error
(MAE), that is the average absolute error over all the simulated
scenarios.

A particular attention should be devoted when simulating
the value of reliability through the usual Monte Carlo ap-
proach. In fact, even a number of runs like 10, 000, which has
been employed in [10] and which is commonly considered
quite huge, can instead provide unstable results. We suggest,
then, and we employ a far greater number of Monte Carlo
simulations (e.g. 1,000,000), that we expect to provide more
reliable estimates.

In Table VI the results are reported. They show that the
proposed method with 5 points perform better than English
and Sargent’s approach; if we consider 7 or 9 points, the
performance improves and gets better than Roy and Dasgupta’s
method with the corresponding number of points. The pro-
posed method here gets better increasing the number of points,
whereas Roy and Dasgupta’s performs best when employing
5 points.

TABLE VI
COMPARATIVE CLOSENESS STUDY FOR HOLLOW CYLINDER AND NORMAL

R.V.

# μx MC ES6 RD5 RD7 RD9 AB5 AB7 AB9
1 600 0.0012 0.0014 0.0009 0.0018 0.0018 0.0006 0.0012 0.0013
2 650 0.0080 0.0082 0.0079 0.0104 0.0106 0.0056 0.0081 0.0082
3 700 0.0366 0.0426 0.0363 0.0409 0.0411 0.0297 0.0350 0.0352
4 710 0.0471 0.0445 0.0457 0.0502 0.0504 0.0378 0.0434 0.0437
5 720 0.0601 0.0626 0.0632 0.0677 0.0679 0.0541 0.0601 0.0604
6 730 0.0753 0.0754 0.0848 0.0893 0.0895 0.0749 0.0812 0.0814
7 740 0.0935 0.0909 0.0913 0.0965 0.0966 0.0803 0.0874 0.0877
8 750 0.1147 0.1345 0.1157 0.1203 0.1205 0.1038 0.1107 0.1110
9 760 0.1389 0.1370 0.1471 0.1515 0.1516 0.1354 0.1421 0.1424

10 770 0.1665 0.1712 0.1807 0.1847 0.1848 0.1698 0.1761 0.1763
11 780 0.1969 0.1850 0.1935 0.1975 0.1976 0.1811 0.1877 0.1880
12 790 0.2306 0.2351 0.2337 0.2376 0.2377 0.2227 0.2287 0.2289
13 800 0.2665 0.2785 0.2803 0.2830 0.2830 0.2706 0.2754 0.2756
14 810 0.3051 0.3088 0.3123 0.3150 0.3151 0.3046 0.3088 0.3090
15 820 0.3461 0.3606 0.3412 0.3436 0.3437 0.3346 0.3385 0.3386
16 830 0.3884 0.3712 0.3885 0.3903 0.3904 0.3836 0.3864 0.3865
17 840 0.4322 0.4244 0.4322 0.4328 0.4328 0.4280 0.4296 0.4296
18 850 0.4761 0.4673 0.4759 0.4762 0.4762 0.4751 0.4753 0.4754
19 860 0.5200 0.5340 0.5258 0.5255 0.5255 0.5292 0.5281 0.5281
20 870 0.5632 0.5741 0.5630 0.5622 0.5622 0.5676 0.5658 0.5658
21 880 0.6057 0.6047 0.6068 0.6051 0.6051 0.6126 0.6097 0.6096
22 890 0.6467 0.6372 0.6409 0.6383 0.6383 0.6479 0.6440 0.6438
23 900 0.6860 0.6522 0.6851 0.6822 0.6821 0.6947 0.6896 0.6894
24 910 0.7233 0.7148 0.7282 0.7248 0.7247 0.7412 0.7350 0.7348
25 920 0.7578 0.7627 0.7552 0.7517 0.7516 0.7681 0.7617 0.7615
26 930 0.7894 0.8054 0.7753 0.7715 0.7714 0.7869 0.7808 0.7805
27 940 0.8185 0.8214 0.8078 0.8028 0.8027 0.8187 0.8117 0.8115
28 950 0.8447 0.8357 0.8408 0.8356 0.8355 0.8535 0.8459 0.8456
29 1000 0.9364 0.9411 0.9354 0.9296 0.9294 0.9448 0.9377 0.9374
30 1100 0.9936 0.9923 0.9936 0.9915 0.9913 0.9956 0.9935 0.9934

