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A Constitutive Model of Ligaments and Tendons
Accounting for Fiber-Matrix Interaction

Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract—In this study, a new constitutive model is developed
to describe the hyperelastic behavior of collagenous tissues with a
parallel arrangement of collagen fibers such as ligaments and tendons.
The model is formulated using a continuum approach incorporating
the structural changes of the main tissue components: collagen fibers,
proteoglycan-rich matrix and fiber-matrix interaction. The mechanical
contribution of the interaction between the fibers and the matrix
is simply expressed by a coupling term. The structural change
of the collagen fibers is incorporated in the constitutive model to
describe the activation of the fibers under tissue straining. Finally, the
constitutive model can easily describe the stress-stretch nonlinearity
which occurs when a ligament/tendon is axially stretched. This
study shows that the interaction between the fibers and the matrix
contributes to the mechanical tissue response. Therefore, the model
may lead to a better understanding of the physiological mechanisms
of ligaments and tendons under axial loading.

Keywords—Hyperelasticity, constitutive model, fiber-matrix
interaction, ligament, tendon.

I. INTRODUCTION

THE purpose of this work is to develop a simple

constitutive model that can describe the hyperelastic

behavior of ligaments and tendons. In previous studies,

phenomenological and structural models of ligaments and

tendons have been formulated by accounting for the

physiology of their main structural components, i.e. collagen

fibers and proteoglycan-rich matrix [8], [10]. These models are

not considering one important contributor to the mechanical

behavior of ligaments and tendons which is the interaction

between the fibers and the matrix. The fiber-matrix interaction

has been identified that it plays a significant role on the elastic

and viscoelastic properties of ligaments and tendons [2], [5]

and other tissues [1], [3], [7]. Although some previous works

incorporated the interaction into their models [2], [5], the

mechanism of the coupling between the fibers and the matrix

is still unclear and need more advanced studies. Therefore,

in the present work, we develop a new mathematical model

of ligaments and tendons for describing the tensile response.

The model is formulated by using a continuum approach

incorporating the structural changes of their main components:

the fibers, the matrix and the fiber-matrix interaction. The

specification of the work is described here as follows.

R. Sopakayang is with the Department of Mechanical Engineering,
Faculty of Engineering, Ubon Ratchathani University, Warinchumrap, Ubon
Ratchathani, 34190 Thailand (e-mail: ratchada.s@ubu.ac.th).

G. A. Holzapfel is with the Institute of Biomechanics, Graz University of
Technology, Stremayrgasse 16/2, 8010 Graz, Austria and with the Faculty of
Engineering Science and Technology, Norwegian University of Science and
Technology, Trondheim, Norway.

II. MATHEMATICAL FORMULATION

A. Strain-Energy Function

The strain-energy function is assumed to be composed of

three components which are based on the main structure of

the tissues and their mechanisms. Therefore, the strain-energy

function of ligaments and tendons, say W , are generated

from the contributions originating from the collagen fibers,

the matrix and the fiber-matrix interaction. Thus,

W = ΨM(I1)+P (I4)ΨF(I4)+(1−P (I4))ΨFM(I1, I4), (1)

where ΨM is the energy stored in the matrix, ΨF is that

of the fibers, ΨFM is the strain energy of the fiber-matrix

interaction and P (I4) is the cumulative density function of

the stretched fibers. In addition, I1 is the first invariant of the

right Cauchy–Green tensor C and I4 = C : a0 ⊗ a0 is the

fourth invariant of C and a0, where a0 describes the direction

of the collagen fibers in the reference configuration, see, e.g.,

[4].

The matrix is assumed to behave according to a

neo-Hookean material so that

ΨM(I1) =
μ

2
(I1 − 3), (2)

where μ is the shear modulus. The mechanical response of the

fibers is modeled as

ΨF(I4) = k(I4 − 1)2, (3)

where k is a material parameter. The mechanical contribution

of the interaction between the fibers and the matrix is modeled

as

ΨFM(I1, I4) =
μ

2
k(I1 − 3)(I4 − 1)2. (4)

The collagen fibers are assumed to become straight at

different stretches λs ≥ 1, defined by the Weibull probability

density function [8], [10], i.e.

p(λs) =
α

β

(
λs − 1

β

)α−1

exp{−[(λs − 1)/β]α}, (5)

where α > 0 is the so-called shape parameter and β > 0 is the

so-called scale parameter. Therefore, the cumulative density

function P of the stretched fibers follows with (5)

P (I4) =

∫ I4

1

p(λs)dλs = 1− exp{−[(I4 − 1)/β]α}. (6)

Finally, the strain-energy function (1) of the tissue can be

rewritten as

W=
μ

2
(I1 − 3) + (1− exp{−[(I4 − 1)/β]α})k(I4 − 1)2

+exp{−[(I4 − 1)/β]α}μ
2
k(I1 − 3)(I4 − 1)2. (7)
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B. Cauchy Stress Tensor

Ligaments and tendons are classified as anisotropic

materials with one family of collagen fibers. Therefore, by

(just) considering the invariants I1 and I4, the Cauchy stress

tensor T of the tissue can be expressed as follows [9]

T = 2(W1B + I4W4a ⊗ a)− pI, (8)

where B is the left Cauchy–Green tensor, I denotes the

second-order unit tensor and p is as an indeterminate Lagrange

multiplier which can be identified as a hydrostatic pressure [4].

