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Abstract—During the initial phase of cognitive development,
infants exhibit amazing abilities to generate novel behaviors in
unfamiliar situations, and explore actively to learn the best while
lacking extrinsic rewards from the environment. These abilities
set them apart from even the most advanced autonomous robots.
This work seeks to contribute to understand and replicate some of
these abilities. We propose the Bottom-up hiErarchical sequential
Learning algorithm with Constructivist pAradigm (BEL-CA) to
design agents capable of learning autonomously and continuously
through interactions. The algorithm implements no assumption about
the semantics of input and output data. It does not rely upon a
model of the world given a priori in the form of a set of states
and transitions as well. Besides, we propose a toolkit to analyze the
learning process at run time called GAIT (Generating and Analyzing
Interaction Traces). We use GAIT to report and explain the detailed
learning process and the structured behaviors that the agent has
learned on each decision making. We report an experiment in which
the agent learned to successfully interact with its environment and to
avoid unfavorable interactions using regularities discovered through
interaction.

Keywords—Cognitive development, constructivist learning,
hierarchical sequential learning, self-adaptation.

I. INTRODUCTION

LEARNING from interactions plays an important role in

an agent’s cognitive development. It not only makes

up the deficiencies in artificial designing, but also gives us

a way to improve the agent’s performance with requiring

little or no manual intervention. Meanwhile, in the domain of

artificial intelligence (AI), it is becoming increasing accepted

as a viable alternative paradigm in designing a self-motivated

and self-adaptive agent that can behave in an intelligent and

flexible manner under dynamic conditions [1]–[3]. Seeking

and designing this paradigm for the agent interacting by AI

systems has become a hot topic in research [4], [5].

Imagine the following scenario: an agent is placed in an

unfamiliar environment without any prior knowledge, only

with innate actions that enable it to perform elementary

functions such as moving forward, turning its direction and

touching the environment. Different with other scenarios,

the agent’s interaction is under conditions that without

any structured behaviors and prior knowledge about the

environment, nor the final goals for the agent to achieve. It
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leaves us a big challenge, that of how can we design an

alternative learning paradigm that the agent could successfully

interact with its environment and learn to avoid unfavorable

interactions using the structured behavior it has learned from

interactions.

In the study of the beginnings of mental development and

the origins of intelligence in children, Piaget [6] proposes a

knowledge acquiring theory, constructivism, which describes

the cognitive development of infants. It is acknowledged

that infants are good at playing. Within the initial phase

of cognitive development, they exhibit amazing abilities

to generate novel behaviors with unfamiliar situations and

explore actively to learn the best with lacking extrinsic rewards

from the environment. With the skills and abilities they were

born with (such as looking, sucking, grasping and listening),

babies experience the world and gain knowledge through

movements between senses and motor interactions. As the

interact with the world around them, they continually absorb

new knowledge build upon existing knowledge and adapt

previously held ideas to accommodate new information.

Inspired from the theory of constructivism, we propose

a bottom-up hierarchical sequential learning model with

comstructivist paradigm (BEL-CA), an algorithm for

autonomous and continuous learning of environment

representations and agent’s self-adaptation. Our approach

neither initially endows the agent with the prior knowledge

of its environment, nor supplies it with knowledge during

its learning process. Instead, we propose a way for the

agent to autonomously encode the interactional experiences

and reuse behavioral patterns based on the agent’s intrinsic

motivation (we prefer to call it the interactional motivation

[7]). Therefore, the agent gets the perception of its world and

generates proper behaviors in different and also complicated

situations. Thus, the agent could be moving around freely

and learn regularities of the environment. Meanwhile, our

agent can discover a long sequence of “correct” actions

to find a configuration of the environment that yields the

non-stationary valence.

The paper is structured as follows. In section II, we

introduce current developments in solving the problems we

are faced with. Section III provides the theoretic foundation of

constructivist learning. In section IV, we explain the learning

process with constructivist paradigm and give the formal

model proposed of bottom-up hierarchical sequential learning

with constructivist paradigm, as well as the BEL-CA. In

section V, we introduce the methodology and the experimental

settings and also introduce the implementation of toolkit GAIT

for analyzing all interaction results. Finally, we conclude and



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:14, No:10, 2020

945

provide open issues for possible improvements of our work in

the future.

