
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

638

A CTL Specification of Serializability for
Transactions Accessing Uniform Data

Rafat Alshorman, Walter Hussak

Abstract—Existing work in temporal logic on representing the
execution of infinitely many transactions, uses linear-time temporal
logic (LTL) and only models two-step transactions. In this paper,
we use the comparatively efficient branching-time computational tree
logic CTL and extend the transaction model to a class of multi-
step transactions, by introducing distinguished propositional variables
to represent the read and write steps of n multi-step transactions
accessing m data items infinitely many times. We prove that the
well known correspondence between acyclicity of conflict graphs
and serializability for finite schedules, extends to infinite schedules.
Furthermore, in the case of transactions accessing the same set of
data items in (possibly) different orders, serializability corresponds
to the absence of cycles of length two. This result is used to give an
efficient encoding of the serializability condition into CTL.

Keywords—computational tree logic, serializability, multi-step
transactions.

I. INTRODUCTION

AS concurrent users access and update databases in terms
of transactions, a reliable condition of correctness is

needed for the execution of these transactions. The established
correctness condition is that of serializability, where an inter-
leaved schedule of concurrent transactions is equivalent to a
serial schedule of the transactions. Most work on serializability
has modelled histories to be finite with a known fixed bound
[8], [9]. Recently, with the emergence of new techniques such
as web transactions and mobile databases, where an unlimited
number of transactions may be incoming and outgoing to the
databases in continuous streams, the importance of represent-
ing infinite histories has been recognised [5], [6], [7].

One way of representing infinite histories is as models
of temporal logic formulae. A benefit of using temporal
logic is the availability of powerful model checkers such as
NuSMV [2]. Model checkers can carry out exhaustive checks
of a correctness criterion such as serializability, and are fully
automatic and therefore require no special expertise to carry
out the verification. The drawback with model checking is that
even the most powerful model checkers cannot overcome the
theoretical worst-case complexity of model checking inherent
from the temporal logic being used. The most benign tem-
poral logic in this respect is CTL which can check whether
executions represented by a finite-state machine satisfy a
specification with time complexity O((|S| + |R|).|f |), where
|S| is the number of states in the finite state machine, |R| the
number of transitions, and |f | is the length of the specification

R. Alshorman is with the Department of computer science,
Loughborough University, Loughborough, LE11 3TU, UK, e-mail:
R.alshorman@lboro.ac.uk.

W. Hussak is with the Department of computer science, Loughborough
University, Loughborough, LE11 3TU, UK, e-mail: W.Hussak@lboro.ac.uk.

Manuscript received June 24, 2009; revised July 8, 2009.

formula. This is marginally better than for LTL which has a
corresponding time complexity of O((|S| + |R|).2O(|f |) [3].
However, the temporal logics that have been used to specify
transactional concurrency include the partial-order temporal
logic ISTL in [10], quantified propositional temporal logic
QPTL in [5], LTL in [6], a first-order temporal logic in the first
part of [11] and a monodic fragment of first-order temporal
logic in [7]. With the exception of LTL these are, at best, of
exponential space complexity, and, at worst, undecidable.

In this paper, we give a computationally efficient specifi-
cation of serializability in CTL. The serializability condition
expressed in CTL is based on acyclicity of conflict graphs.
To be able to use such a condition, we prove that acyclicity
of conflict graphs corresponds to serializability for infinite
schedules. We then assume the further property for our transac-
tions, that they access the same set of data items in different
orders. We show that serializability then corresponds to the
efficient condition where only cycles of length two need be
checked, and this condition is used for the CTL specification.
This work advances that of [5] and [6], which both deal with
two-step transactions, to the more normal case of multi-step
transactions. We also produces the specification in the slightly
more efficient CTL rather than LTL. The paper is organized
as follows. In Section II, we give a mathematical model of
concurrent multi-step transactions. In Section III, the results
on acyclicity of conflict graphs and serializability for infinite
schedules are given. From these, serializability is characterized
mathematically in a way to be encoded into CTL. The CTL
specification is given in Section IV, and conclusions are drawn
in Section V.