MAE 0.0079 0.0041 0.0063 0.0064 0.0062 0.0042 0.0041

In Figure 2, the absolute errors for ES method with 6 points,
RD method with 5 points and the proposed approach with 9
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points are plotted, in the range 700 − 950 for μx (scenarios
#3 ÷ 28).
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Fig. 2. Plot of absolute errors for the three methods considered in the
comparative closeness study for hollow cylinder and normal r.v. (ES6, RD5,
AB9)

2) Gamma case: Almost all the methods described in
Section 2 for the assessment of reliability in complex stress-
strength systems assume that the distribution of stress and
strength factors are normal, or at least unimodal and symmet-
ric. Yet, in practical applications the normal set-up may some-
times fail, especially because of the tails of its distribution;
other parametric families can be used for modeling stress and
strength components: here we will refer to the two-parameter
Gamma family, which along with other families, like Weibull
or Beta, is able to model a great variety of density functions
by varying its parameters.

For a Gamma r.v. with parameters (α, β) the expected value
is α/β, the variance is α/β2, the skewness is given by 2/

√
α

and kurtosis excess 6/α. This means that the Gamma variable
is always positively skewed, its skewness asymptotically goes
to zero as α tends to +∞; it has got heavier tails than the
normal, and its leptokurtosis decreases as α increases.

In this study, we assume for each stress factor and for
strength a two-parameter gamma distribution. We will retain
the same values of mean and variance as for the normal case
for all of them; the corresponding values of parameters α
and β are reported in Table VII. Since the RD procedure is
specifically addressed for the normal case (or, at least, for
symmetrical variables) it is not suited for the gamma set-up,
and then it is excluded from the comparative study; the ES
approach can be applied, but it provides the same results as
for the normal case, since the mean and variance of the stress
and strength components are unchanged, and the procedure is
based only on these values (and on the number of points). The
proposal is instead expected to provide different results from
the normal set-up, since it strongly relies upon the chosen
parametric distribution. The results for ES and AB method
(with 6 points the former and 5, 7, 9 points the latter) are
displayed in Table VIII. They show the superiority of the
new proposal even when using only 5 points; the performance
improves passing to 7 and 9 points.

TABLE VII
STRENGTH PARAMETERS FOR APPLICATION A (GAMMA VARIABLES).

component μx σx

a 2.4 0.02
b 2 0.02

M 1200 60

TABLE VIII
COMPARATIVE CLOSENESS STUDY FOR HOLLOW CYLINDER AND GAMMA

R.V.

# μx ES6 AB5 AB7 AB9
1 600 0.0014 0.0005 0.0013 0.0013
2 650 0.0082 0.0045 0.0069 0.0071
3 700 0.0426 0.0297 0.0347 0.0349
4 710 0.0445 0.0392 0.0447 0.0449
5 720 0.0626 0.0506 0.0566 0.0568
6 730 0.0754 0.0707 0.0768 0.0771
7 740 0.0909 0.0803 0.0870 0.0873
8 750 0.1345 0.1023 0.1089 0.1092
9 760 0.1370 0.1315 0.1378 0.1380

10 770 0.1712 0.1624 0.1685 0.1687
11 780 0.1850 0.1757 0.1823 0.1826
12 790 0.2351 0.2205 0.2263 0.2265
13 800 0.2785 0.2648 0.2695 0.2697
14 810 0.3088 0.2985 0.3027 0.3028
15 820 0.3606 0.3313 0.3351 0.3353
16 830 0.3712 0.3805 0.3832 0.3833
17 840 0.4244 0.4208 0.4224 0.4225
18 850 0.4673 0.4703 0.4705 0.4705
19 860 0.5340 0.5144 0.5136 0.5136
20 870 0.5741 0.5624 0.5606 0.5605
21 880 0.6047 0.6013 0.5987 0.5986
22 890 0.6372 0.6447 0.6407 0.6406
23 900 0.6522 0.6915 0.6863 0.6861
24 910 0.7148 0.7385 0.7322 0.7319
25 920 0.7627 0.7680 0.7613 0.7611
26 930 0.8054 0.7896 0.7830 0.7827
27 940 0.8214 0.8122 0.8055 0.8052
28 950 0.8357 0.8419 0.8343 0.8340
29 1000 0.9411 0.9441 0.9370 0.9367
30 1100 0.9923 0.9955 0.9935 0.9934