II. RELATED WORK

Traditional artificial intelligence approaches strongly rely

on an abstraction of the environment proposed by the system

designer. In other words, how well the agent connects with the

environment (for example, through actuators/sensors patterns)

determines the performance of the agent. Thus its capability

of adaptation to different problems/environments is limited.
Reinforcement Learning (RL) [8] and with its advances

[9]–[11] as a most popular and successful way, tries to solve

this problem by learning to get the maximum cumulative

reward of actions, which is used to help in making decisions

of actions in response to interactions with the environment.

Behavior in such systems is not predefined, but learned

from interactions with the environment, enabling the partial

self-adaptation to situations that were unexpected or unknown

within designing time [5], [12]. However, conditions in such

environment change and RL processes designed and deployed

at the start of the system operation will become unsuitable and

will need further self-adapting during the system execution.

Besides, RL needs to explore the environment repeatedly in

conditions that the agent is placed in an environments without

any final goals or the “terminal state” to achieve. [5].
Another way is inspirations from intrinsic motivations (like

curiosity [13], [14]), which drive the development of the

world-model making, as a way to replicate some abilities of

infants’ playing [15]. Playing capacity in this period likely

interacts with infants’ powerful abilities to understand and

model their environment, which amazingly generates flexible

actions with familiar environments and novel behaviors with

unfamiliar environments.
A related but alternative idea is from the constructivist

learning paradigm [1], [5], [6]. In the constructivist paradigm,

the agent is not a passive observer of reality, but rather

constructs a perception of reality through active interaction [3].

The constructivist theory proposes that humans build internal

frameworks of knowledge, and acquire new knowledge either

through assimilation (incorporating new knowledge into their

existing framework) or accommodation (re-framing internal

representations to the newly acquired external knowledge)

[3]. Previously [16], we proposed a causality reconstruction

model with constructivist which could let an autonomous agent

organize its behavior to fulfill a form of intentionality defined

independently of a specific task. With the PetriNet that the

agent has learned to predict the consequences of the agent’s

actions, which explains regularities of interaction through the

presence of objects in the agent’s surrounding space. The

work of [17] introduces a model for self-motivated hierarchical

sequence learning with inspirations from Piaget’s theories of

early-stage developmental learning. The behavior organization

is driven by pre-defined values associated with primitive

behavioral patterns. The agent learns increasingly elaborated

behaviors through its interactions with its environment. These

learned behaviors are gradually organized in a hierarchy that

reflects how the agent exploits the hierarchical regularities

afforded by the environment.

III. THE CONSTRUCTIVIST THEORY

The constructivism as a knowledge acquisition theory

proposing that learning happens as a result of an

internal mental representations and external perceptions from

interactions [18], the process of cognitive development is

focused on how to construct a mental model of the world

and as a process that occurs due to biological maturation and

interaction with the environment [19].

From the theory of constructivism, behavior acts as the

adaptation to the environment is controlled through mental

organizations called schema, which the individual uses to

represent the world and generate corresponding actions.

Each schema describes both the mental and physical actions

involved in understanding and knowing, as a category of

knowledge and the process of obtaining that knowledge.

For example, as experience happens, the newly obtained

information is used to modify, append, or change previous

existing schemas. The adaptation is driven by a biological

drive to obtain a balance between schemas and the

environment (equilibration). Schemas are the basic building

blocks of such cognitive models, which is a way of organizing

knowledge that enables us to form a mental representation of

the world. As schemas become increasingly more complex,

which means they are responsible for more complex behaviors,

structures are termed. While structures become complex, they

could be organized in a hierarchical manner which means from

general to specific. In our proposed model, the mechanism

behind our bottom-up hierarchical sequential model comes

from the way to effectively organize different schemas into

different structured behaviors (or hierarchical manners).

There are three processes used in learning and self-adaption:

assimilation, accommodation, and equilibration. Assimilation
refers to a part of the adaptation process which initially

proposed by Jean Piaget, as one of the processes by using

or transforming the environment so that it can be placed

in preexisting cognitive structures. Through assimilation, the

agent incorporates new information or experiences into the

existing knowledge base, sometimes that reinterprets these new

experiences so that they will fit in with previously existing

information.