In addition, in (8) a = Fa0 denotes the fiber direction in the

deformed configuration, and F is the deformation gradient. By

recalling the strain-energy function (7), the differentiation of

W can be written as

W1 =
∂W

∂I1
=

μ

2
+

μ

2
k(I4 − 1)2 exp{−[(I4 − 1)/β]α}, (9)

W4 =
∂W

∂I4
= 2k(I4 − 1)

+2k(I4 − 1) exp{−[(I4 − 1)/β]α}
[μ
2
(I1 − 3)− 1

+
α

2

(
I4 − 1

β

)α

− αμ

4
(I1 − 3)

(
I4 − 1

β

)α]
. (10)

In this study we focus on the description of the tensile

response. We assume that the tensile loading, i.e. λ, is applied

to the specimen in the x-direction which is also assumed to

be the fiber direction, while x1 and x2 are the transverse

directions. Therefore, F takes on the matrix form

[F] =

⎡
⎣λ1 0 0
0 λ2 0
0 0 λ

⎤
⎦ . (11)

The tissue is assumed to be an incompressible material,

therefore the incompressibility constraint must be satisfied, i.e.

J = det[F] = λ1λ2λ = 1. (12)

We then obtain

λ1 = λ2 =
1√
λ
. (13)

Then, the left Cauchy–Green tensor B takes on the following

matrix form

[B] = [F][FT] =

⎡
⎣λ

2
1 0 0
0 λ2

2 0
0 0 λ2

⎤
⎦ , (14)

while the identity tensor has the matrix form

[I] =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ . (15)

In the undeformed configuration, the unit fiber orientation

vector is

[a0] =
[
0 0 1

]T
. (16)

Since the deformed fiber direction a is related to the

undeformed direction a0 according to [a] = [F][a0], we obtain

the structure tensor a ⊗ a in the matrix form as

[a ⊗ a] =

⎡
⎣0 0 0
0 0 0
0 0 λ2

⎤
⎦ . (17)

The invariants can then be expressed as

I1 = tr[B] = λ2
1 + λ2

2 + λ2 =
2

λ
+ λ2, (18)

I4 = [a0] · [B][a0] = λ2. (19)

By substituting Eqs. (13)–(15), (17) and (19) into (8), we

obtain the matrix

[T] =

⎡
⎣

2
λW1 − p 0 0

0 2
λW1 − p 0

0 0 2λ2W1 + 2λ4W4 − p

⎤
⎦ . (20)

The boundary condition of the problem is

T11 = T22 = 0. (21)

By applying this boundary condition to the Cauchy stress

matrix [T] in (20), we can then find the Lagrange multiplier

p as

p =
2

λ
W1 =

μ

λ
+

μ

λ
k(I4 − 1)2 exp{−[(I4 − 1)/β]α}, (22)

where (9) has been used. By substituting p into T33 of (20),

we then obtain

T33 = μλ2 − μ

λ
+ 4kλ4(I4 − 1)

+4kλ4(I4 − 1) exp{−[(I4 − 1)/β]α}[
μ

2
(I1 − 3)− 1 +

α

2

(
I4 − 1

β

)α

−αμ

4
(I1 − 3)

(
I4 − 1

β

)α

+
μ

4λ2
(I4 − 1)− μ

4λ5
(I4 − 1)

]
, (23)

where (9) and (10) have been used.

Finally, we substitute the expression of the invariants from

(18)3 and (19)2 into T33, then we find an explicit relationship

between the Cauchy stress T33 and the stretch λ of the tissue

as

T33 = μλ2 − μ

λ
+ 4kλ4(λ2 − 1)

+4kλ4(λ2 − 1) exp{−[(λ2 − 1)/β]α}[
μ

2

(
2

λ
+ λ2 − 3

)
− 1 +

α

2

(
λ2 − 1

β

)α

−αμ

4

(
2

λ
+ λ2 − 3

)(
λ2 − 1

β

)α

+
μ

4λ2
(λ2 − 1)− μ

4λ5
(λ2 − 1)

]
. (24)
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Fig. 1 Nonlinear elastic Cauchy stress-stretch data describing the tensile behavior of a sheep flexor tendon, and model fit with parameters μ = k = 1MPa,
α = 1.431 and β = 0.143 (R2 ≈ 0.9913)
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Fig. 2 Influence of the parameter μ (relating to the matrix) on the tensile behavior
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Fig. 3 Influence of the parameter k (relating to the collagen fibers) on the tensile behavior
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Fig. 4 Influence of the shape parameter α (relating to the Weibull probability density function) on the tensile behavior
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Fig. 5 Influence of the scale parameter β (relating to the Weibull probability density function) on the tensile behavior

III. RESULTS

A. Parameter Estimation
There are four parameters in the model, i.e. (μ, k, α,

β), requiring an estimation in order to describe the tensile

behavior of ligaments and tendons. In general all parameters

in the model can be found by curve fitting the model to

the tensile data. Because of the lack of some experimental

results in the published papers [2], [6], a complete set of

parameters obtained by the curve fitting could not be found.

