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Abstract—This paper presents the novel deterministic dynamic 

programming approach for solving optimization problem with 
quadratic objective function with linear equality and inequality 
constraints. The proposed method employs backward recursion in 
which computations proceeds from last stage to first stage in a multi-
stage decision problem. A generalized recursive equation which gives 
the exact solution of an optimization problem is derived in this paper. 
The method is purely analytical and avoids the usage of initial 
solution. The feasibility of the proposed method is demonstrated with 
a practical example. The numerical results show that the proposed 
method provides global optimum solution with negligible 
computation time. 

 
Keywords—Backward recursion, Dynamic programming, Multi-

stage decision problem, Quadratic objective function.  

I. INTRODUCTION 
HE mathematical modeling of various real world 
applications is formulated as quadratic objective function 

with a linear set of equality and inequality constraints. For 
example, planning and scheduling problems, various 
engineering design problems are formulated as an 
optimization problem with quadratic objective function. 
Particularly, in thermal power stations the fuel cost of the 
generating unit is formulated as a quadratic objective function. 
Various iterative methods such as lambda iteration method, 
gradient search method are presented in the literature for the 
solution of this problem [1]. These methods require initial 
assumptions and solutions are obtained through the iterative 
procedure. A branch and bound algorithm [2] has been 
developed for minimization of linearly constrained quadratic 
functions.  

Dynamic programming is a numerical algorithm based on 
Bellman’s optimality principle that find the control law, which 
provides the globally minimum value for the given objective 
function while satisfying the constraints [3]. Bellman’s 
principle of optimality states that “An optimal policy has the 
property that whatever the initial state and initial decision are, 
the remaining decisions must constitute an optimal policy with 
regard to the state resulting from the first decision”. The 
advantage of DP compared to other optimization techniques is 
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to be very efficient, not to be influenced by linear or nonlinear 
nature of the problem and especially to always guarantee that 
the solution found represents the global optimum [4]. 
Dynamic programming approach has been applied for solution 
of various practical optimization problems such as reservoir 
operational problems [5], agriculture and natural resource 
problems [6], crew scheduling problems [7], combined 
economic and emission dispatch problem [8], job scheduling 
problem [9] etc.  

Dynamic programming divides a complex optimization 
problem into simple sub-problems. The important feature of 
the dynamic programming approach is structuring of 
optimization problems into multistage decision problem, 
which are solved sequentially one stage at a time. Each sub-
problem is solved as an optimization problem and its solution 
helps to define the characteristics of the next sub-problem in 
the sequence. The recursive optimization procedure of a 
dynamic programming approach provides a solution of the n-
stage problem by solving one stage problem and sequentially 
including one stage at a time and solving one stage problem. 
This procedure will be continued till the solution of all the 
sub-problems is determined. 

This paper describes the new analytical solution 
methodology in which the backward recursive dynamic 
programming approach is implemented for the solution of 
quadratic optimization problem. The practical application of 
the proposed method is demonstrated with suitable example.  

II.  PROBLEM FORMULATION 
The optimization problem with quadratic objective 

function, an equality constraint and a set of inequality 
constraints are given by  

 
ሻݔሺ݂ ݊݅ܯ  ൌ  ∑ ௜ݔ௜ߙ

ଶ ൅ ௜ݔ௜ߚ
௡
௜ୀଵ ൅  ௜             (1)ߛ

 
here the coefficients ߙ௜,  ௜  are real numbers subject toߛ ݀݊ܽ ௜ߚ
equality constraint 
 

 ∑ ௜ݔ
௡
௜ୀଵ ൌ ்ܺ                         (2) 

 
and inequality constraints 
 

௜ݔ
௟ ൑ ௜ݔ ൑ ௜ݔ

௨ ,   ݔ௜ ൒ 0                (3)  
 
where XT is the sum of the decision variables, ݔ௜

௟ ܽ݊݀ ݔ௜
௨ are 
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lower and upper limits of decision ith decision variable, respectively.
 