Another part of adaptation involves altering existing

schemas to accept new information from the environment,

a process known as accommodation. The process of

accommodation involves changing current cognitive structures,

as a result of newly acquired external knowledge or new

experiences [5]. New schemas may also be developed during

this process. Schemas become more refined, detailed, and

nuanced as new information is gathered and accommodated

into agent’s mind and beliefs about how the environment

works.

For keeping the balance between assimilation and

accommodation, equilibration is proposed as the force that

drives the learning process keep going. Reaching a state

of equilibrium between the assimilation and accommodation

processes is what helps create a sense of stability between the

agent and its environment.

As shown in Fig. 1, all processes are used simultaneously
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and alternately throughout life as the agent increasingly adapts

to the environment in a more complex manner.

Fig. 1 Three processes of assimilation, accommodation and equilibration.
When the agent is faced with a new situation, it takes this new information

into the existing schemas is known as assimilation. Accommodation
involves modifying existing schemas to accept new information.

Equilibration is the force that moves development along

IV. BEL-CA: BOTTOM-UP HIERARCHICAL SEQUENTIAL

LEARNING WITH CONSTRUCTIVIST PARADIGM

A. The Definition of Interaction

As shown in Fig. 2, learning starts with interactions. In

our work, the primitive interaction is defined as a tuple

of an experiment et with its corresponding feedback ft
at time t, it = 〈et, ft〉. Additionally, we associate each

primitive interaction with a scalar valence vt to qualify the

agent’s “feeling” from each environmental feedback ft. For

example, if the agent decides to “move forward” from the

current position, there are two possible situations afforded

for the agent: bumping with the wall or not bumping.

Suppose we associate positive valence for the experiment

of “move forward” with the feedback of “not bumping”,

the agent will be satisfied with this interaction and continue

enacting interactions that have experiment “move forward”

and expecting the feedback of “not bumping”. Otherwise,

the agent enjoys enacting interactions of the experiment

“move forward” and receiving the feedback of “bumping”. In

order to be consistent with our commonsense, we associate

positive valence for “not bumping” and negative valence

for “bumping”. With primitive interactions, the agent will

find ways to organize and experience more interactions for

“moving forward” with the feedback of “not bumping” and

reduce the interactions with less “bumping”.

As for interactions with negative valences, we prefer the

valence of experiment “touch front is empty” is better than

“touch front is a wall ”, then the agent will prefer to “feel

front is empty” interactions to lead the agent to “move

forward” in a correct direction. The valence assignment for

different experiments is an important issue in constructivist

learning. The optimal allocation strategy could apparently

accelerate and improve the learning process, otherwise it

slows down the agent’s interaction and even interferes with

the learning process. Currently, there is no clear research

Fig. 2 The interaction cycle between the agent and the environment

result to prove which allocation strategy is optimal. In this

paper, experiments’ valence are allocated mainly based on

experimental experience, we will discuss this issue in detail

in the final section.

Enacting an interaction it means that the agent intends

an experiment et and receives feedback ft that composites

a given interaction at step t. The experiment et could be a

primitive interaction or a series of interactions that the agent

is going to enact recursively. Furthermore, the agent intends an

interaction it which expresses that it performs an experiment

et while expecting its corresponding feedback ft at step t.
With different interactive situations, this “intention” could be

that the agent actually enacts interaction 〈et, f ′
t 〉 if it receives

feedback f
′
t instead of ft.

From the perspective of constructivism, intended interaction

as it represents the sensorimotor schema that the agent intends

to enact, and constitutes the agent’s output that is sent to

the environment. While the enacted interaction represents

the sensorimotor schema that the agent records as actually

enacted, which constitutes the agent’s input received from the

environment. If the enacted interaction equals the intended

interaction, then the attempted enaction of intended interaction

is considered a success, otherwise failure.