MAE 0.0079 0.0066 0.0046 0.0045

Let us remember that a gamma variable, for α → +∞,
tends to approach the normal distribution; since the values of
the α parameter used for the study are quite high, we would
expect under each scenario a very slight difference among
the simulated Monte Carlo values of reliability in the gamma
and normal case. Yet, looking at the results, this difference
is not negligible, and can be explained through the critical
role played by the upper and lower tails of the stress/strength
distributions, as well described in [2].

B. Solid shaft

The shear stress of a solid shaft can be expressed as a
function of the torque M applied and the diameter d:

Y =
16M

π · d3
, (6)

where M and d are r.v. with distributional parameters reported
in Table IX and the strength X is a r.v.with standard deviation
σy = 55 and mean varying from 450 to 550.

In Table X the results are reported. They show that the
new method with 5 points performs better than the other two
considered; there is a very slight difference in terms of MAE
passing from 5 to 9 points for the proposal.
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TABLE IX
STRENGTH PARAMETERS FOR APPLICATION B.

component μx σx

d 2.4 0.02
M 1200 60

TABLE X
COMPARATIVE CLOSENESS STUDY FOR SOLID SHAFT AND NORMAL R.V.

μx MC sim ES6 RD5 AB5 AB7 AB9
1 450 0.5516 0.5296 0.5382 0.5412 0.5407 0.5406
2 455 0.5846 0.5333 0.6061 0.6134 0.6120 0.6119
3 460 0.6164 0.6165 0.6071 0.6142 0.6127 0.6126
4 465 0.6478 0.6169 0.6721 0.6816 0.6783 0.6782
5 470 0.6776 0.7003 0.6721 0.6816 0.6791 0.6790
6 475 0.7066 0.7039 0.7018 0.7117 0.7084 0.7083
7 480 0.7344 0.7041 0.7303 0.7411 0.7378 0.7377
8 485 0.7607 0.7873 0.7303 0.7411 0.7380 0.7379
9 490 0.7856 0.7884 0.7831 0.7940 0.7899 0.7897

10 492 0.7951 0.7884 0.7831 0.7940 0.7899 0.7897
11 494 0.8043 0.7885 0.7831 0.7940 0.7899 0.7898
12 496 0.8135 0.7917 0.7831 0.7940 0.7904 0.7902
13 498 0.8222 0.8600 0.8264 0.8401 0.8352 0.8351
14 500 0.8307 0.8633 0.8336 0.8461 0.8412 0.8410
15 502 0.8390 0.8638 0.8336 0.8461 0.8416 0.8415
16 504 0.8470 0.8638 0.8336 0.8461 0.8416 0.8415
17 506 0.8547 0.8638 0.8336 0.8461 0.8417 0.8415
18 508 0.8622 0.8639 0.8495 0.8619 0.8571 0.8569
19 510 0.8693 0.8639 0.8729 0.8866 0.8821 0.8819
20 512 0.8762 0.8967 0.8746 0.8878 0.8833 0.8831
21 514 0.8828 0.8999 0.8746 0.8878 0.8833 0.8831
22 516 0.8891 0.8999 0.8746 0.8878 0.8833 0.8831
23 518 0.8952 0.8999 0.8757 0.8886 0.8840 0.8838
24 520 0.9011 0.8999 0.9092 0.9219 0.9164 0.9163
25 525 0.9149 0.9007 0.9092 0.9219 0.9171 0.9169
26 530 0.9269 0.9308 0.9196 0.9307 0.9256 0.9254
27 535 0.9376 0.9308 0.9355 0.9464 0.9415 0.9413
28 540 0.9470 0.9489 0.9355 0.9464 0.9415 0.9414
29 545 0.9553 0.9525 0.9556 0.9636 0.9584 0.9582
30 550 0.9625 0.9525 0.9556 0.9636 0.9584 0.9582