II. A MODEL OF CONCURRENT MULTI-STEP
TRANSACTIONS

A. Steps and histories

The model of concurrent two-step transactions in [5] com-
prises n transactions {T1, . . . , Tn} occurring infinitely many
times, with each transaction containing a read step and a write
step each accessing a finite number of data items. In this paper,
we define transactions as containing multiple alternate read
and write steps, each accessing a single data item. We shall
denote a read step and the corresponding write step on the data
item xj by transaction Ti, as ri(xj) and wi(xj), respectively,
and the set of data items accessed by all transactions as D. We
say that two steps are conflicting if they belong to different
transactions, they access the same data item and at least one
of them is a write step. Later in this paper, we shall assume
that, given transactions Ti and Ti′ , the data items accessed
by both are the same, but that the order of access of data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

639

items by transaction Ti is not necessarily the same as that
by Ti′ . Precisely, we will assume a finite set of data items
D = {x1, . . . , xm}, an infinite set of (multi-step) transactions
T = {Ti : i ∈ N1}, where N1 is the set of positive integers,
such that all Ti ∈ T are of the form,

Ti = ri(xi1)wi(xi1) . . . ri(xim
)wi(xim

)

where {xi1 , . . . , xim
} = D.

A history h of T is an interleaved sequence of all the read
and write steps, of all the transactions in T , such that, for
each i ≥ 1, the subsequence of h compromising the steps
of Ti is exactly the sequence of steps of Ti occurring in the
order that they do in Ti. For a history h, <h will denote the
(irreflexive) total order between all the read and write steps
of h. If T ′ ⊆ T , then the projection of h to T ′, denoted hT ′ ,
is the history of T ′, obtained from h, by deleting all steps of
transactions not in T ′.

B. Serializability

The required correctness condition of ‘serializability’ is that
concurrent multi-step transactions should execute in a history
whose effect is ‘equivalent’ to a serial execution of all the
Ti ∈ T . Our definitions of equivalence and serializability are
based on those in [9].

Definition 1. Histories h1 and h2 of T = {Ti : i ∈ N1} are
equivalent, written as h1 ∼ h2, iff for all i, i′ ≥ 1, i �= i′, and
for all x ∈ D,

1) if ri(x) <h1 wi′(x), then ri(x) <h2 wi′(x),
2) if wi(x) <h1 wi′(x), then wi(x) <h2 wi′(x) and
3) if wi(x) <h1 ri′(x), then wi(x) <h2 ri′(x)

Definition 2. A history h of T = {Ti : i ∈ N1} is serializable
iff there is a serial history hS of T of the form, for each
i ∈ N1,

hS = ri(x) . . . wi(y) . . .︸ ︷︷ ︸
only (all) steps of Ti

. . .

such that h ∼ hS .

III. A CONDITION FOR SERIALIZABILITY OF MULTI-STEP
TRANSACTIONS

In [5], serializability of infinite histories is characterized in
terms of ‘detachable’ steps for certain finite subsequences of
steps. We shall determine serializability in terms of acyclicity
of ‘conflict graphs’ - a technique widely used for finite
histories [9]. We define conflict graphs in Definition 3 and
in Theorem 4 give conditions for which acyclicity of conflict
graphs correspond to serializability in the case of an infinite
number of transactions. In Lemma 5, we give a simpler
correspondence in the case where transactions access the same
set of data items. This result is used to prove the main result,
Theorem 7, which gives the conditions for serializability that
will form the basis of the specification in CTL in Section IV.

Definition 3. A directed graph is a pair G = (V,A), where
V is a set of elements called nodes, denoted nodes(G), and
A ⊆ V × V is a set of elements called arcs, denoted arcs(G).

A walk in a directed graph G = (V,A) is a sequence of nodes
(v1, v2, . . . , vn) such that (vi, vi+1) ∈ A for i = 1, . . . , n− 1.
A walk with no nodes repeated is called a path; it is a cycle
when only the first and last node coincide. For each history
h, there is a directed graph G(h) called the precedence graph
or conflict graph of h . This graph has the transactions of h
as its nodes, and contains an arc (Ti, Ti′), where Ti and Ti′

are distinct transactions of h, whenever there is a step of Ti

which conflicts with a subsequent (in h) step of Ti′ .

Theorem 4. A history h of an infinite number of multi-step
transactions T = {Ti : i ∈ N1}, accessing data items in some
finite set D (though not necessarily accessing the same data
items), is serializable iff the conflict graph G(h) is acyclic.

