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A constructive proof of the general Brouwer fixed
point theorem and related computational results in

general non-convex sets
Menglong Su, Shaoyun Shi, and Qing Xu

Abstract—In this paper, by introducing twice continuously differ-
entiable mappings, we develop an interior path following following
method, which enables us to give a constructive proof of the general
Brouwer fixed point theorem and thus to solve fixed point problems
in a class of non-convex sets. Under suitable conditions, a smooth
path can be proven to exist. This can lead to an implementable
globally convergent algorithm. Several numerical examples are given
to illustrate the results of this paper.

Keywords—interior path following method; general Brouwer fixed
point theorem; non-convex sets; globally convergent algorithm

I. INTRODUCTION

AS a powerful mechanism for mathematical analysis, fixed
point theory has many applications in areas such as

mechanics, physics, transportation, control, economics, and
optimization. Fixed point theorems have been extensively
studied and generalized in the past years (see [1], [2], [3],
[4], [5], [6], [7], [8], etc. and the references therein). In
1976, Kellogg et al. (see [9]) gave a constructive proof
of the Brouwer fixed point theorem and hence presented a
homotopy method for computing the fixed points of a twice
continuously differentiable self-mapping Φ(x). From then on,
this method has become a powerful tool in dealing with fixed
point problems (see [10], [11], [12], [13], [14], etc. and the
references therein). In 1978, Chow et al. [13] constructed the
homotopy

(1 − μ)(x − Φ(x)) + μ(x − x0) (1)

for the bounded closed convex set. This homotopy is used
by many authors to compute fixed points and solutions of
nonlinear systems. In general, it is difficult to reduce or remove
the convexity.

If a bounded, closed subset in Rn is homeomorphic to
the unit ball, then any continuous self-mapping Φ(x) in it
has a fixed point. This is the general Brouwer fixed point
theorem, which does not require the convexity of the subsets
in Rn, certainly it is also very interesting and important to
give a constructive proof of it and hence solve fixed point
problems numerically in general non-convex subsets. Under
the normal cone condition, Yu et al. (see [15]) completed
this work in a class of non-convex sets. In this paper, we
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give a constructive proof of the general Brouwer fixed point
theorem and thus solve fixed point problems in more general
non-convex sets than those in [15]. To this end, we introduce
C2 mappings ξi(x) ∈ Rn, i = 1, . . . , m. Based on the newly
introduced mappings, by introducing the idea of Karmarkar’s
interior point method into the homotopy method, we develop
an interior path homotopy following method. Under suitable
conditions, we prove that a bounded smooth homotopy path
connecting a given point to a fixed point exists. This forms
the theoretical base of the interior path following method.
Numerically tracking the smooth path can lead to an imple-
mentable globally convergent algorithm for solving fixed point
problems. In addition, the method proposed in this paper also
avoids homeomorphically transforming the bounded closed set
to the closed unit ball. It is also important because it is difficult
to construct such a homeomorphism in practice. At last, several
numerical examples are given to validate the work in this
paper.

This paper is organized as follows. Section 2 is the main
part, which exhibits a constructive proof of the general
Brouwer fixed point theorem in more general non-convex sets
than those in [15]. In section 3, we use the reduced predictor-
corrector algorithms given by Allgower and Georg [11] to
compute some experimental examples, which illustrate the
results in this paper.

II. A CONSTRUCTIVE PROOF OF THE GENERAL BROUWER
FIXED POINT THEOREM

In this section, some notations are given as fol-
lows: g(x) = (g1(x), . . . , gm(x))T ∈ Rm, ∇g(x) =
(∇g1(x), . . . ,∇gm(x)) ∈ Rn×m, y ∈ Rm, y(0) ∈ Rm,
Y = diag(y) ∈ Rm×m, and Y (0) = diag(y(0)) ∈ Rm×m.
The nonnegative and positive orthants of Rm are denoted
as Rm

+ and Rm
++, respectively. We also denote the active

set at x by B(x) = {i ∈ {1, . . . , m} : gi(x) = 0}. In
addition, set Ω = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , m},
Ω0 = {x ∈ Rn : gi(x) < 0, i = 1, . . . , m}, and ∂Ω = Ω\Ω0.

