
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2741

Abstract—In order to make surfing the internet faster, and to

save redundant processing load with each request for the same web
page, many caching techniques have been developed to reduce
latency of retrieving data on World Wide Web. In this paper we will
give a quick overview of existing web caching techniques used for
dynamic web pages then we will introduce a design and
implementation model that take advantage of “URL Rewriting”
feature in some popular web servers, e.g. Apache, to provide an
effective approach of caching dynamic web pages.

Keywords—Web Caching, URL Rewriting, Optimizing Web
Performance, Dynamic Web Pages Loading Time.

I. INTRODUCTION

BOUT two decades ago, most of web pages on the
internet were just static HTML pages and the job of

building a website was an easy job and doesn’t require much
knowledge of computer programming. But nowadays most of
websites are dynamic ones which rely on a scripting language
to run, and become more complicated as they provide new
features such as personalization of contents and dynamic
advertisements. Also it allows just about anyone, with limited
or no web design experience, to update their own website via
an administrative backend [7].

But unfortunately loading of a web dynamic page is slower
and requires more operations than loading a static page [14],
[15]. As a result the need of web caching becomes crucial as
dynamic pages are the dominant in the web. To alleviate
server processing overhead and reduce loading time of
dynamic web page, it is possible to get the generated output of
the dynamic page and save it in the cache, so that any
subsequent request will be served from the cache only with no
need to execute the same code again [12], [13]. Thus a
dynamic web page can be served nearly as a static one.
In this paper we will discuss the popular techniques of web
caching used today, and then we will introduce a simple de-
sign model and its implementation of a web caching technique
followed by a comparison study and an analysis of the
enhanced performance after using this technique.

M. E. Saleh is with the Integrated Simulators Complex, in Arab Academy
for Science and Technology,Alex., Egypt, e-mail: mostafa.saleh@aast-isc.org.

A. Abdel Nabi is with the Informatics Institute, in Mubarak City for
Scientific Research and Technology Applications, (Phone: (+2012-32-32-
674), e-mail:iplanetfit@gmail.com, P.O Box: 21934 Alexandria, Egypt).

A. B. Mohamed is with the Computer Engineering Department, Arab
Academy for Science and Technology, Alexandria, Egypt (e-mail:
baithmm@hotmail.com).

II. WEB CACHING OVERVIEW

Web caching can be subdivided into client, network and
server caching [4]. In the following three subsections we will
demonstrate each one of them and explain its main goal and
potential drawback.

A. Client-Side Caching
Client-side caching is mainly integrated into the user

browser, in which the browser assigns certain disk space to
store some latest pages the user has visited.

The main goal of client-side caching is to reduce the request
time for the client's web requests. Yet it may involve some
drawbacks when the user's cached pages become stale, in
order to solve this problem HTTP standards have some
headers that help to reduce the probability of caching stale
pages. Fig. 1 shows typical request and response HTTP
headers, the relevant caching headers in the response are Date,
Cache-Control, Expires, Last-Modified and ETag.

The “Cache-Control” header controls the page cache ability,
and it is a general header used to specify directives that must
be obeyed by all caches along the request [5], “Expires”
header specifies the expiration time of the page at which the
page will become stale and has to be fetched again from the
original server, “Last-Modified” header specifies last
modification of the requested web page, the browser then
compares the date of its cached version of the page to the
server response, if it was saved before the “Last-Modified”
header then it will fetch the page from the original server.

Client-Side caching is very effective for static pages, but in
case of dynamic pages, caching headers are not effective as
they depend on last modifications of the file on the file
system, and since dynamic web pages are generated
dynamically, so script file responsible for generating the
output doesn’t necessarily change in order to give different
output.

B. Network Caching
As fig. 1 demonstrates, the main end points of web page

path are the origin server which created the response and the
client which receives the response. Along the way there are
other nodes such as ISP servers and proxy servers. For these
servers the problem of saving the bandwidth is an important
one, and if the same page has been requested more than one
time and gave the same response, it should be cached at the
proxy server so that any client requests the same page, the

A Design and Implementation Model for
Web Caching Using Server “URL Rewriting”

Mostafa E. Saleh, A. Abdel Nabi and A. Baith Mohamed

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2742

proxy doesn't have to waste additional bandwidth in
contacting the origin server and getting the page once again.