Proof:
If
Let h be a history of T such that G(h) is acyclic. Assume that,
for some Ti ∈ T , we have the following infinite regression of
arcs:

. . . , (Tkn+1 , Tkn), . . . , (Tk2 , Tk1), (Tk1 , Ti) (1)

where {Tk1 , . . . , Tkn , . . .} ⊆ T . Then, as only finitely many
data items are accessed by the transactions, and as each step
may be preceded by only finitely many steps in h, there exist
l > j ≥ 0 such that we have the following order of steps in h
(assuming, without loss of generality, that the arcs in (1) are
as the result of write-read conflicts):

wkl+1(x) <h rkl(x) <h . . . <h wkj+1(x) <h rkj (x) (2)

and wkl(x) does not precede rkj (x) in h, i.e.

rkj (x) <h wkl(x) (3)

From (2) and (3), we produce the cycle

(Tkl , Tkl−1), . . . , (Tkj+1 , Tkj), (Tkj , Tkl)

This contradiction shows that (1) cannot occur. It follows that
we can define, inductively, the sequence i1, i2, . . . thus:

i1 = min{k ∈ N1 : for all i �= k,

(Ti, Tk) /∈ arcs(G(h))}
. . .

in = min{k ∈ N1 : for all i �= k, i1, . . . , in−1,

(Ti, Tk) /∈ arcs(G(h))}
. . .

Firstly, we show that {i1, . . . , in, . . .} = N1. Suppose, on the
contrary, that there is some i′ ∈ N1 such that i′ �= in for any
(all) n ∈ N1. As the situation (1) cannot occur, we can choose
i′ to be such that

(Ti, Ti′) implies Ti = in for some n ∈ N1 (4)

Intuitively, Ti′ is the ‘earliest’ transaction for which Ti′ �= Tin

for any n ∈ N1. Now choose n′ ∈ N1 to be such that:
(a) in

′+1 ≥ i′

(b) all the steps of any Tin , where n ≥ n′, come after
the steps of Ti′ in h.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

640

Assume that we have that

(Ti, Ti′) ∈ arcs(G(h)) for some i ∈ N1, i �= i1, . . . , in
′

(5)

This implies, by (4), that

Ti = Tin for some n ∈ N1

which implies, by the assumption at (5) that i �= i1, . . . , in
′
,

Ti = Tin for some n > n′

This, in turn, implies, by (b), that all the steps of Ti = Tin

come after the steps of Ti′ in h and so (Ti, Ti′) /∈ arcs(G(h)).
This contradicts (5) and so the assumption at (5) cannot hold.
But, then,

in
′+1 = min{k ∈ N1 : for all i �= k, i1, . . . , in

′
,

(Ti, Tk) /∈ arcs(G(h))} (6)

As (5) cannot hold, by (6) and (a) we have that

i′ > in
′+1 ≥ i′

This last contradiction means that the assumption that i′ �= in

for all n ∈ N1 is false. It follows that {i1, . . . , in, . . .} = N1.
We construct the serial history hS of T given by hS =

. . . ri1(x) . . . wi1(y) . . .︸ ︷︷ ︸
all steps of Ti1

. rin(s) . . . win(t) . . .︸ ︷︷ ︸
all steps of Tin

. . .

and show that h ∼ hS by showing that Definition 1(1), (2) and
(3) hold. For Definition 1(1), suppose that ri(x) <h wi′(x) for
transactions Ti, Ti′ ∈ T . Then, (Ti, Ti′) ∈ arcs(G(h)). In the
sequence i1, i2, . . . above, we cannot have i = in and i′ = in

′

for some n′ < n as, from the definition of n′, that would
imply that (Ti, Ti′) /∈ arcs(G(h)). Thus, hS is of the form

. . . ri(c) . . . wi(d) . . .︸ ︷︷ ︸
all steps of Ti

. ri′(e) . . . wi′(f) . . .︸ ︷︷ ︸
all steps of Ti′

. . .

and Definition 1(1) holds as required. The proof of Definition
1(2) and (3) are similar.
Only if
Let h be a serializable history. This means that there is a serial
history hS such that h ∼ hS . This implies, by Definitions 1
and 3, that G(h) = G(hS). As G(hS) is necessarily acyclic,
since it must be a subgraph of the total order under which the
transactions occur in hS , we conclude that G(h) is acyclic.

In the case where all transactions access the same set of
data items, serializability is guaranteed if G(h) has no cycle
of length 2.

Lemma 5. Let h be a history of multi-step transactions
T = {Ti : i ∈ N1} accessing the same set of data items
D (in possibly different orders). Then, if G(h) has a cycle,
there are transactions Ti, Ti′ such that G(h) has the cycle
(Ti, Ti′), (Ti′ , Ti).

