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Abstract—A new decomposition form is introduced in this report
to establish a criterion for the bi-partite separability of Bell diagonal
states. A such criterion takes a quadratic inequality of the coefficients
of a given Bell diagonal states and can be derived via a simple
algorithmic calculation of its invariants. In addition, the criterion can
be extended to a quantum system of higher dimension.
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I. INTRODUCTION

QUANTUM entanglement is a characteristic of two or
more quantum systems, which reveals the correlations

that fail to be explained by classical physics. It plays an
important role in the processes of quantum computation, quan-
tum communication and quantum information theory, such
as teleportation, dense coding and many quantum protocols.
Deciding whether a given quantum state is separable is one
of the most fundamental problems. Remind that in a bi-partite
system HA ⊗ HB , a quantum state is separable if it can be
written as a convex combination of pure product states

ρ =
N∑

i=1

pi|ψA
i 〉〈ψA

i | ⊗ |ψB
i 〉〈ψB

i |, (1)

where pi ≥ 0,
∑N

i=1 pi = 1, |ψA
i 〉 ∈ HA and |ψB

i 〉 ∈ HB .
Otherwise, this state is entangled. Note that here a state is a
density operator or density matrix that is hermitian, trace unit
and positive semidefinite.

An enormous number of research works have been realized
to search for the criteria to answer the separability problem
of a state. The earliest criterion, reported by Peres [1], is
to use the partial transpose of a given density operator. A
such criterion provides a sufficient and necessary conditions
of deciding the separability of states in lower-dimensional
bipartite systems [2], including 2 × 2 and 2 × 3 systems.
There are other operational criteria for separability, such as
concurrence criterionn [3], reduction criterion [4], majoriza-
tion criterion [5]. Nevertheless, it is very difficult to examine
whether some given states of any dimension can be written
as a mixture of product states [6]. On the other hand, both
entanglement witnesses and positive maps are sufficient and
necessary conditions under any dimension system, but these
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two criteria are non-operational [2]. Based on the above-
mentioned criteria, some researchers developed various meth-
ods to search for optimal measurements on the given density
operators [7], [8].

In 2× 2 system, the Bell diagonal states can be character-
ized by three-parameter set, whose separability are complete
studied [6], [9]. The Bell diagonal states in 3× 3 system are
introduced in [10], then Baumgartner, et al [11] extend their
study to d×d system. In addition to these, more properties of
Bell diagonal states were analyzed [12]. Numerous attempts
have been made by scholars to write down the decomposition
form for Bell diagonal states, but most of them are limited
to special cases (Werner state) [15]–[19]. Sanpera, et al. [14]
utilize a constructive algorithm to decompose the separable
state in either a 2 × 2 or 2 × 3 system. The decomposing
procedure is examined by Werner state with a non-unique
decomposition. Another decomposition method, which are
developed by Wootters [3], based on the minimum average
entanglement of an ensemble of the eigenstates of a density
matrix for Bell diagonal states in a 2 × 2 system. Although
Wootters’s method is a successful measure, it is difficult that
the physical phenomena to observe when the separability of
Bell diagonal states are transformed into entanglement.

In this article, we focus on the separability properties of
Bell diagonal states in a 2p×2p system, We propose a criteria
(necessary condition) for the bi-partite separability of the Bell
diagonal states in a 2p × 2p system, and write down a new
separable form for the Bell diagonal states in a 2× 2 system,
which is different from the convex combination obtained by
previous research work. In order that the any d × d systems
(2p−1 < d ≤ 2p) could be analysis, they can be embedded
to the 2p × 2p system. This research work is organized in the
following ways. In sec.II we review the relation between the
standard basis and the spinor basis (identity matrix and Pauli
matrices). In the spinor basis, we could obtain a necessary
condition of the separable Bell diagonal states base on the
inequality Tr2(ρ) ≥ Tr(ρ2). Besides, we carry out the proof
of the sufficient condition via presented decomposition for
the bi-partite separability of the Bell diagonal states in a
2× 2 system. This process, based on the definition of density
operators (unit trace, hermitian, and positive-semidefinite), is
not only different from the method used in [2], [3], [15], [17],
but gives us an insight into quantum entanglement. When
the separability of Bell diagonal states are transformed into
entanglement, implied the local density operators ρIk moved
to the outside the Hilbert space HI for I = A,B. Then, we
would operated Peres PT criterion and compared this result
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with presented. It is known on the condition p = 1 that ρB is
separable iff 1 ≤∑3