B. Learning Process with Constructivist Paradigm

At the beginning of each interaction cycle t (as shown

in Fig. 3), the agent decides an intended interaction iit =
〈et, ft〉 and tries to enact with reference to the reactive

part of the environment. As a result, the agent receives

the enacted interaction iet and memorizes the two-step

enacted interaction sequence ct = 〈iet−1, i
e
t 〉 as a tuple

of 〈contextInteraction, enactedInteraction〉 made by the

previously enacted interaction iet−1 of iet . The sequence of

interaction 〈iet−1, i
e
t 〉 called a composite interaction, as the

pattern of structured behaviors corresponds to the assimilation
process in constructivism. The interaction iet−1 is called ct’s
pre-interaction, noted as pre(〈iet−1, i

e
t 〉), and iet is called ct’s

post-interaction and is noted as post(〈iet−1, i
e
t 〉). The tuple of

composite interaction expresses that in the context of iet−1, the

agent learns to recognize its interactive situation in terms of

affordances related to its own prior experience, then enacts

the proposed enacted interaction in the future to verify its

assumptions.

As interaction goes on, more complex composite

interactions will be emerged with combinations of

different kinds of primitive interactions. To better reflect the
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Fig. 3 The learning process with constructivist paradigm

closeness of pre-interaction and post-interaction in composite

interactions, we associate each composite interaction with a

weight (initialized as “1”) and the weight will be incremented

when the same composite interaction has learned again

(coincide with the accommodation process in constructivism).

Moreover, composite interaction as one type of interaction, its

valence is the sum of its pre-interaction’s and post-interaction’s

valence.

The set of composite interactions known by the agent at

time t is defined as Ct and the set Jt = I ∪ Ct is the

all interactions known to the agent at time t. For the next

step interaction, the current enacted interaction iet activates

previously learned composite interactions as it matches their

pre-interaction, then the agent gets the activated composited
interaction set At. For example, if iet = a and the composite

interaction 〈a, b〉 has been learned before time t, then the

composite interaction 〈a, b〉 is activated, as if it is recalled

from the memory. Activated composite interactions propose

their post-interaction as anticipations for the next round, in

this case: the interaction of b. The agent’s decision making

comes from these anticipations.

For each post-interactions, anticipation is created with a

scalar value proclivity pi ∈ � which is computed from the

weight wai
of the activated composite interaction ai multiplied

by the valence of the proposed post-interaction v(post(ai)).
The proclivity value as a way to reflect the regularity of

the interaction based on its probability of occurrence and the

motivations of the agent.

pi = wai
× v(post(ai)) (1)

As a result, the anticipation which is the most likely to result

in the primitive interaction that has the highest valence receives

the highest proclivity, and that have the biggest proclivity are

the most likely to be enacted in the next round.

C. BEL-CA

As shown in Fig. 4, the proposed BEL-CA contains

seven parts: initialization, activation, proposition, selection,

enaction, learning, and construction. Initialization, agent’s

interaction starts with innate experiments and possible

primitive interactions, with receiving subsequent enacted

interactions, the agent constructs composite interactions with

previously enacted interactions. Activation, with current

enacted interaction, the agent retrieves previously learned

composite interactions whose pre-interaction matches with

current enacted interactions, then those composite interactions

Intended interaction

Enacted interaction

Composite interaction

Partial sequence

Improved partial sequences

Partial sequence

Improved partial sequences

anticipationsanticipations
afford

propose

activate

select

enact

Interaction traces

mapping

Fig. 4 The model of bottom-up hierarchical sequential learning with
constructivist paradigm

are activated. Proposition, the activated composite interactions

propose their post-interactions as anticipations for enacting

in the next round. Selection, the anticipations’ selection is

based on their proclivity values. The anticipation that has the

biggest proclivity value will be selected to enact. Learning,

after enacting the proposed intended interaction, the agent

receives the newly enacted interaction. The composition of

current enacted interaction and its previous enacted interaction

will be examined in the current learned composite interactions.

If it exists, its weight will be incremented. Otherwise, a

new more higher-level composite interaction is constructed,

which means more complicated structured behavior is learned

in this interaction, and hierarchical sequential learning then

starts. The mechanism underlying the algorithm could be

implemented as a sequential learning process that relies on

the interactions between the agent and its environment. We

present a high-level overview of BEL-CA in Algorithm 1.