Proof:
Assume that G(h) has a cycle

(Ti1 , Ti2), . . . , (Ti(n−1) , Tin), (Tin , Ti1) (7)

where n > 2, but no such cycle for n = 2. We will derive a
contradiction. Choose any x ∈ D. Then, for 1 ≤ j ≤ n − 1,

wij (x) <h ri(j+1)(x) (8)

otherwise (Ti(j+1) , Tij) is an arc in G(h) and, from (7),
(Tij , Ti(j+1)) is also an arc in G(h) giving a cycle between Tij

and Tij+1 contrary to our assumption that there are no cycles
of length 2. From (8) we have that

ri1(x) <h wi1(x) <h · · · <h rin(x) <h win(x) <h ri1(x)
(9)

The contradiction, from (9), that ri1(x) <h ri1(x), means that
our assumption that there is no cycle between two transactions
is incorrect.

Definition 6. We say that Ti comes before Ti′ in h iff
wi(x) <h ri′(y), where x and y are the first data items
accessed by Ti and Ti′ respectively.

Theorem 7. A history h of multi-step transactions T = {Ti :
i ∈ N1} is serializable iff for any two distinct transactions Ti

and Ti′ , one of them, Ti say, is such that
(i) Ti comes before Ti′ in h, and

(ii) for all x ∈ D, wi(x) <h ri′(x)

Proof:
If
Let h be not serializable. We show that there are Ti and Ti′

such that the conditions (i) and (ii) do not both hold. To have h
not serializable means, by Theorem 4 and Lemma 5, that there
is a cycle in the precedence graph G(h), (Ti, Ti′), (Ti′ , Ti).
Assume that (i) holds for Ti and Ti′ , i.e. Ti comes before Ti′ .
Here, letting x and y denote the first data items accessed by
Ti and Ti′ respectively, there are a limited number of cases
causing the cycle:

. . . wi(x) . . . ri′(y) . . . wi′(y) . . . ri(z) . . . ri′(z) . . . wi′(z) . . .

. . . wi(z) . . . (10)

. . . wi(x) . . . ri′(y) . . . wi′(y) . . . ri(z) . . . ri′(z) . . . wi(z) . . .

. . . wi′(z) . . . (11)

. . . wi(x) . . . ri′(y) . . . wi′(y) . . . ri′(z) . . . ri(z) . . . wi′(z) . . .

. . . wi(z) . . . (12)

. . . wi(x) . . . ri′(y) . . . wi′(y) . . . ri′(z) . . . ri(z) . . . wi(z) . . .

. . . wi′(z) . . . (13)

In the all cases (10)-(13) condition (ii) is breached because
ri′(z) <h wi(z) (underlined).
Only if
Assume that we have that h does not satisfy conditions (i) and
(ii) for all Ti, Ti′ . We show that h is not serializable. Firstly,
suppose that condition (i) holds, but that condition (ii) does
not hold for some Ti and Ti′ . Then, if x and y are the first
data items accessed by Ti and Ti′ respectively,

wi(x) <h ri′(y) (14)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

641

giving the arc (Ti, Ti′) in G(h). As condition (ii) does not
hold, there is z ∈ D such that

ri′(z) <h wi(z)

This gives the arc (Ti′ , Ti) and hence a cycle in G(h). By
Theorem 4, h is not serializable. Secondly, suppose condition
(i) does not hold for some Ti, Ti′ . Then, by Definition 6, if x
and y are the first data items accessed as above,

ri(x) <h wi′(y) (15)

and
ri′(y) <h wi(x) (16)

From (15), if x = y, (Ti, Ti′) is an arc in G(h), and from
(16) (Ti′ , Ti) is an arc in G(h). This gives a cycle and shows,
by Theorem 4, that h is not serializable. But, if x �= y, Ti

accesses y later, and Ti′ accesses x later. Thus, by (16),

ri′(y) <h wi(x) <h ri(y) <h wi(y) (17)

and, by (15),

ri(x) <h wi′(y) <h ri′(x) <h wi′(x) (18)

From (17), (Ti′ , Ti) is an arc in G(h) and, from (18), (Ti, Ti′)
is an arc in G(h) giving a cycle.