i=1 |Ωii|. In sec.III we extend this schemes
to the condition p > 1 and acquire the inequality

II. BELL’S MIXTURE IN A TWO-QUBIT SYSTEM

The discussion begins with maximally entangled states
in the simplest bipartite system, a two-qubit system. The
formulation of a density operator in this article employs the
spinor representation such that one can recursively extend the
scheme designed in a two-qubit system to that in a multi-qubit
system. Including the identity matrix, the Pauli matrices are
the following 2× 2 matrices

I = σ0 = (
1 0
0 1

) = |0〉〈0|+ |1〉〈1|;

σ1 = (
0 1
1 0

) = |0〉〈1|+ |1〉〈0|;

σ2 = (
0 −i
i 0

) = −i|0〉〈1|+ i|1〉〈0|;

σ3 = (
1 0
0 −1

) = |0〉〈0| − |1〉〈1|. (2)

Under this representation, a two-qubit density operator is
expressed as

ρ =
1

4

3∑

i,j=0

Ωijσi ⊗ σj , (3)

here Ωij ∈ R and Ω00 = 1.
By definition, the four maximally entangled two-qubit

states(Bell’s states) could be expressed as:

|Φ+〉 = 1√
2
(|00〉+ |11〉),

|Φ−〉 = 1√
2
(|00〉 − |11〉),

|Ψ+〉 = 1√
2
(|01〉+ |10〉),

|Ψ−〉 = 1√
2
(|01〉 − |10〉). (4)

In the standard basis, the Bell’s mixture can be written as:

ρB = λ1|Φ+〉〈Φ+|+ λ2|Φ−〉〈Φ−|
+ λ2|Ψ+〉〈Ψ+|+ λ4|Ψ−〉〈Ψ−| (5)

where λi (i = 1 ∼ 4) are the eigenvalues of the ρB . With the
help of Eq. 2, one may rewrite Eq. 5 in the spinor basis:

ρB =
1

4
(I ⊗ I +

3∑

i=1

Ωii(−1)εiσi ⊗ σi), (6)

here ε1 = ε3 = 0, ε2 = 1, and

λ1 =
1

4
(1 + Ω11 +Ω22 +Ω33),

λ2 =
1

4
(1− Ω11 − Ω22 +Ω33),

λ3 =
1

4
(1 + Ω11 − Ω22 − Ω33),

λ4 =
1

4
(1− Ω11 +Ω22 − Ω33). (7)

In the following we show the sufficient and necessary
conditions for the separability of ρB can be expressed by the
inequality:

1 ≤
3∑

i=1

|Ωii| (8)

One can obtain the above inequality based on the method
which is different from the PT [2] or Wootters occurrence [3].

First of all, we prove the inequality Eq. 8 is a necessary
condition for bipartite separability of ρB . Suppose ρB =∑N

k=1 pkρ
A
k ⊗ ρBk is separable, pk ≥ 0 and

∑N
k=1 pk = 1.

In terms of spinor representation, the density operators ρAk
and ρBk are written as

ρAk =
1

2

3∑

i=0

ΩA
k,iσi and ρBk =

1

2

3∑

j=0

ΩB
k,jσj , (9)

here ΩA
k,i,Ω

B
k,j ∈ R and ΩA

k,0 = ΩB
k,0 = 1 for 0 ≤ i, j ≤ 3.