At the beginning of the interaction, with innate experiments

and primitive interactions, the agent starts interacting with the

environment. Each primitive interaction is associated with a

scalar valence pre-defined with positive or negative valences

according to the nature of different experiments. Results

are defined with possible feedback from interacting with

the environment. For example, if the agent currently moves

forward, moving successfully and bumping with the wall are

two different feedbacks from the environment. To distinguish

these two kinds of feedback, we used “1” to perform moving

successfully and “0” for bumping with the wall. Since there

are no enacted interactions and previous experiences, the

composite interaction set C0 is empty as performed with φ.

With initialization experiments and primitive interactions,

the agent retrieves the previously learned composite

interactions whose pre-interaction belongs to the current

context Bt, then activates them and forms the set At of

activated interactions defined as At = {ai ∈ Ct|pre(ai) ⊂
Bt} (as shown in Algorithm 2). The activated interactions

in At propose their post-interaction for anticipations, with

proclivity values that are computed from activated interaction

ai‘s weight and its post interaction’s valence v(post(ai))
forming the set ANt of proposed anticipations: ANt =
{antii ∈ ANt|ai ∈ At, proclivityantii = wai

×v(post(ai))}.

With anticipations that start with the same experiment, or

called the partial similar anticipations (PSAs), we regroup
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Algorithm 1 BEL-CA

1: Initial:

2: experiments = {move forward, turn left, turn right,

touch front, touch left, touch right};

3: Valences V = {v moveSucess, v moveFailture, v turn,

v feelEmpty, v feelWall };

5: Results Re = [0,1]; 6: 
E.resetAbstract();

7: primitive interactions I =

addOrGetPrimitiveInteraction(E,Re, V );

8: default Interactions De = defaultInteractions(I);

9: E.setIntendedInteraction(De);

10: composite Interaction C0 = φ and all interactions J0 =
I .

11: while interactions continues do
12: anticipations = anticipate();

13: selectedAnticipation = selectInteraction(anticipations);

15: enactedInteraction = enact(intendedInteraction);

16: if intendedInteraction = enactedInteraction then
17: this interaction is success;

18: else
19: this interaction is failure;

20: end if
21: ct = learnCompositeInteraction(intendedInteraction,

enactedInteraction);

22: if ct /∈ Ct then
23: Initial ct’s weight as 1;

24: Add ct in Ct interaction;

25: else
26: Increase ct’s weight by one;

27: Reinforce ct in Ct;

28: end if
29: end while

all anticipations according to their first experiment of the

intended interactions and map them all as different lists

with corresponding experiments respectively (at Fig. 5). Each

experiment’s proclivity value is calculated as follows:

proclivityantii
default

=
n∑

i=1

wai
× v(post(ai)) (2)

The proclivityantii
default

from the equation above is the

proclivity of experiment i, n refers to the number of

anticipations that share the same first-experiment of primitive

interaction in their intended interaction, wai is the weight of

activated composite interactions ai and the v(post(ai)) is the

valence of ai’s post-interaction.

The intended interaction iit is selected with function

selectInteraction() from anticipations whose experiment has

the biggest proclivity and enacts the intended interaction of

its anticipation which the one has the biggest proclivity.

If the intended interaction is a composite interaction, the

enaction of this intended composite interaction is subject to

its anticipation’s weight wai
and the threshold d ∈ �. The

Algorithm 2 Activation function and anticipations

construction

1: context interaction Bt = [enacted interaction, composite

interaction’s post-interaction, super-interaction];

2: activated composite interaction At = [];

3: default anticipations Defaultt = [];

4: Experiments E = addOrGetExperience(“experiment labels”,e4:xperiments);
anticipatio

ns ANt = [];

5: for each it ∈ I do
6: if it is primitive then
7: antiidefault = createAnticipation(it.experiment, 0);
8: antiidefault.anticipationsList = [];
9: Add antiidefault in Defaultt;

10: end if
11: end for
12: for each ci ∈ Ct do
13: if pre(ci) ∈ Bt then
14: Add ci in At;

15: end if
14: intendedInteraction = selectedAnticipation.intendedInteraction;16: end for

17: for each ai ∈ At do
18: antii = createAnticipation(post(ai).experiment, 0);
19: antii.intendedInteraction = post(ai);
20: proclivityantii = wai × v(post(ai));
21: if antii /∈ ANt then
22: Add antii in ANt;