IV. SPECIFICATION OF SERIALIZABILITY IN CTL

We present a CTL specification of infinite histories com-
posed of n transactions each accessing all of m data items, and
repeating infinitely often. The aggregate of all the repetitions
of the n transactions will constitute the infinite number of
transactions {Ti : i ∈ N1} of the previous section. Such
concurrent repeating or ‘iterating’ transactions were originally
investigated in [4] and temporal logic models have been given
in [5] and [6]. In [5] and [6] each iteration of a transaction
is called an occurrence, and every occurrence of a particular
transaction comprises the same two (read and write) steps.
We improve this to a case of multi-step transactions where,
different occurrences of particular transactions access the same
data items, but in possibly different orders. So, the order
of access of data items may be different between different
transactions and between different occurrences of the ‘same’
transaction. Actually, in our model here, different occurrences
of the ‘same’ transaction bear no relation to each other. As
such, we model, not so much the same n transactions iterating,
but a more general case of an infinite number of (possibly
totally unrelated) transactions where there is a limit of n on
how many are active at any given time.

The syntax for CTL is given in Section IV.A and the
semantics in Section IV.B. The specification of the multi-step
transactions model is in Section IV.C and serializability is
specified in IV.D.

A. Syntax

The alphabet of CTL consists of a set of propositions
symbols p0, p1, . . . , distinguished read/write step propositional
symbols ri(xj), wi(xj) (1 ≤ i ≤ n, 1 ≤ j ≤ m), booleans

¬,∨,∧,
,⊥, quantifiers E, A, and temporal operators X, F,
G and U. Formulae in CTL are those generated by:

φ ::= pi | ri(xj) | wi(xj) | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | AXφ |
EXφ | AFφ |EFφ | AGφ | EGφ | A[φ1Uφ2] | E[φ1Uφ2]

Note that, despite their appearance, ri(xj) and wi(xj) are
propositions, and not predicates, in the logic. The symbols
⊥ and
 will also be used to denote the truth values false and
true respectively and the abbreviations ⇒ and ⇔ will have
their usual logical meaning.

B. Semantics of CTL

An interpretation for CTL, I(sa), at a given state sa ∈
S, where S is a set of states, assigns truth values p

I(sa)
i ,

ri(xj)I(sa) and wi(xj)I(sa) (∈ {⊥,
}) to propositional sym-
bols pi, ri(xj) and wi(xj), respectively. A interpretation I
over S, is a set of interpretations I = {I(sa) : sa ∈ S}. A
Kripke structure M is a triple < S, R, I >, where S is
a set of states, R ⊆ S × S a transition relation such that,
for all s ∈ S, there exists s′ ∈ S with (s, s′) ∈ R, and
I is an interpretation over S. A path in M is an infinite
sequence of states, π = sa, sa+1, . . . , such that, for every
b ≥ a, (sb, sb+1) ∈ R. The set of paths that start in state sa

is denoted Paths(sa). As each state in a Kripke structure
is required to have at least one successor, it follows that
Paths(sa) �= {} for any state sa. The semantics of a CTL
formula φ is given by the truth relation M, sa � φ which
means that φ holds at state sa in the Kripke structure M . The
relation � is defined inductively as follows

M, sa � pi iff p
I(sa)
i =

M, sa � ri(xj) iff ri(xj)I(sa) =

M, sa � wi(xj) iff wi(xj)I(sa) =

M, sa � ¬φ iff M, sa � φ
M, sa � φ1 ∨ φ2 iff M, sa � φ1 or M, sa � φ2

M, sa � φ1 ∧ φ2 iff M, sa � φ1 and M, sa � φ2

M, sa � AXφ iff, for all π ∈ Paths(sa), M, sa+1 � φ
M, sa � EXφ iff there exists π ∈ Paths(sa) such that
M, sa+1 � φ
M, sa � AFφ iff, for all π ∈ Paths(sa), there exists
b ≥ a such that M, sb � φ
M, sa � EFφ iff there exists π ∈ Paths(sa) and b ≥ a
such that M, sb � φ
M, sa � AGφ iff, for all π ∈ Paths(sa), and, for all
b ≥ a, M, sb � φ
M, sa � EGφ iff there exists π ∈ Paths(sa) such that,
for all b ≥ a, M, sb � φ
M, sa � A[φ1Uφ2] iff, for all π ∈ Paths(sa), there is
some c ≥ a such that M, sc � φ2 and, for all a ≤ b < c,
M, sb � φ1

M, sa � E[φ1Uφ2] iff there exists π ∈ Paths(sa) such
that, for some c ≥ a, M, sc � φ2 and, for all a ≤ b < c,
M, sb � φ1

C. Specification of multi-step transactions model

The read and write step propositions have the following
intuitive meanings:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

642

ri(xj) ∼ active transaction Ti has read data item xj

wi(xj) ∼ active transaction Ti has written to data item xj

The multi-step transactions model is characterized by the
following properties:

(C1) Read/write alternation
A transaction Ti cannot have read two distinct data items
without having written to one of them, i.e. ri(xj) and
ri(xj′) cannot both be true if wi(xj) and wi(xj′) are
both false.
(C2) Write implies read
A transaction Ti can only have written to xj if it has read
xj , i.e. if wi(xj) is true, then ri(xj) must be true.
(C3) Read/write steps remain true to transaction end
If a read/write step has taken place, the corresponding
propositions remain true until the transaction ends, i.e.
ri(xj)/wi(xj) once true, remain true until all other steps
ri(x′

j) and wi(x′
j) (x′

j ∈ D) are true.
(C4) End of transaction occurrence
After a transaction occurrence ends, at most one read step
ri(xj) and no write steps wi(xj) can be true in any next
state.
(C5) At most one step occurs at each successive state
No two distinct steps can both be false in a state, and
then both true in a next state.

Given a state sa, and a path π ∈ Paths(sa), there corresponds
a sequence of read and write step propositions that become
true in sa, sa+1, In this way, π yields a history of infinitely
many occurrences of the transactions T1, . . . , Tn. We illustrate
this correspondence between paths and histories in Figure 1.
In Figure 1, we have D = {x, y, z} and transactions

T1 = r1(x)w1(x)r1(y)w1(y)r1(z)w1(z)

and
T2 = r2(x)w2(x)r2(z)w2(z)r2(y)w2(y)

Interpretations for read and write step propositions are given
for successive states, and the top of each column displays the
unique proposition that becomes true in the particular state.
The corresponding history h is:

h = r1(x)w1(x)r1(y)r2(x)w2(x)w1(y)r1(z)

w1(z)r2(z)w2(z)r2(y)w2(y)r1(x)

We encode the conditions (C1)-(C5) as σ1, σ2, σ3, σ4 and σ5

respectively, below. We use an extra proposition endT i to
mark the states at which an occurrence of Ti ends, i.e. the
states at which ri(xj) and wi(xj) are true for all xj . This is
defined in σ0 as follows:

σ0 =
∧

1≤i≤n

AG(endT i ⇔
∧

1≤j≤m

(ri(xj) ∧ wi(xj)))

Conditions (C1)-(C5) are given below:

(C1) Read/write alternation
A transaction Ti cannot have read two distinct data items

↙ ↙ ↙ ↙ ↙ ↙
r1(x) w1(x) r1(y) r2(x) w2(x) w1(y)

s0 s1 s2 s3 s4 s5

• • • • • •
r1(x) r1(x) r1(x) r1(x) r1(x) r1(x)
¬w1(x) w1(x) w1(x) w1(x) w1(x) w1(x)
¬r1(y) ¬r1(y) r1(y) r1(y) r1(y) r1(y)
¬r2(x) ¬r2(x) ¬r2(x) r2(x) r2(x) r2(x)
¬w2(x) ¬w2(x) ¬w2(x) ¬w2(x) w2(x) w2(x)
¬w1(y) ¬w1(y) ¬w1(y) ¬w1(y) ¬w1(y) w1(y)
¬r1(z) ¬r1(z) ¬r1(z) ¬r1(z) ¬r1(z) ¬r1(z)
¬w1(z) ¬w1(z) ¬w1(z) ¬w1(z) ¬w1(z) ¬w1(z)
¬r2(z) ¬r2(z) ¬r2(z) ¬r2(z) ¬r2(z) ¬r2(z)
¬w2(z) ¬w2(z) ¬w2(z) ¬w2(z) ¬w2(z) ¬w2(z)
¬r2(y) ¬r2(y) ¬r2(y) ¬r2(y) ¬r2(y) ¬r2(y)
¬w2(y) ¬w2(y) ¬w2(y) ¬w2(y) ¬w2(y) ¬w2(y)

↙ ↙ ↙ ↙ ↙ ↙
r1(z) w1(z) r2(z) w2(z) r2(y) w2(y)
s6 s7 s8 s9 s10 s11

• • • • • •
r1(x) r1(x) ¬r1(x) ¬r1(x) ¬r1(x) ¬r1(x)
w1(x) w1(x) ¬w1(x) ¬w1(x) ¬w1(x) ¬w1(x)
r1(y) r1(y) ¬r1(y) ¬r1(y) ¬r1(y) ¬r1(y)
r2(x) r2(x) r2(x) r2(x) r2(x) r2(x)
w2(x) w2(x) w2(x) w2(x) w2(x) w2(x)
w1(y) w1(y) ¬w1(y) ¬w1(y) ¬w1(y) ¬w1(y)
r1(z) r1(z) ¬r1(z) ¬r1(z) ¬r1(z) ¬r1(z)