The state ρB =
∑N

k=1 pkρ
A
k ⊗ ρBk is thus rephrased as

ρB =
1

2

N∑

k=1

3∑

i,j=0

pkΩ
A
k,iΩ

B
k,jσi ⊗ σj . (10)

According to Eqs. 18 and 9, we obtain the following relations,
for 0 ≤ i, j ≤ 3,

N∑

k=1

pkΩ
A
k,0Ω

B
k,0 = 1;

N∑

k=1

pkΩ
A
k,iΩ

B
k,i = Ωii as i 
= 0;

N∑

k=1

pkΩ
A
k,iΩ

B
k,j = Ωij = 0 as i 
= j. (11)

These relations remain true for the general instance in the next
section. Since both ρAk and ρBk are positive, the inequalities
hold

Tr2(ρAk ) ≥ Tr((ρAk )
2) and Tr2(ρBk ) ≥ Tr((ρBk )

2), (12)

which leads to

(ΩA
k,0)

2 ≥ 1

2

3∑

i=0

(ΩA
k,i)

2 and (ΩB
k,0)

2 ≥ 1

2

3∑

i=0

(ΩB
k,i)

2. (13)

By multiplying the inequalities of parties A and B of Eq. 13
and using the Cauchy’s inequality, one acquires

ΩA
k,0 · ΩB

k,0 ≥ 1

2

3∑

i=0

|ΩA
k,i · ΩB

k,i|. (14)

Finally multiplying the weight pk to both sides of Eq. 14 and
summing over the N terms, the following inequality is valid

N∑

k=1

pkΩ
A
k,0Ω

B
k,0

≥ 1

2

N∑

k=1

3∑

i=0

pk|ΩA
k,iΩ

B
k,i| ≥

1

2

3∑

i=0

|
N∑

k=1

pkΩ
A
k,iΩ

B
k,i|. (15)
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Through the relations of Eq. 11, the necessary proof of the
inequality Eq. 8 are completed.

In further, we prove the inequality Eq. 8 is also a suffi-
cient condition for bipartite separability of ρB . Suppose the
inequality Eq. 8 holds for the Bell’s mixture ρB . We develop
a separable form for the Bell’s mixture

ρB =
1

4

4∑

l=1

ρAl ⊗ ρBl with

ρA1 =
1

2
(σ0 + (−1)ε1

√
|Ω11|σ1

+ (−1)ε2
√

|Ω22|σ2 + (−1)ε3
√
|Ω33|σ3),

ρA2 =
1

2
(σ0 − (−1)ε1

√
|Ω11|σ1

+ (−1)ε2
√

|Ω22|σ2 − (−1)ε3
√
|Ω33|σ3),

ρA3 =
1

2
(σ0 + (−1)ε1

√
|Ω11|σ1

− (−1)ε2
√

|Ω22|σ2 − (−1)ε3
√
|Ω33|σ3),

ρA4 =
1

2
(σ0 − (−1)ε1

√
|Ω11|σ1

− (−1)ε2
√

|Ω22|σ2 + (−1)ε3
√
|Ω33|σ3),

ρB1 =
1

2
(σ0 +

√
|Ω11|σ1 −

√
|Ω22|σ2 +

√
|Ω33|σ3),

ρB2 =
1

2
(σ0 −

√
|Ω11|σ1 −

√
|Ω22|σ2 −

√
|Ω33|σ3),

ρB3 =
1

2
(σ0 +

√
|Ω11|σ1 +

√
|Ω22|σ2 −

√
|Ω33|σ3), and

ρB4 =
1

2
(σ0 −

√
|Ω11|σ1 +

√
|Ω22|σ2 +

√
|Ω33|σ3). (16)

where,(−1)εi = sign(Ωii), i = 1, 2, 3. We show that each ρAl
(ρBl ), 1 ≤ l ≤ 4 is a density operator if the inequality Eq. 8
is satisfied. Obviously ρAl (ρBl ) are hermitian and have unit
trace. It is easy to calculate the eigenvalues of each ρAl (ρBl )
and there are only two kinds of eigenvalues