 
Fig. 1 Multi-stage decision problem 

 
III. BACKWARD RECURSIVE APPROACH 

The optimum solution of n-variable problem is determined 
using dynamic programming by decomposing the original 
problem into n-stages. Each stage comprises a single variable 
sub-problem. Dynamic programming does not provide the 
computational details for optimizing each stage because the 
nature of the stage differs depending on the optimization 
problem. Such details are designed by the problem solver [10]. 
The computations in dynamic programming are carried out 
recursively that is the optimum solution of one sub-problem is 
taken as an input to the next sub-problem. The complete 
solution for the original problem is obtained by solving the 
last sub-problem. The sub-problems are linked together by 
some common constraints. The feasibility of constraints is 
accounted when each sub-problem is solved. 

Recursive equations are derived to solve the problem in 
sequence. These equations for multi-stage decision problems 
can be formulated in a forward or backward manner. Dynamic 
programming literature invariably uses backward recursion 
because, in general, it may be efficient computationally [11], 
[12]. A series of recursive equations are solved, each equation 
depending on the output values of the previous equation. 

Consider a multistage problem shown in Fig. 1. The stages 
1, 2, … , t , …, n are labeled in an ascending order. For the t- 
stage, the input is denoted by st-1 and output is denoted by st. 
The objective of a multistage problem is to find optimal values 
of ݔଵ, ,ଶݔ … ,  ௡ so as to minimize the objective functionݔ
subject to satisfying the equality and inequality constraints. 
The variable which links up two stages is called a state 
variable. The output of each stage is given by S଴ ൌ 0,
Sଵ ൌ ଵݔ ൌ Sଶ െ ,ଶݔ  S௡ ൌ ∑ ௜ݔ

௡
௜ୀଵ . 

Consider the last stage as the first sub-problem in the multi-
stage decision process. The input variable for the last stage is 
sn-1. The relation between the state variables and decision 
variables are given by S୲ ൌ S୲ିଵ ൅ ݐ     ,௧ݔ ൌ 1,2, … , ݊. The 
quadratic objective optimization problem is solved by writing 
recursive equation for the last stage and then proceeding 
towards the first stage. The objective function of the last stage 
is given by 

 
௡݂
ሺS௡ሻכ ൌ minሺߙ௡ ௡ݔ

ଶ ൅ ௡ݔ௡ߚ ൅  ௡ሻ                     (4)ߛ
 

Now the last two stages are grouped together as the second 
sub-problem. The objective function is written as 
 

 ௡݂ିଵ
כ ሺS௡ିଵሻ ൌ minሺሺߙ௡ିଵ ௡ିଵݔ

ଶ ൅ ௡ିଵݔ௡ିଵߚ ൅ ௡ିଵሻߛ ൅ ሺS௡ሻሻ  (5)                             

Substituting the objective function of nth stage in (5) gives 
 

௡݂ିଵ
כ ሺS௡ିଵሻ ൌ minሺߙ௡ିଵ ௡ିଵݔ

ଶ ൅ ௡ିଵݔ௡ିଵߚ ൅ ௡ିଵߛ ൅ ߙ௡ݔ௡
ଶ ൅ 

௡ݔ௡ߚ ൅      ௡ሻ                                              (6)ߛ
 

The output of the nth stage is given by 
 

S௡ ൌ ௡ݔ ൅ S௡ିଵ                               (7) 
 

The output of n-1 stage is given by  
 

S௡ିଵ ൌ S௡ିଶ ൅  ௡ିଵ                      (8)ݔ
 

Substituting (8) in (7) 
  

୬ݔ ൌ ሺS௡ െ S௡ିଶሻ െ  ௡ିଵ                 (9)ݔ
 

Equation (6) is converted into a single variable problem by 
substituting (9) in (6), i.e, 
 