23: end if
24: end for
25: for each antiidefault ∈ Defaultt do
26: for each antii ∈ ANt do
27: firstPrimitiveIntearction =

getFirstPrimitiveInteraction(antii);
28: if firstPrimitiveIntearction.experiment =

antiidefault.experiment then
29: Add antii in antiidefault.anticipationsList;
30: proclivityantii

default
+ = proclivityantii ;

31: end if
32: end for
33: end for

Fig. 5 Mapping partial similar anticipations to experiments.

parameter d is the threshold which encodes the limited of

enacting the intended interaction as a whole. If the weight

of the anticipation is greater than d and its proclivity value

is positive, then the agent will effectively enact all primitive

interactions within this intended interaction according to the

hierarchical sequential structure recursively. Otherwise, the

agent just needs to enact the first primitive interaction of this
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intended interaction. In essence, this mechanism ensures that

higher-level schemas are sufficiently rehearsed before being

enacted as a whole. If the sequence of intended interaction

corresponds to the regularity of interaction, then it is possible

that the sequence of this intended interaction can be enacted

again. Therefore, the agent can anticipate that performing post

interaction’s experience will likely produce its result. The

agent can thus base its choice of the next interaction on this

anticipation.

While enacting intended interactions (as shown in

Algorithm 3), the agent checks each enacted primitive

interaction with intended primitive interaction and compares

the result between them. For enacting composite interactions,

the flat sequence of enacted primitive interactions constructs a

hierarchical structure according to the enaction sequence and

the intended composite interaction’s structure.

With enacted interactions, new composite interactions are

constructed or reinforced with their pre-interaction belonging

to the context and their post-interaction iet , forming the set of

learned or reinforced interaction ct to be included in Ct+1,

for supporting affordance of more complicated interaction

situations in the future. The set ct is defined as ct = {<
iet−1, i

e
t >,< iet−2, < iet−1, i

e
t >>,<< iet−2, i

e
t−1 >, iet >},

Ct+1 = Ct∪ct. A new context Bt+1 is constructed to include

the stabilized interactions in iet and post(iet ).

V. METHODOLOGY AND EXPERIMENTAL SCENARIO

In order to evaluate the model we proposed in this paper,

an experimental scenario was set up in which the agent

could move around and touch the environment in three

directions: front, left and right. The environment is designed

as a Small Loop [20], [21] environment, which composed of

white squares represent paths surrounded by green “walls” (as

shown in the left figure of Fig. 6). The Small Loop Problem

(SLP) as a benchmark to evaluate agents that implement four

principles of emergent cognition: environment agnosticism,

self-motivation, sequential regularity learning, and spatial

regularity learning. Different from most existing benchmarks,

the small loop environment does not involve a final goal for the

agent to reach, instead, the agent’s self-motivation comes from

the fact that primitive interactions have different valences.

(a) The classic SLP environment. (b) Parameter settings

Fig. 6 The designed environment and experimental settings

The agent is presented as a blue head arrow and initialized

with a random direction. Different with classic Small Loop

Algorithm 3 Enaction intended interaction

1: given proposedIntendedInteraction;

2: Nodes = [];

3: nodeStack = [];

4: if proposedIntendedInteraction.weight ≥ threshold and
proclivity is positive then

5: Add proposedIntendedInteraction in nodeStack;

6: else
7: Add proposedIntendedInteraction.firstPrimitiveInteraction

in nodeStack;

8: end if
9: while nodeStack not null do

10: topInteraction = nodeStack.pop();

11: if topNode is not primitive then
12: nodeStack.push(topInteraction.postInteraction);

13: nodeStack.push(topInteraction.preInteraction);

14: else
15: newNode = createNode(topInteraction);

16: Add newNode in Nodes;

17: end if
18: end while
19: node = getLeftNode(Nodes);

20: while the root node is not visited do
21: intendedInteraction = node.getInteraction;

22: enactedInteraction = enact(intendedInteraction);

23: if intendedInteraction = enactedInteraction then
24: previousRecordInteraction =

recordWithStructure(enactedInteraction);