This type of caching is called network cache, which mainly
aim to save network traffic and bandwidth. In this type of
caching the user-perceived response time should be lesser than
if the response has to travel all the way from the origin server
to the client, though loading time in network caching should
be more than client-side caching, as in client-side responses
are stored in the client's local machine. Many systems were
developed to achieve network caching; examples of such
systems are Squid proxy [21] and Active Cache [3].

Network caching is subject to the drawbacks discussed in
the previous section, and the same techniques are used to
reduce these drawbacks.

Fig. 1. Typical HTTP response and request headers

C. Server-Side Caching
As the name implies, server-side caching takes place at the

origin server. The main goal of server side caching to achieve
is to alleviate server load and to save processing of redundant
requests. Server load can be specified into two categories,
scripting engine load, and database server load.

Many techniques have been developed to save server
processing load, one of these techniques is Memcached [8]
which mainly concerns of alleviating database load.
Memcached is a distributed memory object caching system,
which caches database query results in memory. Another
technique of database caching is content aware caching (CAC)
[2], which is distributed model for database caching that
caches the results of database queries on the edge server.
DBCache [9] and DBProxy [10] are example systems of CAC.
An alternative approach to CAC is Content-Blind Caching
(CBC) [11], in which edge servers store remote database
query results independently. By version 4.0.1 MySQL
represented “MySQL Query Cache” as a caching feature in its
database engine [24], MySQL official documentation says:

“The query cache stores the text of a SELECT statement
together with the corresponding result that was sent to the
client. If an identical statement is received later, the server
retrieves the results from the query cache rather than parsing
and executing the statement again. The query cache is shared
among sessions, so a result set generated by one client can be
sent in response to the same query issued by another client.”
[25].

In our implementation we will show how our model can
save database and scripting load at original server and ensures
the consistency of the contents of pages. We chose MySQL
query cache to make a comparison with our model to depict
the difference in performance, as it is a server-side caching as
our model, and for its popular use on the internet.

III. SECURITY CONSIDERATIONS

Although we do not focus on the security issues of web
caching in this research, but it worth to mention some security
considerations. W3C says: “Caches expose additional
potential vulnerabilities, since the contents of the cache
represent an attractive target for malicious exploitation.
Because cache contents persist after an HTTP request is
complete, an attack on the cache can reveal information long
after a user believes that the information has been removed
from the network. Therefore, cache contents should be
protected as sensitive information.” [5].

In the following section we will give some comparison of
loading time of dynamic page that prints a text paragraph with
different methods and a static page that contains the same
paragraph.

IV. WHAT DOES AFFECT LOADING TIME AT SERVER?

A static web page is a web page that always comprises the
same information in response to all download requests from
all users [6], dynamic web page is different from static web
page, in which different output may be given according to
other factor, such as user requesting the page or data or
request type, etc…, so that serving a dynamic web page
involves processing overhead compared to serving a static one
[15].

In static web pages the request and response process is
simple, when a user requests the page, the web server receives
the request and gets the page file from the file system, read it
and output the contents to the user directly as shown in Fig. 2.
We can note here that in order to process the page, two layers
are involved, the web server and the file system.

Whereas in dynamic web pages the process is much
complicated, Fig. 3 shows a dynamic web page generation, we
can see that when the web server receives the request it will
check the requested page extension and compare it to its
preconfigured list of extensions of dynamic pages, when the
web server finds out that the requested page is a dynamic one,
it will load the associated scripting engine such as PHP [22] or
ASP (Active Server Pages) [23] with the page name as a
parameter, which will read the page file from the file system
and executes the code inside the dynamic web page file, and if
the web page requires data from the database, then a

Request Header:
GET / HTTP/1.1
Host: www.msaleh.co.cc
User-Agent: Mozilla/5.0 (Windows; U; Windows
NT 5.1; en-US; rv:1.9.0.10)
Gecko/2009042316 Firefox/3.0.10
Accept: */*
Connection: close

Response Header:
HTTP/1.1 200 OK
Date: Sat, 09 May 2009 12:27:54 GMT
Server: Apache/2.2.11 (Unix)
Last-Modified: Thu, 12 Feb 2009 15:29:42
GMT
Etag: "c3b-462ba63a46580"-gzip
Cache-Control: max-age=1200, private,
proxy-revalidate, must-revalidate
Expires: Sat, 09 May 2009 12:47:54 GMT
Accept-Ranges: bytes
Content-Length: 976
Content-Type: text/html

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2743

connection should be established to the database and a query
should be executed, then the database answers the query
results back to the scripting engine and after code interpreting
is completed, the scripting engine gives the output to the web
server, which in turn gives it back to the user. So in dynamic
web page execution model two more layers are added over
those for static page, which are the scripting engine and
database server, and that is done in the most cases. However,
in other cases that process can go longer, consider a web site
communicating with web services on remote server, the
connection latency and web service execution time will be
added too.