௡݂ିଵ
כ ሺS௡ିଵሻ ൌ minሺߙ௡ିଵ ௡ିଵݔ

ଶ ൅ ௡ିଵݔ௡ିଵߚ ൅ ௡ିଵߛ ൅ ௡ሺሺS௡ߙ   െ
S௡ିଶሻ െ ௡ିଵሻଶݔ ൅ ௡ሺሺS௡ߚ െ S௡ିଶሻ െ ௡ିଵሻݔ   ൅  ௡ሻ        (10)ߛ

 
The optimal value of variable xn-1 is obtained by 

differentiating (10) with respect to xn-1 and equating to zero, 
 
௡ିଵݔ௡ିଵߙ2 ൅ ௡ିଵߚ ൅ ௡ିଵݔ௡ߙ2 െ ௡ሺS௡ߙ2 െ S௡ିଶሻ  െ ௡ߚ ൌ 0 (11) 
 
The expression for xn-1 is obtained from (11) 
 

௡ିଵݔ      ൌ ଶఈ೙ሺS೙ିS೙షమሻାఉ೙ିఉ೙షభ
ଶఈ೙షభାଶఈ೙

                     (12) 
 

Substituting (12) in (9) gives the expression for the variable 
xn     

                       
௡ݔ      ൌ ଶఈ೙షభሺS೙ିS೙షమሻିఉ೙ାఉ೙షభ

ଶఈ೙షభାଶఈ೙
                      (13) 

 
By substituting the expressions for  xn-1 and xn given in (12), 

(13) in (6), we get 
 

 n ݔ

Sn Sn-1 

 t ݔ

St St-1 S1 

 1ݔ 

S0   Stage 1   Stage t    Stage n ….. …..
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௡݂ିଵ
כ ሺS௡ିଵሻ ൌ minሺߙ௡ିଵ ቈ

௡ሺS௡ߙ2 െ S௡ିଶሻ ൅ ௡ߚ െ ௡ିଵߚ

௡ିଵߙ2 ൅ ௡ߙ2
቉

ଶ

൅ ௡ିଵߚ  ቈ
௡ሺS௡ߙ2 െ S௡ିଶሻ ൅ ௡ߚ െ ௡ିଵߚ

௡ିଵߙ2 ൅ ௡ߙ2
቉ ൅ ௡ିଵߛ

൅  ߙ௡ ቈ
௡ିଵሺS௡ߙ2 െ S௡ିଶሻ െ ௡ߚ ൅ ௡ିଵߚ

௡ିଵߙ2 ൅ ௡ߙ2
቉

ଶ

൅ 

௡ߚ ቂଶఈ೙షభሺS೙ିS೙షమሻିఉ೙ାఉ೙షభ

ଶఈ೙షభାଶఈ೙
ቃ ൅  ௡ሻ               (14)ߛ

 
On simplifying, (14) becomes 

 

௡݂ିଵ
כ ሺS௡ିଵሻ ൌ minሺሺܵ௡ െ ܵ௡ିଶሻଶ ቆ ଵ

ቀ భ
ഀ೙షభ

ቁ ା ቀ భ
 ഀ೙

ቁ
ቇ ൅ ሺܵ௡ െ

ܵ௡ିଶሻ ቆ
ቀഁ೙షభ

ഀ೙షభ
ቁାቀഁ೙

ഀ೙
ቁ

ቀ భ
ഀ೙షభ

ቁାቀ భ
ഀ೙

ቁ
ቇ ൅  ሺߚ௡ െ ௡ିଵሻଶߚ ሺఈ೙షభାఈ೙ሻ

ሺଶఈ೙షభାଶఈ೙ሻమ ൅ ሺߚ௡ െ

௡ିଵሻߚ ሺఉ೙షభିఉ೙ሻ
ሺଶఈ೙షభାଶఈ೙ሻ ൅ ௡ିଵߛ ൅         ௡ሻ              (15)ߛ

 
The output of the stage n-2  is given by  

 
                     S௡ିଶ ൌ S௡ିଷ ൅   ௡ିଶ                          (16)ݔ

 
 Substituting S௡ െ S௡ିଶ ൌ S௡ െ ሺS௡ିଷ ൅  ௡ିଶሻ in (15) givesݔ

 