25: node = getNearestRightNode(node);

26: else
27: previousRecordInteraction =

recordWithStructure(enactedInteraction);

28: break;

29: end if
30: end while
31: learnCompositeInteraction(proposedIntendedInteraction,

previousRecordInteraction);

environment, our environment is designed as changeable to

verify the adaptability of agent in different environments. We

use different shapes like a triangle, left and right half-circle

square, left and right trapezoid and square to represent moving

forward, turn left and turn right, touch left, touch right and

touch front, respectively. Colors (like green and white) indicate

interactions with the same experiment but receive different

possible feedbacks from the environment. The experimenter

can preset the parameters to control the interaction process (as

shown in the right figure of Fig. 6), such as valences allocation

for primitive interactions, using interaction “interval” speed

up or slow down the interaction, “actionType” indicates the

current experiment the agent enacts, “Total valence” represents

the cumulated valence the agent has received from each

interactions, and “loopNum” presents the decision-making

times. In order to better observe the interaction between

agents and the environment, as well as the agent’s gradually

learning process, we proposed and developed a toolkit named
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“Generating and Analyzing Interaction Traces toolkit” (GAIT)

as a way to investigate the detailed learning process for agent

interacting with the environment and each structured behavior

it has learned within each decision-making step.

A. Generating and Analyzing Interaction Traces (GAIT)

The framework of GAIT records each agent’s enacted

interaction and forms a streamline of continuous interaction

traces. In the area of interaction traces, each time select

a primitive intended/enacted interaction, the constructed

composite interaction tip windows will pop out all composite

interactions that the agent has learned. The surrounded green

rectangles indicate that the composite interactions are newly

learned, while the blue ones are already learned before but

enforced in this interaction. Left-clicking on any enacted

interactions, the sorted experiment list will pop out with

its proclivities. For the case that experiments have proposed

anticipations, we surround them with pink rectangles. If

continue selecting the experiment, more detailed anticipations

are displayed with detailed intended interactions and sorted

with their proclivities. As for enacting composite interactions,

the light green rectangle fields on the “loop number” could

pop out a tip window that includes the intended composite

interactions with its enacted composite interaction to show

the detailed interaction process. In order to identify the range

of interactions in this composite interaction, we surround all

primitive interactions the agent has enacted with a yellow

rectangle.

The scroll button at the bottom of the interaction traces

could be used to show all previous interactions. In our

experiment, the proposed toolkit could support tens of

thousands interactions which makes it easy to look back at

all previous interactions.

B. Interaction Traces Analysis

At the beginning of the interaction, the agent randomly

selects an experiment (touch right) and intends the default

intended interaction (the green right trapezoid), with feedback

from the environment, the agent receives the same result. At

step 2, the agent memorizes the previously enacted interaction

with the current enacted interaction and forms a composite

interaction. Especially in step 3, the agent not only memorizes

the previously enacted interaction, and also combines the

previously learned composite interaction to construct more

higher-level composite interaction (as shown in Fig. 7).

The proposed intended interaction appears at step 9 (as

shown in Fig. 8), the experiment “move forward” has the

highest proclivity and its intended interaction (the white

triangle) is activated with the highest proclivity (the proclivity

value is 15). Hence the agent selected this white triangle

(move forward) and got the same white triangle (the agent

successfully moves forward a step), with previous statement,

this enaction is considered as a success. While the opposite

situation happens in step 14, the agent intends the same white

triangle but bumps with the wall (a green triangle), thus this

interaction as failure.

Fig. 7 The first several interactions and composite interactions construct
process

Fig. 8 Enact the same intended interaction with different feedback

At step 23, the agent is going to enact a composite

interaction, with the reason that this anticipation’s weight is

less than the threshold, then the agent intends the first primitive

interaction (left half-circle) and receives the same enacted

interaction (as shown in Figure 9). In our implementation,

we use different colors of proclivities to identify their

anticipations’ weight beyond the threshold or not, the red color

presents the weight is less than the threshold while the green

color presents the weight is higher than the threshold.