In [15], Yu et al. gave a constructive proof of the general
Brouwer fixed point theorem under the following assumptions:
(A1) Ω0 is nonempty and Ω is bounded;
(A2) For any x ∈ ∂Ω, the matrix {∇gi(x) : i ∈ B(x)} is of
full column rank;
(A3) (The normal cone condition of Ω) For any x ∈ ∂Ω, the
normal cone of Ω at x only meets Ω at x, i.e., for any x ∈ ∂Ω,
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we have

{x +
∑

i∈B(x)

yi∇gi(x) : yi ≥ 0 for i ∈ B(x)}
⋂

Ω = {x}.

In that paper, the homotopy equation is given as follows

H(w, w(0), μ) =(
(1 − μ)(x − Φ(x) + ∇g(x)y) + μ(x − x(0))

Y g(x) − μY (0)g(x(0))

)
= 0,

(2)
where w = (x, y) ∈ Rn+m, w(0) = (x(0), y(0)) ∈ Ω0 × Rm

++.
The normal cone condition of a set is a generalization of

the convexity. If Ω is a convex set, then it satisfies the normal
cone condition. On the other hand, if Ω satisfies the normal
cone condition, then the outer normal cone of Ω can not meet
Ω0, but meets Ω at x. In the following, we want to give a
constructive proof of the general Brouwer fixed point theorem
in more general non-convex sets than those in [15]. To this
end, we introduce C2 mappings ξi(x) ∈ Rn, i = 1, . . . , m
and make the following assumptions:
(C1) Ω0 is nonempty and Ω is bounded;
(C2) For any x ∈ ∂Ω, if

∑

i∈B(x)

∇gi(x)yi + ξi(x)ui = 0, yi ≥ 0, ui ≥ 0,

then yi = 0, ui = 0, ∀i ∈ B(x);
(C3) For any x ∈ ∂Ω, we have

{x +
∑

i∈B(x)

ξi(x)ui : ui ≥ 0, i ∈ B(x)} ∩ Ω = {x}.

If Ω satisfies assumptions (A1)− (A3), let ξi(x) = ∇gi(x),
i = 1, . . . , m, then Ω satisfies assumptions (C1)− (C3). Con-
versely, the conclusion does not hold. This can be illustrated
by Examples 1-6 in Section 3. By this fact, we are capable of
giving a constructive proof of the general Brouwer fixed point
theorem in more general non-convex sets than those in [15].

The following lemma, which plays a key role in this paper,
gives an equivalent condition of the existence of fixed points.

Lemma 1 Let gi(x), i = 1, . . . , m be C3 functions, let as-
sumptions (C1)−(C3) hold, and let ξi(x) ∈ Rn, i = 1, . . . , m
be C2 mappings. Then for any C2 mapping Φ(x) : Rn → Rn

satisfying Φ(Ω) ⊂ Ω, x∗ ∈ Ω is a fixed point of Φ(x) in Ω
if and only if there exists y∗ ∈ Rm, such that (x∗, y∗) is a
solution of the equation

x − Φ(x) +
m∑

i=1

ξi(x)yi = 0,

Y g(x) = 0, g(x) ≤ 0, y ≥ 0.
(3)

Proof Similar to the analysis of Proposition 2.2 in [15].
To give a constructive proof of the general Brouwer theorem

in a broader class of non-convex sets, we construct the
following homotopy:
H(w, w(0), μ) =
⎛

⎝
(1 − μ)(x − Φ(x) + (1 − μ)μ∇g(x)y + ξ(x)y)

+μ(x − x(0))
Y g(x) − μY (0)g(x(0))

⎞

⎠

= 0,
(4)

where w = (x, y) ∈ Rn+m, w(0) = (x(0), y(0)) ∈ Ω0 × Rm
++

and ξ(x) = (ξ1(x), . . . , ξm(x)).
Note that when μ = 0, the homotopy equation (4) turns

to (3). When μ = 1, the equation H(w, w(0), 1) = 0 has a
unique solution w = w(0) ∈ Ω0 × Rm

++.
For a given w(0), rewrite H(w, w(0), μ) as Hw(0)(w, μ). The

zero-point set of Hw(0) is

H−1
w(0)(0) = {(w, μ) ∈ Ω × Rm

+ × (0, 1] : Hw(0)(w, μ) = 0}.
In the following, we recall some basic definitions and results
from differential topology, which will be used in our main
result of this paper.