In order to clarify how much delay and increase in loading

time occur when more layers are added to the process of
retrieving a web page, we will run four test cases to
demonstrate this point. In our comparison we will store 1024
characters in the subject webpage, which will run under
Apache 2.2 web server and the dynamic version of the
webpage will be written in PHP, and we will use PHP5 as
scripting engine and MySQL 5 [24] as the database server, the
host computer is Pentium 4 2.0Ghz with 768MB of RAM. The
resulting loading time will be the average loading time of 100
consecutive requests for the page.

The first test case has the 1024 bytes of data stored in a
plain HTML file, the second case has the data stored in a PHP
file, and we will write the 1KB data inside the file and not
within PHP tags, so the PHP interpreter will be loaded but
should not interpret any code, whereas in the third case we
will get the PHP interpreter involved, by printing the data
using ‘print’ function, and in the fourth case we will retrieve
the same data from a database table and use the PHP ‘print’
function to output the data.

V. RESULTS

Table I shows that static page loading is the fastest of all as
it involves only web server management to get the contents to
the user. While in the second case, the PHP interpreter has
been given the page to interpret, although there was no code to
interpret, calling the PHP interpreter or scripting engine in
general caused the extra load in serving the request.

In the third case, the PHP interpreter executes the code that
output the contents. So the loading here is web server
management + scripting language engine loading + executing
code. As the results show, there was not a big difference in
loading time between this case and the second one, since
loading the scripting engine is mostly more time consuming
than code interpretation.

In the last case, a third-party was involved, which is the
database management server, in our case ‘MySQL’ , so the
loading time will be = web server management + scripting
language engine loading + executing code + MySQL
processing of data.

As we see the more dynamic the page becomes, the more

latency we will get in order to get the output. In the following
section we will introduce the model of our design and show
how it will make the load of serving a cached dynamic web
page nearly the same as serving a static one by eliminating the
scripting engine and database processing in retrieving the
cached pages.

VI. IMPLEMENTATION

As we examined, static pages are much faster than dynamic
ones as they do not involve any interpreter engine or database
server.

We noted that for each request of the same page, same
operations are done every time which leads to the same output.
Our goal is to save server load of subsequent requests by
saving a copy of the output on the server, so that for any
subsequent requests for the page, the server will treat that copy
as a fully static page and will not load any third-party
applications since the original data has not been changed.

TABLE I
RESULTS COMPARISON

Case Time*

1 4.2
2 7.2
3 7.24

4 32

*Time is in milliseconds.

Fig. 2. Request/response process of a static web page.

Fig. 3. Request/response process of a dynamic web page

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2744

A. Writing to the Cache
The process of writing to the cache will be as follows.

When the user requests a dynamic web page for the first time,
the web page will be executed, any code inside the page and
any database queries will be executed normally, and at the end
of the execution, the script should save the HTML output as
.html file in the cache directory. Saving the HTML output can
be done by output control functions, such as ob_get_contents()
in PHP [16].

If any changes occurred to a database table, all cached
pages that read from this table has to be deleted, and that can
be done by implementing a class in the desired server-side
language, that bind each page with its associated database
tables, and when an alternation to the table contents takes
place, that class - which have a reference to all associated
cached pages – can delete them, then when a user requests the
page, the dynamic version will be executed again for one time
and will save the output as .html file in caching directory. The
cached file name should have the same name of the dynamic
page concatenated to its parameter, as the same dynamic page
can give different output according to the passed parameters in
the URL [17]. For example if the user requests “http://
example.com/profile.php?uid=saleh”, the cached HTML file
name could be “profile.php?uid=saleh.html” or any other
convention the web developer may follow.