MAE 0.0152 0.0109 0.0098 0.0090 0.0090

C. Hollow rectangular tube

The functional form of shear stress of a hollow rectangular
tube is:

Y =
M

2t · (W − t) · (H − t)
, (7)

where M is the applied torque, t is the thickness, W the
width and H the height of the rectangular section for the
tube. We assume all this quantities are independent r.v. with
parameters reported in Table XI. The strength X is a r.v. with
standard deviation σx = 60, and its mean varies from 750
to 1000. Table XII shows the reliability values from Monte
Carlo simulations and applying the discretization methods by
English and Sargent, Roy and Dasgupta, and the proposal.

TABLE XI
STRENGTH PARAMETERS FOR APPLICATION C.

component μx σx

M 1500 150
t 0.2 0.005

W 2 0.02
H 3 0.03

They show that the new method perform better than the
other two. Passing from 5 to 7 and 9 points, here there is

a significant improvement in terms of closeness to the true
simulated values.

TABLE XII
COMPARATIVE CLOSENESS STUDY FOR HOLLOW RECTANGULAR TUBE

AND NORMAL R.V.

μx MC sim ES6 RD 5 AB5 AB7 AB9
1 750 0.5235 0.5315 0.5237 0.5264 0.5255 0.5255
2 760 0.5642 0.5859 0.5750 0.5827 0.5802 0.5802
3 770 0.6039 0.6281 0.6109 0.6196 0.6170 0.6169
4 780 0.6427 0.6569 0.6341 0.6423 0.6397 0.6396
5 790 0.6799 0.6766 0.6689 0.6774 0.6745 0.6744
6 800 0.7151 0.6972 0.6981 0.7074 0.7041 0.7040
7 805 0.7321 0.7050 0.7248 0.7362 0.7322 0.7320
8 810 0.7490 0.7271 0.7362 0.7485 0.7442 0.7441
9 815 0.7650 0.7363 0.7582 0.7719 0.7671 0.7669

10 820 0.7804 0.7671 0.7791 0.7952 0.7895 0.7893
11 825 0.7954 0.7771 0.7878 0.8036 0.7980 0.7979
12 830 0.8095 0.8114 0.8099 0.8272 0.8211 0.8209
13 835 0.8231 0.8166 0.8135 0.8303 0.8243 0.8241
14 840 0.8359 0.8531 0.8304 0.8476 0.8414 0.8412
15 845 0.8481 0.8550 0.8432 0.8602 0.8540 0.8538
16 850 0.8598 0.8828 0.8501 0.8662 0.8603 0.8601
17 855 0.8710 0.8841 0.8607 0.8764 0.8705 0.8703
18 860 0.8814 0.8998 0.8664 0.8816 0.8758 0.8756
19 865 0.8912 0.9023 0.8802 0.8949 0.8892 0.8890
20 870 0.9004 0.9026 0.8875 0.9024 0.8965 0.8963
21 875 0.9089 0.9137 0.8975 0.9119 0.9060 0.9058
22 880 0.9168 0.9149 0.9092 0.9241 0.9179 0.9177
23 885 0.9245 0.9226 0.9149 0.9294 0.9232 0.9230
24 890 0.9315 0.9253 0.9256 0.9403 0.9340 0.9338
25 895 0.9380 0.9318 0.9296 0.9440 0.9377 0.9375
26 900 0.9439 0.9370 0.9382 0.9524 0.9461 0.9459
27 925 0.9671 0.9697 0.9620 0.9730 0.9678 0.9676
28 950 0.9820 0.9852 0.9774 0.9856 0.9816 0.9813
29 975 0.9907 0.9902 0.9888 0.9948 0.9915 0.9913
30 1000 0.9954 0.9951 0.9937 0.9974 0.9954 0.9952

MAE 0.0111 0.0077 0.0068 0.0039 0.0039

D. Power dissipated by a circuit

Consider two resistors of resistance R1 and R2 connected
in parallel, with a voltage V across both of them. The power
dissipated from the resistors is

Y = V 2(1/R1 + 1/R2). (8)

The resistors draw power from a power supply whose power
X has a standard deviation σy = 12 and mean μy varying
from 110 to 150. The distributional parameters of the system
factors are reported in Table XIII.