The inverse image theorem tells us that, if 0 is a regular
value of the map Hw(0) , then H−1

w(0)(0) consists of some
smooth curves. And the regularity of Hw(0) can be obtained
by the following lemma.

Lemma 2 (Transversality Theorem, see [13]). Let Q,N
and P be smooth manifolds with dimensions q, m and p̃,
respectively. Let W ⊂ P be a submanifold of codimension
p (that is, p̃ = p+ dimension of W ). Consider a smooth map
Φ : Q×N → P . If Φ is transversal to W , then for almost all
a ∈ Q, Φa(·) = Φ(a, ·) : N → P is transversal to W . Recall
that a smooth map h : N → P is transversal to W if

{Range(Dh(x))}+{TyW} = TyP, whenever y = h(x) ∈ W,

where Dh is the Jacobi matrix of h, TyW and TyP denote
the tangent spaces of W and P at y, respectively.

In this paper, W = {0}, so the Transversality Theorem is
corresponding to the Parameterized Sard’s Theorem on smooth
manifolds.

Lemma 3 (Parameterized Sard’s Theorem). Let V ⊂ Rn,
let U ⊂ Rm be open sets, and let Φ : V × U → Rk be a
Cr map, where r > max{0, m − k}. If 0 ∈ Rk is a regular
value of Φ, then for almost all a ∈ V , 0 is a regular value of
Φa ≡ Φ(a, ·).

With the preparation of the previous lemmas, we can prove
the following main theorem on the existence and boundedness
of a smooth path connecting an interior point x(0) in Ω to a
fixed point. This implies the global convergence of the interior
path following method.

Theorem 1 Let H be defined as in (4), let gi(x), i =
1, . . . , m be C3 functions, let assumptions (C1)− (C3) hold,
and let ξi(x), i = 1, . . . , m be C2 mappings. Then for any
C2 mapping Φ(x): Rn → Rn satisfying Φ(Ω) ⊂ Ω,
(1) (existence of the fixed point) Φ(x) has a fixed point in Ω;
(2) (computation of the fixed point) for almost all w(0) ∈
Ω0 ×Rm

++, there exists a C1 curve (w(s), μ(s)) of dimension
1 such that

H(w(s), w(0), μ(s)) = 0, (w(0), μ(0)) = (w(0), 1). (5)

And when μ(s) → 0, w(s) tends to a point w∗ = (x∗, y∗). In
addition, the component x∗ of w∗ is a fixed point of Φ(x) in
Ω.

Proof Denoting the Jacobi matrix of H(w, w(0), μ) by
DH(w, w(0), μ), we have

DH(w, w(0), μ) = (∂H(w,w(0),μ)
∂w , ∂H(w,w(0),μ)

∂w(0) , ∂H(w,w(0),μ)
∂μ ).

(6)
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Note that ∀(w, μ) ∈ Rn+m × (0, 1], we obtain

∂H(w,w(0),μ)
∂w(0) =

( −μI 0
−μY (0)∇g(x(0))T −μG(x(0))

)
,

(7)
where G(x(0)) = diag(g(x(0))). It is easy to show that
∂H(w, w(0), μ)/∂w(0) is nonsingular. Hence DH(w, w(0), μ)
is of full row rank, then 0 is a regular value of H(w, w(0), μ).
By the parameterized Sard’s theorem, for almost all w(0) ∈
Ω0 × Rm

++, 0 is a regular value of map Hw(0) : Ω × Rm
+ ×

(0, 1] → Rn+m. By the inverse image theorem, H−1
w(0)(0)

consists of some smooth curves. Since Hw(0)(w(0), 1) = 0,
then there exists a C1 curve (w(s), μ(s)) (denoted by Γw(0))
of dimension 1 such that

H(w(s), w(0), μ(s)) = 0, (w(0), μ(0)) = (w(0), 1).

By the classification theorem of one-dimensional smooth man-
ifold, Γw(0) is diffeomorphic either to a unit circle or to the
unit interval. Since

∂Hw(0)(w(0), 1)
∂w

=
(

I 0
Y (0)∇g(x(0))T G(x(0))

)

is nonsingular, therefore Γw(0) is diffeomorphic to the unit
interval (0, 1].