Fig. 9 The enacted composite interaction’s weight less than the threshold

At step 119, the agent gets an intended composite

interaction with the weight beyond the threshold, then it

sequentially intends this composite interaction successfully

receives the same enacted composite interaction (as shown

in Fig. 10). The agent combines this enacted composited

interaction with previously enacted interaction and learned

composite interaction to construct higher-level and more

complex composite interaction.

With interactions continue, the agent could successfully

interact with the environment and learn to avoid unfavorable

interactions (bumping with the wall) by using regularities

it has learned. More complicated behavioral patterns have

constructed and it could generate properly with different

situations (as shown in Fig. 11).

From the agent’s 600 interactions, we can find that the agent

bumps with the wall at the beginning several interactions,
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Fig. 10 The agent enacts composite interaction and constructs higher-level
composite interaction

Fig. 11 Enacting complicated composite interaction

however, from 357th interaction (as shown in the top Fig.

12), the bumping phenomenon disappears and the agent could

successfully interact with its environment with starting to

prevent unfavorable interactions using regularities that it has

learned. This could be confirmed from the perspective of

cumulated valences the agent has received from interactions

(as shown in the bottom Fig. 12). In the beginning interactions,

the agent could move forward successfully, but in most cases,

the agent is taking various explorations and attempts, hence the

total valence reduces in this period. Since 357th interaction,

we find that the total valence begins to rise, and the increase

gradually increases until stable, which as a way to prove the

emergence of sense-making and cognitive development in the

agent’s interactions with the environment.
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Fig. 12 Agent’s bumping times and cumulated valence with interactions

VI. CONCLUSION AND OPEN ISSUES

This paper presents BEL-CA, a bottom-up hierarchical

sequential learning model for autonomous and continuous

learning of environment representation and agents’

self-adaptation. The agent autonomously organizes schemas

it has learned from interactions into hierarchically structured

behaviors, which allows the agent gradually understand the

meaning of divers experiments and infers the structure of

the environment simultaneously based on the patterns in

the stream of interaction feedback traces. Meanwhile, an

implementation of GAIT for autonomously generating and

analyzing interactions at run-time, which could allow us

observe the detailed learning process for agent interacting

with the environment and each structured behavior it has

learned within each decision-making step.
We evaluated the agent’s cognition emergence with an

improved Small Loop Problem (SLP) environment, in which

the changeable environment is designed for simulating

agent’s performance in different levels of complex scenarios.

With interaction traces from GAIT and the hierarchically

structured behaviors the agent has learned, the agent

gradually exploits the hierarchical regularities afforded by the

environment and learns to avoid unfavorable interactions using

regularities that it has learned. Nevertheless, the agent has to

retrospect all composite interactions to retrieve the one whose

pre-interaction matches the current enacted interaction. With

interactions continuing, interaction traces grow progressively

longer, hence the agent spends a long time activating all

eligible composite interactions for anticipations. In addition,

the utility rate of composite interactions needs to be improved.

As shown in Fig. 13, the agent activated almost all composite

interactions but few are proposed for intending. Although the

agent can be easily qualified for the work in the environment

designed in this paper, when the environment becomes more

complex, this shortcoming will be easily shown.
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Fig. 13 Utility rate of composite interaction

Valence initialization is another issue that we need to face.

According to the common sense of human beings, assume

the agent gets positive hints if it can successfully take a

step forward and the negative feedback for collisions with the

wall. As for the agent, it starts interactions without any prior

knowledge, which means it should comprehend the feedback

of different behaviors from their own interaction with the
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environment. For the initialization of valence, it is inevitable to

have a certain influence on the cognitive process of the agent

to some extent. In the following research, we need to study

to reduce human intervention as much as possible, in order to

allow the agent explore for itself and discover how to find the

optimal valence allocation strategy from the interaction.

Further work will be mainly focused on optimizing our

model and upgrading the proposed toolkit. For example, we

could use a predictive model for better-proposing anticipations

for the agent of interacting with the environment in the

next round. This could be achieved with memorizing patterns

that could improve the learning efficiency and eliminating

composite interactions that probably will not be used to

simplify the activation and proposition processes in BEL-CA

in the future. With this hierarchical sequential learning model,

the aim would be like to evaluate the performance of the agent

in a multi-agent scenario, which provides more challenges and

opportunities to improve its learning ability.
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