௡݂ିଵ
כ ሺS௡ିଵሻ ൌ minሺሺS௡ െ S௡ିଷሻെݔ௡ିଶሻଶ ቆ ଵ

ቀ భ
ഀ೙షభ

ቁାቀ భ
ഀ೙

ቁ
ቇ ൅ ൫ሺS௡ െ

S௡ିଷሻ െ ௡ିଶሻ൯ݔ   ቆ
ቀഁ೙షభ

ഀ೙షభ
ቁାቀഁ೙

ഀ೙
ቁ

ቀ భ
ഀ೙షభ

ቁାቀ భ
ഀ೙

ቁ
ቇ ൅ ሺߚ௡ െ ௡ିଵሻଶߚ ሺఈ೙షభାఈ೙ሻ

ሺଶఈ೙షభାଶఈ೙ሻమ ൅

 ሺߚ௡ െ ௡ିଵሻ ሺఉ೙షభିఉ೙ሻߚ
ሺଶఈ೙షభାଶఈ೙ሻ ൅ ௡ିଵߛ ൅  ௡ሻ                                               (17)ߛ

 
The last three stages are grouped together as the third sub-

problem and the objective function is given by 
 

௡݂ିଶ
כ ሺS௡ିଶሻ ൌ  minሺሺߙ௡ିଶ ௡ିଶݔ

ଶ ൅ ௡ିଶݔ௡ିଶߚ ൅ ௡ିଶሻߛ   ൅
 ௡݂ିଵ

כ ሺS௡ିଵሻሻ                               (18) 
 
By substituting (17) in (18) gives 

 
 ௡݂ିଶ

כ ሺS௡ିଶሻ ൌ minሺሺߙ௡ିଶ ௡ିଶݔ
ଶ ൅ ௡ିଶݔ௡ିଶߚ ൅ ௡ିଶሻߛ ൅

 
    ሺሺS௡ െ S௡ିଷሻ െ ௡ିଶሻଶݔ ቆ ଵ

ቀ భ
ഀ೙షభ

ቁାቀ భ
ഀ೙

ቁ
ቇ ൅ ൫ሺS௡ െ S௡ିଷሻ െ

௡ିଶሻ൯ݔ   ቆ
ቀഁ೙షభ

ഀ೙షభ
ቁାቀഁ೙

ഀ೙
ቁ

ቀ భ
ഀ೙షభ

ቁାቀ భ
ഀ೙

ቁ
ቇ ൅    ሺߚ௡ െ ௡ିଵሻଶߚ ሺఈ೙షభାఈ೙ሻ

ሺଶఈ೙షభାଶఈ೙ሻమ ൅

 ሺߚ௡ െ ௡ିଵሻߚ ሺఉ೙షభିఉ೙ሻ
ሺଶఈ೙షభାଶఈ೙ሻ

൅ ௡ିଵߛ ൅  ௡ሻ ሻ                       (19)ߛ
 
The optimal value of variable xn-2 is obtained by 

differentiating (19) with respect to xn-2 and equating to zero, 
   

௡ିଶݔ௡ିଶߙ2 ൅ ௡ିଶߚ െ 2൫ሺS௡ െ S௡ିଷሻ െ ௡ିଶ൯ݔ ቆ ଵ

ቀ భ
ഀ೙షభ

ቁାቀ భ
ഀ೙

ቁ
ቇ െ

ቆ
ቀഁ೙షభ

ഀ೙షభ
ቁାቀഁ೙

ഀ೙
ቁ

ቀ భ
ഀ೙షభ

ቁାቀ భ
ഀ೙

ቁ
ቇ  ൌ 0                              (20) 

 
 