Let (w∗, μ∗) be a limit point of Γw(0) , then the following
cases may occur:
(a) (w∗, μ∗) = (x∗, y∗, μ∗) ∈ Ω × Rm

+ × {0},
(b) (w∗, μ∗) = (x∗, y∗, μ∗) ∈ Ω0 × Rm

++ × {1},
(c) (w∗, μ∗) = (x∗, y∗, μ∗) ∈ ∂(Ω × Rm

+ ) × (0, 1].
From above analysis, the equation Hw(0)(w, 1) = 0 has a

unique solution (w(0), 1) in Ω0×Rm
++×{1}, so case (b) does

not occur.
If case (c) holds, there exists a sequence of points

{(w(k), μk)}∞k=1 ⊂ Γw(0) such that ‖(w(k), μk)‖ → ∞. Since
Ω and (0, 1] are bounded, hence there exists a subsequence of
points (denoted also by {(w(k), μk)}∞k=1) such that x(k) → x∗,
‖y(k)‖ → ∞ and μk → μ∗ as k → ∞. From the second
equality of (4), it follows that

g(x(k)) = μk(Y (k))−1Y (0)g(x(0)).

So the active index set

B(x∗) = {i ∈ {1, . . . , m} : lim
k→∞

y
(k)
i = ∞}

is a nonempty set, i.e., x∗ ∈ ∂Ω, where y
(k)
i denotes the ith

element of y(k).
From the first equality of (4), we have

(1 − μk)[x(k) − Φ(x(k)) + (1 − μk)μk∇g(x(k))y(k)

+ξ(x(k))y(k)] + μk(x(k) − x(0)) = 0.
(8)

(1) When μ∗ = 1, rewrite (8) as
∑

i∈B(x∗)

((1 − μk)y(k)
i )[(1 − μk)μk∇gi(x(k)) + ξi(x(k))]

+(x(k) − x(0)) = (1 − μk)(Φ(x(k)) − x(0))
− ∑

i�∈B(x∗)

((1 − μk)y(k)
i )[(1 − μk)μk∇gi(x(k)) + ξi(x(k))].

(9)

By the fact that y
(k)
i is bounded for i 
∈ B(x∗), and assumption

(C1), when k → ∞, we have
∑

i∈B(x∗)

lim
k→∞

((1 − μk)y(k)
i )ξi(x∗) + (x∗ − x(0)) = 0.

(10)
Then by assumption (C2), we have that lim

k→∞
(1 − μk)y(k)

i

(denoted by ρ∗i ) exists, furthermore, we get
∑

i∈B(x∗)

ξi(x∗)ρ∗i + x∗ = x(0), (11)

which contradicts assumption (C3).
(2) When μ∗ < 1, rewrite (8) as

∑

i∈B(x∗)

((1 − μk)y(k)
i )[(1 − μk)μk∇gi(x(k)) + ξi(x(k))]

= − ∑

i�∈B(x∗)

((1 − μk)y(k)
i )[(1 − μk)μk∇gi(x(k)) + ξi(x(k))]

−(1 − μk)(x(k) − Φ(x(k))) − μk(x(k) − x(0)).
(12)

Let y
(k)
I be a vector which consists of y

(k)
i , i ∈ B(x∗) and let

α
(k)
i = y

(k)
i

‖y
(k)
I

‖ , i ∈ B(x∗). (13)

Note that 0 ≤ α
(k)
i ≤ 1, so there exists a subsequence of

{α(k)
i }, still denoted by {α(k)

i }, such that α
(k)
i → α∗

i for each
i ∈ B(x∗) as k → +∞. Furthermore, we denote by α∗ the
vector consisting of α∗

i , i ∈ B(x∗), then ‖α∗‖ = 1. Dividing
both sides of (12) by ‖y(k)

I ‖, when k → +∞, we have
∑

i∈B(x∗)

(1 − μ∗)2μ∗α∗
i∇ḡi(x∗) + (1 − μ∗)α∗

i ξi(x∗) = 0,

(14)
which contradicts assumption (C2).

From above discussion, we obtain that case (a) is the only
possible case. Therefore w∗ is a solution of (4), and by Lemma
1, we have x∗ is a fixed point of Φ(x) in Ω.