The web site backend or administrative pages that add, edit
or delete from the database should consider the cached pages
that interact with the altered tables by cleaning the cache from
pages that no longer have fresh contents.

B. Retrieving Cached Pages
When a second request to the same dynamic page comes to

the server, the server will look for the cached file name in the
cache directory, in our case “profile.php?uid=saleh.html”, and
if the file exists in the cache, the server will implicitly
redirected to the cached page, and if the server didn’t find it, it
will let the request to call the original page with the sent
parameters.

The decision of redirection should not be made by another
dynamic web page; as if it is, the script engine will be loaded
and then we didn’t save script engine processing load. We
want the web server itself to do the check and redirection, so
the solution is “URL Rewriting” feature. “URL rewriting” or
“Rewrite Engine” is a feature or module embedded in many
web servers, that modifies the URL appearance or redirect the
requested URL to a new one whether explicitly or implicitly,
and used mainly to provide short and neat URLs [18]. Rewrite
engine is integrated in many web servers such as Apache [19]
and IIS (Internet Information Services) [20]. The flow chart of
the model is shown in Fig. 4. The job of web server in
managing cache is to check for cached page existence and
then take a decision either to redirect to cached page or to call
original dynamic page. In Apache, for example, URL
rewriting module has two very useful options to accomplish
this task, “RewriteCond” which specifies conditions according
to which the next directive will operate, and this directive is
the responsible of checking the existence of a cached copy in
cache directory, and “RewriteRule” which will be executed if
the “RewriteCond” is satisfied, which will perform the
implicit redirection to the cached pag.e if found in cache.

VII. EVALUATION

To demonstrate the enhanced performance using our
model, we will run a test scenario that has four pages in
different 4 test cases, each page will output 50, 100, 150 and
200 Kbytes of data, and we chose this range of page sizes as
most of normal web sites pages’ size are within this range.
The first page is a static HTML page that contains the data
inside it, same as case 1 in section IV, the second page is a
dynamic PHP one that gets the data from a database server as
case 4 in section IV, the third one will be the same as the last
dynamic page but with “MySQL Query Cache” enabled, and
the fourth page will be the same as the second but with our
caching model applied. We will measure the average loading
time of 100 consecutive requests for each case. Note that in
the fourth page, the first request will load the dynamic file as a
normal dynamic page, but at the end of the execution a cached
version will be stored and each subsequent request will get the
cached static page instead of loading the dynamic one once
again. Fig. 5 shows the test results.

Fig. 4. Flow chart of caching using URL rewriting

Fig. 5. The result of the average loading time of 4 types of pages

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2745

To further illustrate the caching effect on the dynamic
page, Fig. 6 shows a comparison of loading time between a
dynamic page before and after applying the caching using
URL rewriting, note that at the first request the response time
is high for the two pages, whereas at the second request the
web server responded with the cached version of the page
when applying our system, which dramatically decreased the
loading time.

VIII. LIMITATIONS AND SUGGESTIONS

As any caching system has a number of limitations, this
section demonstrates some of potential limitations of our
system specifically and most caching system generally. File
caching systems are mainly used in web sites with infrequent
changes of database contents; also caching systems do not
expect random data to be in the subject web page, such as
current data or time, or random piece of information on the
page. However, if such dynamic information has to be in the
page with each request, it can be embedded as Ajax scripts
inside the cached page, and that is how the contents of the
page can be changed with each request and in the same time
preserves the cached page and diminish the server processing
by just processing part of the page not all of it once again.

IX. CONCLUSION

Web caching is an important subject since WWW had
great popularity that grows every day. Many techniques have
been developed to save network bandwidth and server
processing load. We showed different types of web caching
with the advantages and disadvantages of each type. We
showed that caching at server side makes the cached data
more controllable by the system administrator than caching at
proxy servers or client-side browser. Then we proposed our
model of a simple web caching mechanism based on URL
Rewriting feature that is available in many web servers and
showed by simulation how the model enhanced the response
time of a dynamic web page.

REFERENCES
[1] Brian D. Davison, “A Web Caching Primer”, IEEE internet computing,

Volume 5, Number 4, pp. 38-45, July 2001.
[2] Swaminathan Sivasubramanian., Guillame Pierre, Maarten van Steen

and Gustavo Alonso, “Analysis of Caching and Replication Strategies
for Web Applications”. IEEE Internet Computing 11(1), pp. 60-66,
January-February 2007.