 From (20), the expression for xn-2 is given by  
             

௡ିଶݔ       ൌ
ଶቌ భ

൬ భ
ഀ೙షభ

൰శቀ భ
ഀ೙

ቁ
ቍሺS೙ିS೙షయሻାቌ

൬ഁ೙షభ
ഀ೙షభ

൰శ൬ഁ೙
ഀ೙

൰

൬ భ
ഀ೙షభ

൰శቀ భ
ഀ೙

ቁ
ቍିఉ೙షమ

ଶఈ೙షమାଶቌ భ

൬ భ
ഀ೙షభ

൰శቀ భ
ഀ೙

ቁ
ቍ

       (21)                   

 
In general, the optimal value of decision variable of the ith 

sub-problem is expressed from (21) 
                                                       

௜ݔ   ൌ

2 ൮ 1
∑ ቀ 1

௞ߙ
ቁ௡

௞ୀ௜ାଵ

൲ ሺS௡ െ S௜ିଵሻ ൅ ൮
∑ ൬ߚ௞

௞ߙ
൰௡

௞ୀ௜ାଵ

∑ ቀ 1
௞ߙ

ቁ௡
௞ୀ௜ାଵ

൲ െ ௜ߚ

௜ߙ2 ൅ 2 ൮ 1
∑ ቀ 1

௞ߙ
ቁ௡

௞ୀ௜ାଵ

൲

  

݅ ݎ݋݂     ൌ 1,2, … , ݊ െ 1                         ሺ22ሻ 
 

Using the generalized recursive given in (22), the solution 
of sub-problems from stage 1 to stage n-1 can be obtained and 
finally, the solution for nth stage is computed using (7).      

IV. COMPUTATIONAL PROCEDURE 
The procedure for implementing the proposed analytical 

approach for the solution quadratic objective function is 
detailed in the following steps: 
Step 1. Read the coefficients of the variables, lower and upper 

bounds of each variable and equality constraint of the 
given problem. 

Step 2. Treat the given optimization problem as a multistage 
problem. The problem is solved by breaking the 
original problem into a number of single stage 
problems. The number of single stage problem is equal 
to the number of variables. 

Step 3. Set S0=0, determine the optimal value of variable ݔଵ for 
the first stage problem using the generalized recursive 
equation given in (22). The optimal values of the 
remaining variables are determined using recursive 
equation by proceeding stage 1 to stage n in a forward 
manner. 

Step 4. During the recursive procedure if any variable violates 
their maximum or minimum limit then that variable is 
fixed at the corresponding violated limit and this sub-
problem is eliminated from the recursive procedure and 
this variable value is subtracted from the equality 
constraint.  Now start the recursive procedure for stage 
1. 

Step 5. Calculate the objective function of the given 
optimization problem using the optimal solutions 
obtained through the recursive procedure.    

V.  COMPUTATIONAL STUDIES 
To test the performance of the proposed method, 

computational studies are performed for the real world 
optimization problem. The recursive approach is implemented 
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for power generation scheduling problem in a thermal power 
station. The realistic Indian system data given in [13] is used 
in this paper. The input-output curve of a generating unit 
specifies cost of fuel used per hour as the function of the 
generator power output. In practice [14], the fuel cost of 
generator i is represented as a quadratic function of power 
generation Pi,i.e.,  

 
௜ሺܥ  ௜ܲሻ ൌ  ܽ௜ ௜ܲ

ଶ ൅ ܾ௜ ௜ܲ ൅ ܿ௜                       (23)   
 
where Ci(Pi) is the fuel cost in (Rs/h), Pi is the power 
generated  in Megawatt (MW), ai, bi, ci are the fuel 
coefficients of the ith unit. The objective is to minimize total 
fuel cost of committed generating units, which is expressed as  
 

ሺܲሻܥ                ൌ ݊݅ܯ ∑ ௜ܥ
ே
௜ୀଵ ሺ ௜ܲሻ                         (24) 

 
Subject to  
i. Power balance constraint: The total power generated by 

the generating units must supply total load demand PD: 
 