III. NUMERICAL ANALYSIS

For almost all w(0) = (x(0), y(0)) ∈ Ω0 × Rm
++, by

Theorem 1, the homotopy generates a C1 curve Γw(0) . Then
by differentiating the first equality of (5), we get the following
theorem

Theorem 2 The homotopy path Γw(0) is determined by
the following initial value problem to the ordinary differential
equation

DHw(0)(w(s), μ(s))
(

ẇ(s)
μ̇(s)

)
= 0, (w(0), μ(0)) = (w(0), 1),

(15)
where s is the arclength of the curve Γw(0) .

Next, we discuss how to track the homotopy path Γw(0)

numerically in the following remark.
Remark 1 Let A = DHw(0)(w(s), μ(s)), v =

(ẇ(s), μ̇(s))T , y(s) = (w(s), μ(s)), then (15) becomes

Av = 0, y(0) = (w(0), 1). (16)

By solving the linear system Av = 0, we get a solution v,
then (15) becomes the following initial value problem

dy
ds = v, y(0) = (w(0), 1). (17)
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Generally, if we utilize numerical algorithms for initial value
problems of ordinary differential equations (for example,
Runge-Kutta algorithms) to solve (17) independently, the
steplength must be sufficiently small to guarantee that each
iterate (w(k), μk) is close enough to the solution curve. This
may increase computational cost greatly. Since ones only try
to find a point (w, μ)(when μ is approximately zero) instead of
tracking the curve Γw(0) very precisely, hence they would like
to combine numerical algorithms for initial value problems
of ordinary differential equations with other methods (for
example, Newton’s methods) to develop more efficient meth-
ods, i.e., predictor-corrector methods[11]. In the following, we
formulate the implementation of a standard predictor-corrector
procedure in detail. Suppose we have obtained a sequence of
points (w(i), μi), i = 1, . . . , k, starting with an initial guess
(w(0), 1). To get the next iterate (w(k+1), μk+1), we need to
solve the linear system Av = 0, which enables us to get a
unit tangent vector v(k) at (w(k), μk). The tangent vector at a
point on Γw(0) has two opposite directions, one (the positive
direction) makes s increase, another (the negative direction)
makes s decrease. Since the negative direction will lead us
back to the initial guess, so we must go along the positive
direction. The criterion that determines the positive direction is
based on a basic theory of the homotopy method, namely, the
positive direction at any point keeps the sign of the determinant∣
∣
∣
∣

DHw(0)(w, μ)
vT

∣
∣
∣
∣ invariant. On the first iterate, the sign is

determined by the following lemma.
Lemma 4 If Γw(0) is smooth, then the positive direction

v(0) at the initial point (w(0), 1) satisfies

sign

∣
∣
∣
∣
∣

DHw(0)(w(0), 1)
v(0)T

∣
∣
∣
∣
∣
= (−1)m+1.

Proof Since DHw(0)(w(0), 1) = ∂Hw(0)(w(0), 1)/∂(w, μ)

=
(

I 0 a(0)

Y (0)∇g(x(0))T G(x(0)) b(0)

)
= (M1,M2),

(18)
where a(0) = (Φ(x(0)) − x(0)) − ξ(x(0))y(0), b(0) =
−Y (0)g(x(0)), M1 ∈ R(n+m)×(n+m),M2 ∈ R(n+m)×1. The
tangent vector v(0) of Γw(0) at (w(0), 1) satisfies

(M1,M2)v(0) = (M1,M2)

(
v
(0)
1

v
(0)
2

)

= 0, (19)

where v
(0)
1 ∈ Rn+m, v

(0)
2 ∈ R1. By a simple computation, we

have v
(0)
1 = −M−1

1 M2v
(0)
2 , thus

∣
∣
∣
∣
∣

DHw(0)(w(0), 1)
v(0)T

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

M1 M2

v
(0)
1

T
v
(0)
2

T

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

M1 M2

−MT
2 M−T

1 1

∣
∣
∣
∣ v

(0)
2

= |M1|v(0)
2 (1 + MT

2 M−T
1 M−1

1 M2)

=
∣
∣
∣
∣

I 0
Y (0)∇g(x(0))T G(x(0))