λAl,1 = λBl,1 = 1
2 (

2+
√

4−4(1−|Ω11|−|Ω22|−|Ω33|)
2 );

λAl,2 = λBl,2 = 1
2 (

2−
√

4−4(1−|Ω11|−|Ω22|−|Ω33|)
2 ). (17)

These two eigenvalues are positive if 1 ≥ |Ω11| + |Ω22| +
|Ω33| and thus ρAl (ρBl ) are density operators. Therefore, if
the inequality Eq. 8 is satisfied, then ρB is separable.

Then, we operated Peres PT criterion:

ρTBB =
1

4
(I ⊗ I +

3∑

i=1

Ωiiσi ⊗ σi), (18)

the eigenvalues of ρTBB are:

λTB1 =
1

4
(1 + Ω11 − Ω22 +Ω33),

λTB2 =
1

4
(1− Ω11 +Ω22 +Ω33),

λTB3 =
1

4
(1 + Ω11 +Ω22 − Ω33),

λTB4 =
1

4
(1− Ω11 − Ω22 − Ω33). (19)

When λTBi ≥ 0 i = 1 · · · 4 ,then ρTBB is separable. It should
also be added that the conditions of ρB is a positive density

operator λi ≥ 0 i = 1 · · · 4. Therefor, one can obtain the same
result as Eq. 8 on the grounds that the inequalities both λi ≥ 0
and λTBi ≥ 0.

III. BELL DIAGONAL STATES IN A BIPARTITE SYSTEM OF
HIGHER DIMENSION

In this section we show that the proof in the necessary
condition can be extended to the more general occasion, a
bipartite system HA ⊗HB of dimension 2p × 2p. Extending
the sufficient condition is difficult because it is not easy to find
a separable form as of Eq. 16. Thus we focus on the acquisition
of the necessary condition for the bi-partite separability of Bell
diagonal states.

Owing to the relations of Eq. 2, a computational basis
element can be written as

|a〉〈a′| = 1

2
σa+a′
1 (σ0 + (−1)aσ3) (20)

for all a, a′ ∈ Z2. In general, for a p-qubit system, we have

|a1, a2, · · · , ap〉〈a′1, a′2, · · · , a′p|

=

p⊗

i=1

|ai〉〈a′i| =
1

2p

p⊗

i=1

σ
ai+a′

i
1 (σ0 + (−1)aiσ3) (21)

for all ai, a′i ∈ Z2 and 1 ≤ i ≤ p. Thus, a density operator in
a p-qubit system is expressed as

ρ =
1

2p

3∑

i1,i2,··· ,ip=0

Ω i1i2···ipσi1 ⊗ σi2 ⊗ · · ·σip (22)

with the real coefficients Ω i1i2···ip = Tr{ρ·σ∗
i1
⊗σ∗

i2
⊗· · ·σ∗

ip
}.

In the standard basis, the Bell diagonal states in a 2p × 2p

system can be represented as

ρB = Σεa,εb∈Zp2
λεa,εb |ψεa,εb〉〈ψεa,εb | (23)

where |ψεa,εb〉 = 1√
2p

∑
α∈Zp2

(−1)α·εa |α+ εa, α+ εb〉 . Then,
λεa,εb and|ψεa,εb〉 are the eigenvalues and eigenvectors of the
ρB , respectively. With the help of Eq. 2, one may rewrite
Eq. 23 in the spinor basis:

ρB =
1

22p
[

3∑

i1,i2,··· ,ip=0

(−1)εi1+εi2 ···+εipΩi1i2···ip,i1i2···ip

(σi1 ⊗ σi2 ⊗ · · ·σip)⊗ (σi1 ⊗ σi2 ⊗ · · ·σip)], (24)

where εim=0 = εim=1 = εim=3 = 0, εim=2 = 1, 1 ≤ m ≤
p, and Ωi1i2···ip,i1i2···ip = 1 if i1 = i2 = · · · = ip = 0. We
follow the same procedure as in the last section to acquire
the necessary condition. Suppose the Bell diagonal states are
bi-partite separable

ρB =
N∑

k=1

pkρ
A
k ⊗ ρBk with

ρAk =
1

2p
{

3∑

i1,i2,··· ,ip=0

ΩA
k,i1i2···ipσi1 ⊗ σi2 ⊗ · · ·σip} and

ρBk =
1

2p
{

3∑

j1,j2,··· ,jp=0

ΩB
k,j1j2···jpσj1 ⊗ σj2 ⊗ · · ·σjp}, (25)
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here pk ≥ 0,
∑N

k=1 pk = 1, and ΩA
k,i1i2···ip ,Ω

B
k,j1j2···jp ∈ R.

With Eqs. 24 and 25, we obtain the following relations as of
Eq. 11

N∑

k=1

pkΩ
A
k,00···0Ω

B
k,00···0 = 1,

N∑

k=1

pkΩ
A
k,i1i2···ipΩ

B
k,i1i2···ip = Ωi1i2···ip,i1i2···ip

as i1≤r≤p 
= 0, and
N∑

k=1

pkΩ
A
k,i1i2···ipΩ

B
k,j1j2···jp = 0 for some ir 
= jr. (26)

By virtue of Eq. 12, the coefficients obey the inequalities

(ΩA
k,00···0)

2 ≥ 1

2p

3∑

i1,i2··· ,ip=0

(ΩA
k,i1i2···ip)

2 and

(ΩB
k,00···0)

2 ≥ 1

2p

3∑

j1,j2··· ,jp=0

(ΩB
k,j1j2···jp)

2. (27)

By multiplying the inequalities of parties A and B of Eq. 27
and using the Cauchy’s inequality, one acquires

ΩA
k,00···0 · ΩB

k,00···0 ≥ 1

2p

3∑

i1,i2,··· ,ip=0

|ΩA
k,i1i2···ip · ΩB

k,i1i2···ip |.

(28)

Similarly, multiplying the weight pk to both sides of Eq. 28
and summing over the N terms, one derives the following
inequalities

N∑

k=1

pkΩ
A
k,00···0Ω

B
k,00···0

≥ 1

2p

N∑

k=1

3∑

i1,i2,··· ,ip=0

pk|ΩA
k,i1i2···ipΩ

B
k,i1i2···ip |

≥ 1

2p

3∑

i1,i2,··· ,ip=0

|
N∑

k=1

pkΩ
A
k,i1i2···ipΩ

B
k,i1i2···ip |. (29)

Complying with the relations of Eq. 26, the inequality of
Eq. 29 leads to the required condition

1 ≥ 1

2p
(

3∑

i1,i2,··· ,ip=0

|Ωi1i2···ip,i1i2···ip |), (30)

which is a simple proof of necessary condition for bipartite
separability of Bell diagonal states.

IV. CONCLUSION

In this article, we propose a new scheme to establish a
criteria different from the PT and Wootters concurrence for
the separability of Bell diagonal states. In a 2 × 2 system,
this scheme provides a sufficient and necessary conditions of
the bi-partite separability for the Bell diagonal states and it
could gives us an insight into quantum entanglement. When
the separability of Bell diagonal states are transformed into
entanglement, implied the local density operators ρIk moved to

the outside the Hilbert space HI for I = A,B. This criteria, in
general, in a 2p×2p system is simply a necessary condition for
p ≥ 2 and a sufficient condition in the 2×2 system. However,
under the appropriate choices of separable forms, it is possible
to modify that such criterion to obtained a sufficient condition
of Bell diagonal states of arbitrary dimension.
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