¬w1(z) w1(z) ¬w1(z) ¬w1(z) ¬w1(z) ¬w1(z)
¬r2(z) ¬r2(z) r2(z) r2(z) r2(z) r2(z)
¬w2(z) ¬w2(z) ¬w2(z) w2(z) w2(z) w2(z)
¬r2(y) ¬r2(y) ¬r2(y) ¬r2(y) r2(y) r2(y)
¬w2(y) ¬w2(y) ¬w2(y) ¬w2(y) ¬w2(y) w2(y)

↙
r1(x) . . .
s12

• . . .
r1(x)

¬w1(x)
¬r1(y)
¬r2(x) .
¬w2(x) .
¬w1(y) .
¬r1(z)
¬w1(z)
¬r2(z)
¬w2(z)
¬r2(y)
¬w2(y)

Fig. 1. Correspondence between paths and histories

without having written to one of them, i.e. ri(xj) and ri(xj′)
cannot both be true if wi(xj) and wi(xj′) are both false.

σ1 =
∧

1≤i≤n

∧
1≤j �=j′≤m

¬EF(ri(xj) ∧ ri(xj′)∧

¬wi(xj) ∧ ¬wi(xj′))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

643

(C2) Write implies read
A transaction Ti can only have written to xj if it has read xj ,
i.e. if wi(xj) is true, then ri(xj) must be true.

σ2 =
∧

1≤i≤n

∧
1≤j≤m

AG(wi(xj) ⇒ ri(xj))

(C3) Read/write steps remain true to transaction end
If a read/write step has taken place, the corresponding proposi-
tions remain true until the transaction ends, i.e. ri(xj)/wi(xj)
once true, remain true until all other steps ri(x′

j) and wi(x′
j)

(x′
j ∈ D) are true.

σ3 =
∧

1≤i≤n
1≤j≤m

AG((ri(xj) ∧ ¬endT i ⇒ AXri(xj))∧

(wi(xj) ∧ ¬endT i ⇒ AXwi(xj)))

(C4) End of transaction occurrence
After a transaction occurrence ends, at most one read step
ri(xj) and no write steps wi(xj) can be true in any next state.

σ4 =
∧

1≤i≤n

AG(endT i ⇒ AX
∨

1≤i≤m

∧
1≤j′ �=j≤m

(¬ri(xj′)∧

¬wi(xj′) ∧ ¬wi(xj)))

(C5) At most one step occurs at each successive state
No two distinct steps can both be false in a state, and then
both true in a next state.

σ5 =
∧

1≤i,i′≤n
1≤j,j′≤m

i�=i′ or j �=j′

AG [¬((¬ri(xj) ∧ ¬ri′(xj′)) ∧ EX(ri(xj) ∧ ri′(xj′))) ∧
¬((¬ri(xj) ∧ ¬wi′(xj′)) ∧ EX(ri(xi) ∧ wi′(xj′))) ∧

¬((¬wi(xj) ∧ ¬wi′(xj′)) ∧ EX(wi(xj) ∧ wi′(xj′)))].

We denote by σtrans the specification of the transactions
model, i.e.

σtrans = σ0 ∧ σ1 ∧ σ2 ∧ σ3 ∧ σ4 ∧ σ5

D. Specification of serializability

We encode conditions (i) and (ii) of Theorem 7. We make
use of additional propositions beforei,i′ (1 ≤ i �= i′ ≤ n),
each of which is true in a state if the current occurrence of
Ti comes before the current occurrence of Ti′ . We have that
beforei,i′ becomes true either if Ti has performed a write step
and Ti′ has not performed any read steps, or in a state which
comes after a state in which the occurrence of Ti′ ended and
Ti had previously performed a write step. This is specified as
σ6:

σ6 =
∧

1≤i�=i′≤n

AG[¬beforei,i′ ⇒ A(¬beforei,i′U

((
∨

1≤j≤m

wi(xj)∧
∧

1≤j′≤m

(¬ri′(xj′)∧wi′(xj′))∧ beforei,i′)∨

(
∨

1≤j≤m

wi(xj) ∧ endT i′ ∧ ¬beforei,i′ ∧ AX beforei,i′)))]

Also, we need to ensure that beforei,i′ , once true, remains true
until the end of the occurrence of Ti, and then becomes false.
This is given by σ7:

σ7 =
∧

1≤i,i′≤n

AG((beforei,i′ ∧ ¬endT i ⇒ AXbeforei,i′)∧

(endT i ⇒ AX¬beforei,i′))

Theorem 7 condition (i) can then be encoded as σ8 which
states that, if Ti and Ti′ are active, one of them must come
before the other:

σ8 =
∧

1≤i,i′≤n

AG ((
∨

1≤j,j′≤m

ri(xj) ∧ ri′(xj′)) ⇒

(beforei,i′ ∨ beforei′,i))

Theorem 7 condition (ii) is encoded as σ9:

σ9 =
∧

1≤i,i′≤n

∧
1≤j≤m

AG(beforei,i′ ⇒ ¬(ri′(xj) ∧ ¬wi(xj)))

We denote by σsz the specification of the serializability
condition, i.e.

σsz = σ6 ∧ σ7 ∧ σ8 ∧ σ9

V. CONCLUSIONS

We have given a method using CTL for specifying and
verifying the correctness of concurrent executions of multi-
step transactions produced by schedulers. For example, a
scheduler might be specified as a finite-state machine in
NuSMV, corresponding to a structure Sched for CTL. The
specification would then be checked to see that the transactions
model had been specified in the correct way. This would mean
running the NuSMV model checker to show that

Sched , sa � σtrans

Serializability could then be verified by using the NuSMV
model checker to show that

Sched , sa � σsz

A preliminary case study of the use of CTL to verify serializ-
ability of mobile transactions in this way has been conducted
in [1]. The CTL method here improves on previous work
in two respects - there is a slight efficiency gain in using
CTL as opposed to LTL and the more usual case of multi-step
transactions can be modelled.

We have defined a serializability condition that scales well
with increasing numbers of transactions and data items. How-
ever, this has come at a price as we have added the assumption
that transactions access the same set of data items, albeit in
different orders. In fact, there are many applications where this
assumption is realistic. For example, people booking meals
at restaurants over mobile phones. Some may book the main
course first, then maybe dessert, then starters, and finally tea
or coffee. Others may choose to book in a different order.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

644

The availability of one course may influence the choice of
another course and serializability of the booking transactions
for the whole meals would be the appropriate correctness
condition. Furthermore, we have investigated other different
assumptions on the transactions model, where there is an
order on the accessed set of data items and transactions
may access different subsets of data items, that result in
a similar serializability condition that only needs to check
for cyclicity between pairs of transactions and would have
a similar efficient encoding into CTL.

REFERENCES

[1] R.Alshorman and W.Hussak, Multi-step transactions specification and
verification in a mobile database community, in 3rd IEEE International
Conference on Information Technologies: from Theory to Applications,
IEEE, ICTTA 08, Damacus, Syria, IEEE Computer Society Press, 2008,
pp. 1407-1412.

[2] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, NuSMV: a new
symbolic model verifier, Lecture Notes in Computer Science 1633
(1999), pp. 495-499.

[3] E. Clarke, O. Grumberg and D. Peled, Model checking, MIT Press, 1999.
[4] M.P. Fle and G. Roucairol, On serializability of iterated transactions,

Proc, 1st ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, 1982, pp. 194-200.

[5] W. Hussak, Serializable histories in Quantified Propositional Temporal
Logic, International Journal of Computer Mathematics, vol. 81, issue 10
(2004), pp. 1203-1211.

[6] W. Hussak, Specifying strict serializability of iterated transactions in
Propositional Temporal Logic, International Journal of Computer Sci-
ence, vol. 2, issue 2 (2007), pp. 150-156 (at www.waset.org/ijcs)

[7] W.Hussak, The serializability problem for a temporal logic of transac-
tion queries, Journal of Applied Non-Classical Logics, vol. 18, issue 1
(2008), pp. 67-78.

[8] C.H. Papadimitriou, The serializability of concurrent database updates,
Journal of the ACM, vol. 26 (1979), pp. 631-653.

[9] C.H. Papadimitriou, The Theory of Database Concurrency Control,
Computer Science Press, Pockville, Maryland, 1986.

[10] D. Peled and A. Pnueli, Proving partial order properties, Theoretical
Computer Science, vol. 126 (1994), pp. 143-182.

[11] D.Peled, S.Katz, and A.Pnueli. Specifying and proving serializability
in temporal logic in Proceedings LICS 1991, IEEE Computer Society
Press, 1991, pp. 232-245.