∣
∣
∣
∣ v

(0)
2 (1 + MT

2 M−T
1 M−1

1 M2)

= (−1)m|G(x(0))|v(0)
2 (1 + MT

2 M−T
1 M−1

1 M2).
(20)

Note that gi(x(0)) < 0, i = 1, . . . , m, (1 +
MT

2 M−T
1 M−1

1 M2) > 0 and v
(0)
2 should be negative

since initially we plan to move along the path Γw(0) by

decreasing μ, and hence the sign of

∣
∣
∣
∣
∣

DHw(0)(w(0), 1)
v(0)T

∣
∣
∣
∣
∣

is

(−1)m+1.
Then, by using the Euler method, for some small steplength

hk > 0 (not sufficiently small), we are able to get a predictor
point (w̄(k), μ̄k) = (w(k), μk) + hkv(k). Here we do not
replace the Euler method by more complicated algorithms,
for the predictor point need not to be close enough to the
curve Γw(0) , if only it is located in the convergent region
of the Newton’s method during the corrector phase. Next,
we may make a corrector step. Setting DHw(0)(w, μ)+ =
DHw(0)(w, μ)T (DHw(0)(w, μ)DHw(0)(w, μ)T )−1, which is
the Moore-Penrose inverse of DHw(0)(w, μ). The corrector
phase then tries to identify a corrector point (w(k+1), μk+1)
on the path Γw(0) . The corrector step is usually carried out by
the Newton’s method that uses the Moore-Penrose inverse of
DHw(0)(w, μ), starting with (w̄(k), μ̄k) and proceeding until
‖Hw(0)(w(k+1), μk+1)‖ is approximately zero. The following
pseudocode shows the basic steps of a generic predictor-
corrector method.

Algorithm 1 (Euler-Newton method)
Step 0: Give an initial point (w(0), 1), an initial steplength
h0 > 0 and three small positive numbers ε1 > 0, ε2 > 0,
ε3 > 0. Set k = 0.
Step 1: Compute the direction η(k) of the predictor step:
(a) Compute a unit tangent vector v(k).
(b) Determine the direction η(k) of the predictor step as
follows.

If the sign of the determinant of

∣
∣
∣
∣
∣

DHw(0)(w(k), μk)
v(k)T

∣
∣
∣
∣
∣

=

(−1)m+1, then η(k) = v(k). If the sign of the determinant

of

∣
∣
∣
∣
∣

DHw(0)(w(k), μk)
v(k)T

∣
∣
∣
∣
∣
= (−1)m, then η(k) = −v(k).

Step 2: Compute a corrector point (w(k+1), μk+1).

(w̄(k), μ̄k) = (w(k), μk) + hkη(k);

(w(k+1), μk+1) = (w̄(k), μ̄k)−DHw(0)(w̄(k), μ̄k)+Hw(0)(w̄(k), μ̄k).

where DHw(0)(w, μ)+ =
DHw(0)(w, μ)T (DHw(0)(w, μ)DHw(0)(w, μ)T )−1 is the
Moore-Penrose inverse of DHw(0)(w, μ).
If ‖Hw(0)(w(k+1), μk+1)‖ ≤ ε1, let hk+1 = min{h0, 2hk},
and go to Step 3;
If ‖Hw(0)(w(k+1), μk+1)‖ ∈ (ε1, ε2), hk+1 = hk, and go to
Step 3;
If ‖Hw(0)(w(k+1), μk+1)‖ ≥ ε2, hk+1 =
max{2−25h0, (hk/2)}, k = k + 1; and go to Step 2;
Step 3: If μk+1 ≤ ε3, then stop, else k = k + 1, and go to
Step 1.

By using the homotopy (4) and Algorithm 1, we provide
several numerical examples that illustrate the work in this
paper. In each example, we set ε1 = 1.e− 3, ε2 = 1.e− 6 and
h0 = 0.02. The behaviors of homotopy paths are shown in
Figs. 1-6. Computational results are given in Table 1, where
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Fig. 3. The homotopy pathways of Example 3

x(0) denotes the initial guess, IT the number of iterations, H
the value of ‖Hw(0)(w(k), μk)‖ when the algorithm stops, and
x∗ the fixed point.

Example 1 To find a fixed point of self-mapping Φ(x) =
(−x1,−x2)T in Ω = {(x1, x2) ∈ R2 : x2

1 +x2
2 ≤ 1, − (x1−

1)2 − x2
2 + 1 ≤ 0}.