                                 ∑ ௜ܲ
ே
௜ୀଵ ൌ ஽ܲ                                    (25) 

 
ii. Generator capacity constraint:  The power generated by 

each generator is constrained between its minimum and 
maximum limits, i.e., 

 
                                 ௜ܲ

௠௜௡ ൑ ௜ܲ ൑ ௜ܲ
௠௔௫                           (26) 

 
where ௜ܲ

௠௜௡ and ௜ܲ
௠௔௫ are the minimum and maximum power 

output of the ith generator. 
This case study considered the six generating units test 

system. The fuel cost coefficients and generator capacity 
constraints are given in Table I. The total load demand 
expected to meet by the six generating units is PD=900 MW. 
The result obtained through the proposed recursive approach 
is given in Table II. In this case study, the generating output of 
each generator lies within the operating limits and total 
generation is equal to the total load demand. The total fuel 
cost is Rs 45463.4922. 

 
TABLE I 

FUEL COST COEFFICIENTS AND OPERATING LIMITS OF GENERATING UNITS 
Generating unit ai bi ci Pi

min MW Pi
max MW

G1 0.15247 38.53973 756.79886 10 125 
G2 0.10587 46.15916 451.32513 10 150 
G3 0.02803 40.396551049.32513 40 250 
G4 0.03546 38.30553 1243.5311 35 210 
G5 0.02111 36.32782 1658.5696 130 325 
G6 0.01799 38.27041 1356.6592 125 315 

 
For the same test system, the load demand PD is increased 

to 1170MW. During the recursive procedure sixth generating 
unit violates its maximum limit. Therefore generation of sixth 
unit is fixed at its maximum limit, i.e., P6=315 MW. Now the 
remaining generators have to meet a load demand of 855 MW. 
With this load demand, recursive procedure is applied for the 

remaining units. In this case, fifth generator violates the 
maximum generation limit. Hence the generation of fifth unit 
is fixed as P5= 325 MW. The remaining four units should 
supply the load demand of 530 MW. During the recursive 
procedure fourth unit violates its maximum limit therefore the 
generation of fourth unit is fixed to 210MW, and recursive 
procedure is applied to remaining three generators with a load 
demand of 320 MW. The total fuel cost is Rs 59095.1804. The 
optimal generation schedule obtained through the proposed 
method is given in Table III. The solutions obtained using 
recursive approach exactly matches the solutions obtained 
through the lambda iteration method.  

 
TABLE II 

OPTIMAL GENERATION FOR LOAD DEMAND 900 MW 
Generating Unit Power Output (MW) 

P1 32.4969 
P2 10.8160 
P3 143.6460 
P4 143.0318 
P5 287.1039 
P6 282.9053 

Tot. generation(MW) 900 
Fuel cost (Rs/h) 45463.4922 

 
TABLE III 

OPTIMAL GENERATION FOR LOAD DEMAND 1170 MW 
Generating Unit Power Output (MW) 

P1 49.3810 
P2 35.1318 
P3 235.4872 
P4 210.0000 
P5 325.0000 
P6 315.0000 

Tot. generation(MW) 1170 
Fuel cost (Rs/h) 59095.1804 

 
The salient features of the proposed recursive approach are 

(i) This method avoids the need of initial assumption (ii) the 
exact recursive formula derived in this paper directly gives the 
solution without need to perform any iterative procedure and 
(iii) This approach can be easily implemented for solution of 
large scale optimization problem with quadratic objective and 
linear constraints described in Section II. 

VI. CONCLUSION  
A novel deterministic dynamic programming approach has 

been developed for the solution of quadratic objective function 
with linear constraints. The proposed analytical approach 
directly gives the global optimal solution for the problem 
without any assumptions. The validity of the approach is 
verified with a practical power generation scheduling problem. 
The result of the test system shows the superiority of the 
proposed method and its potential for solving practical 
optimization problems. The developed approach is simple and 
efficient which can be easily implemented for the solution of 
various optimization problems modeled as quadratic objective 
function with linear constraints. 
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