[3] Pei Cao, Jin Zhang and Kevin Beach, “Active Cache: caching dynamic
contents on the web”, In Middleware '98. IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, pp.
373-88, Lake District, UK, 15-18 September 1998.

[4] Jean-Marc Menaud et al, “Improving the Effectiveness of Web
Caching”, Advances in Distributed Systems, Advanced Distributed
Computing: From Algorithms to Systems, pp. 375-401, January 1999.

[5] W3C, HTTP/1.1, part 6: Caching, http://tools.ietf.org/html/draft-ietf-
httpbis-p6-cache-08, October 2009.

[6] Wikipedia. (2009, June) Static Web Page. [Online]. Available:
http://en.wikipedia.org/wiki/Static_web_page, 2009.

[7] Wikipedia. (2009, June) Dynamic Web Page. [Online]. Available:
http://en.wikipedia.org/wiki/Dynamic_web_page, 2009.

[8] Danga Interactive, Memcached - distributed memory object caching
system, [Online]. Available: http://www.danga.com/memcached/

[9] C. Bornhvd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald.
“Adaptive database caching with DBCache”. Data Engineering,
27(2):11–18, June 2004.

[10] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. “DBProxy: A
dynamic data cache for web applications”. In Proceedings of
International Conference on Data Engineering, pp. 821–831, 2003.

[11] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso.
“GlobeCBC: Content-blind result caching for dynamic web
applications”. Technical Report IR-CS-022, Vrije Universiteit,
Amsterdam, The Netherlands, 2006.

[12] K. Rajamani and A. Cox, “A Simple and Effective Caching Scheme for
Dynamic Content”, Rice Univ. CS Technical Report TR 00-371, 2000.

[13] Iyengar, Arun and Rosu, Daniela, “Architecting Web sites for high
performance”, Scientific Programming Journal., vol. 10, no. 1, pp. 75–
89, 2002.

[14] Matthew Syme, Philip Goldie, “Optimizing Network Performance with
Content Switching: Server, Firewall, and Cache Load Balancing”,
Pretice Hall, page 119, 2003.

[15] B. M. Subraya, “Integrated approach to web performance testing: a
practitioner's guide”, Idea Group Inc (IGI), page 32, 2006.

[16] PHP web site, Manual – ob_get_contents() [Online]. Available:
http://us3.php.net/manual/en/function.ob-get-contents.php. 2009

[17] Jaimie Sirovich, Cristian Darie. “Professional search engine
optimization with PHP”, Wiley Publishing, Inc., page 39, 2007.

[18] Wikipedia. Rewrite Engine. [Online]. Available:
http://en.wikipedia.org/wiki/Rewrite_engine. 2009

[19] Apache Web Server Documentation, [Online]. Available:
http://httpd.apache.org/docs/2.2/rewrite/. 2009.

[20] IIS, URL Rewriting Documentation. [Online]. Available:
http://learn.iis.net/page.aspx/460/using-url-rewrite-module/. 2008.

[21] Squid Proxy, Optimizing Web Delivery. [Online]. Available:
http://www.squid-cache.org/.

[22] PHP: Hypertext Preprocessor, [Online]. Available: http://www.php.net/.
[23] The Official Microsoft ASP.NET Site. [Online]. Available:

http://www.asp.net/.
[24] MySQL Database Server Official Home Page, [Online]. Available:

http://www.mysql.com/.

[25] Michael Widenius, David Axmark, MySQL AB, “MySQL reference
manual: documentation from the source”, O'Reilly, page 554, 2002.

Fig. 6. Average loading time along multiple requests

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2746

A. Baith Mohamed is a Professor at the Arab Academy
for Science and Technology, College of Engineering and
Technology, Computer Engineering Department. IEEE
Senior Member. Board member in Computer Scientific
Society, Egypt.
baithmm@hotmail.com

 A. Abdel Nabi is a Associated Professor at Mubarak
City for Scientific Research and Technology
Applications, Informatics Institute, Head of Network and
Distributed Systems Department, Alexandria Egypt.
iplanetfit@gmail.com

M. E. Saleh is a Software Engineer working at
Integrated Simulators Complex, Arab Academy for
Science and Technology, He is a MSC. candidate at
AAST