TABLE XIII
STRENGTH PARAMETERS FOR APPLICATION D.

component μx σx

V 100 5
R1 150 15
R2 230 20

In Table XIV the results are reported. They show that the
proposed method with 5 points performs better than ES with
6 points and RD with 5 points; yet, unlike the previous three
applications, here increasing the number of points for the new
approach leads to a worsening in terms of closeness to the
simulated true values of reliability. In this case, for all the
methods but ES, the fifth scenario is particularly penalizing.
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TABLE XIV
COMPARATIVE CLOSENESS STUDY FOR POWER DISSIPATED IN A CIRCUIT

AND NORMAL R.V.

μx MC sim ES6 RD5 AB5 AB7 AB9
1 110 0.4996 0.4904 0.4759 0.4757 0.4754 0.4754
2 111 0.5214 0.4967 0.5068 0.5110 0.5097 0.5097
3 112 0.5434 0.5276 0.5240 0.5282 0.5266 0.5265
4 113 0.5648 0.5643 0.5319 0.5360 0.5343 0.5342
5 114 0.5862 0.5718 0.5422 0.5455 0.5441 0.5440
6 115 0.6073 0.5821 0.5954 0.6020 0.5988 0.5987
7 116 0.6282 0.5943 0.6059 0.6121 0.6087 0.6086
8 117 0.6487 0.6241 0.6152 0.6223 0.6188 0.6187
9 118 0.6683 0.6878 0.6474 0.6577 0.6531 0.6529

10 119 0.6878 0.6920 0.6664 0.6774 0.6722 0.6720
11 120 0.7065 0.6952 0.6814 0.6916 0.6865 0.6864
12 121 0.7250 0.7014 0.6904 0.7002 0.6951 0.6949
13 122 0.7426 0.7018 0.7228 0.7353 0.7292 0.7290
14 123 0.7594 0.7448 0.7457 0.7603 0.7536 0.7534
15 124 0.7757 0.7712 0.7552 0.7685 0.7618 0.7615
16 125 0.7911 0.7794 0.7590 0.7716 0.7648 0.7646
17 126 0.8059 0.7800 0.7702 0.7825 0.7761 0.7759
18 127 0.8201 0.8092 0.8121 0.8259 0.8185 0.8182
19 128 0.8337 0.8230 0.8174 0.8303 0.8228 0.8225
20 129 0.8466 0.8352 0.8198 0.8324 0.8251 0.8248
21 130 0.8585 0.8441 0.8451 0.8601 0.8521 0.8518
22 131 0.8698 0.8471 0.8557 0.8694 0.8612 0.8609
23 132 0.8805 0.8767 0.8652 0.8782 0.8703 0.8700
24 133 0.8904 0.8950 0.8691 0.8813 0.8736 0.8733
25 134 0.8997 0.9026 0.8892 0.9023 0.8943 0.8940
26 135 0.9085 0.9045 0.9010 0.9138 0.9056 0.9053
27 136 0.9168 0.9062 0.9063 0.9181 0.9103 0.9099
28 137 0.9244 0.9066 0.9075 0.9191 0.9114 0.9110
29 140 0.9378 0.9374 0.9379 0.9805 0.9401 0.9397
30 150 0.9792 0.9804 0.9775 0.9959 0.9774 0.9772

MAE 0.0140 0.0196 0.0132 0.0154 0.0155

V. CONCLUSIONS

In this paper, we presented a novel discretization tech-
nique that can be usefully applied to complex stress-strength
models for finding an approximate value for reliability. The
discretization of continuous random variables is often the only
accessible solution for assessing reliability when stress and
strength are an explicit known function of stochastic compo-
nents: classic interference theory may not be able to supply
exact results and Monte Carlo approximation via simulations
may require too much computational time. The proposal
is a straightforward procedure based upon typical standard
normal intervals and the corresponding quantiles; it can be
applied to any continuous distribution. A comparative study
involving other discretizing techniques, carried out on well-
known engineering problems, provides encouraging results.
The performance of the method in terms of closeness of
its estimates to the real simulated values is overall better
than other two existing procedures; its general nature further
suggests its use.
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