Let C2 mappings ξi(x) = ∇gi(x), i = 1, 2, it is easy to show
that the feasible set Ω satisfies assumptions (C1) − (C3).

Example 2 To find a fixed point of self-mapping Φ(x) =
(x1,−x2)T in Ω = {(x1, x2) ∈ R2 : − (x1 − 2)2 −x2

2 +4 ≤
0, (x1 + 1.5)2 + x2

2 − 25 ≤ 0, x1 − 3.25 ≤ 0}.
Let C2 mappings ξ1(x) = (10, 0)T + ∇g1(x), ξi(x) =
∇gi(x), i = 2, 3, it is easy to show that the feasible set Ω
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Fig. 6. The homotopy pathways of Example 6

satisfies assumptions (C1) − (C3).
Example 3 To find a fixed point of self-mapping Φ(x) =

(x1,−x2)T in Ω = {(x1, x2) ∈ R2 : −x1−5 ≤ 0, x2−5.1 ≤
0, − x2 − 5.1 ≤ 0, x1 − 35 ≤ 0, x1 − x2

2 − 9 ≤ 0}.
Let C2 mappings ξi(x) = ∇gi(x), i = 1, 2, 3, 4, ξ5(x) =
(12, 0)T , it is easy to show that the feasible set Ω satisfies
assumptions (C1) − (C3).

Example 4 To find a fixed point of self-mapping Φ(x) =
(x1,−x2)T in Ω = {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 132, x2

1 +
x2

2 ≥ 92, g3(x) ≥ 0}, where g3(x) = x1 − 8|x2| for all
x1 ≤ −8 and it is three continuously differentiable in R2.
Let ξ1(x) = ∇g1(x), ξ2(x) = (−16 − 2x1,−2x2)T and
ξ3(x) = ∇g3(x), it is easy to show that the feasible set Ω



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

1096

satisfies assumptions (C1) − (C3).
Example 5 To find a fixed point of self-mapping Φ(x) =

(−x1, x2)T in Ω = {(x1, x2) ∈ R2 : x2
1 +x2

2 ≤ 25, 3−x2
1 +

x2 ≤ 0}.
Let ξ1(x) = ∇g1(x) and ξ2(x) = (0, 8)T , it is easy to show
that the feasible set Ω satisfies assumptions (C1) − (C3).

Example 6 To find a fixed point of self-mapping Φ(x) =
(x1,−x2)T in Ω = {(x1, x2) ∈ R2 : − x1 + x2

2 − 9 ≤
0,−(x1 − 3)2 − x2

2 + 9 ≤ 0, x1 − x2
2 + 3 ≤ 0, x1 − 5 ≤ 0}.

Let ξ1(x) = ∇g1(x), ξ2(x) = (10, 0)T +∇g2(x) and ξ3(x) =
(8, 0)T , it is easy to show that the feasible set Ω satisfies
assumptions (C1) − (C3).

TABLE 1

NUMERICAL RESULTS OF EXAMPLES 1-6
Example x(0) IT x∗ Φ(x∗)

3.1 (0.3, 0.8) 16 (0.000001, 0.000003) (0.000001, 0.000003)
(0.3, -0.8) 18 (0.000000, -0.000002) (0.000000, -0.000002)

3.2 (2, 4) 21 (-2.000001, 0.000003) (-2.000001, 0.000003)
(2, -4) 24 (-2.000000, 0.000002) (-2.000000, 0.000002)

3.3 (28, 4.9) 13 (8.000000, 0.000002) (8.000000, 0.000002)
(28, -4.9) 15 (8.000000, -0.000001) (8.000000, -0.000001)

3.4 (-2, 11) 17 (12.000001, 0.000002) (12.000001, 0.000002)
(-2, -11) 21 (12.000003, -0.0000001) (12.000003, -0.0000001)

3.5 (-3.5, 1) 19 (0.000000, -4.000001) (0.000000, -4.000001)
(3.5, 1) 18 (0.000001, -4.000000) (0.000001, -4.000000)

3.6 (4, 3.5) 23 (-5.000001, 0.000000) (-5.000001, 0.000000)
(4, -3.5) 21 (-5.000000, -0.000002) (-5.000000, -0.000002)
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