The appropriate values of parameters for any specific type of

ligaments and tendons can usually be found by validating the

model with the experimental data of some specific tests.
For this work, in order to demonstrate the ability of the

proposed model in describing the tensile behavior of ligaments

and tendons, the values of the parameters μ and k are assumed

to be fixed values of 1MPa. Then, the model is curve fitted

with the tensile experimental data of sheep flexor tendons,

as documented in [2], [6]. Hence, the rest of the parameters

are estimated from the curve fitting, and are α = 1.431 and

β = 0.143 with R2 ≈ 0.9913. As shown in Fig. 1, the model

has a good fit with the experimental data and can describe the

mechanical characterization under tension quite well.

B. Influence of Model Parameters
The influence of the model parameters on the tensile

response was studied by varying the parameters as shown

in Figs. 2-5. Thereby, each material parameter was varied

individually, while the remaining parameters were fixed by

the original values obtained by curve fitting of the proposed

model to the published stress-strain data [2], [6]. The Figs. 2

and 3 illustrate the influence of the parameters μ and k on

the characteristic tensile behavior, respectively. As shown in

Fig. 2, an increase of μ causes an increase of the modulus of

the ligaments/tendons over the stretch in every stretch region

of the tensile behavior. In a similar way, an increase of k leads

to an increase of the modulus of the tissues over the stretch,

but not so much at the lower stretch domain, as shown in

Fig. 3. At the low stretch region of the tensile behavior, the

different values of k do not affect the tensile behavior but they

play a significant role at the higher stretch domain.
The effects of the shape parameter α, and the scale

parameter β of the Weibull probability density function that

described the characteristic of the recruitment of collagen

fibers are presented in Figs. 4 and 5, respectively. As can

be seen from Fig. 4, for smaller values of α, the relationship

between the Cauchy stress and the stretch of ligaments/tendons

show less nonlinearity. For larger values of α, the curves show

more nonlinearity of the modulus of the tissue influenced by

the recruitment of fibers. However, the values of the stress of

the tissues over stretch for each α are not much different.

Therefore, α can mainly influence the nonlinearity of the

modulus of the tissue but it does not play the role to increase

the modulus over stretch. In another way, the scale parameter β
influences both the nonlinearity and the change in the modulus

over stretch, as shown in Fig. 5. For larger values of β, the

stress-strain curve of the tissue shows less nonlinearity, and

smaller values of modulus of the tissues over stretch.

IV. DISCUSSION AND CONCLUSION

A new mathematical model is presented to describe the

nonlinear elastic behavior of ligaments and tendons under

tensile loading. This mathematical model is formulated by

accounting for the mechanical contribution of the main

structural units of ligaments and tendons, i.e. the collagen

fibers, the matrix and the fiber-matrix interaction. The model

has four parameters (μ, k, α, β) representing the mechanical

characteristic of the internal structure of the tissue. The

parameters μ and k are related to the matrix and the

collagen fibers, respectively, while the progression of the fiber

recruitment is captured by the Weibull probability distribution

function equipped with the shape parameter α and the scale

parameter β. According to the results section, it can be seen

that the model can describe the typical characteristic of the

tensile behavior of ligaments and tendons very well. The

curve fitting of the model and the experimental data obtained

from the published papers [2], [6] is presented in Fig. 1 with

R2 ≈ 0.9913. The study of the parameter variation shows

that μ and k control the level of the values of the modulus of

ligaments and tendons, as shown in Figs. 2 and 3, respectively,

while α and β play a role on the nonlinearity of the modulus

of the tissue in the tensile characterization, as shown in Figs. 4

and 5, respectively. The model simulations in Figs. 2 and

3 indicate that in a very small stretch region of the tensile

behavior, only the matrix is active and responsible for load
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bearing, while the collagen fibers are embedded in the matrix

and still wavy. Therefore, the wavy collagen fibers may move

along the matrix at the beginning of the loading but cannot

bear the load. The model suggests that only the matrix plays

the role of the load bearing element in the very low stretch

domain, while in the larger stretch region both collagen fibers

and the matrix are load bearing.

In conclusion, a new constitutive model was proposed

able to describe the mechanical response of ligaments and

tendons under tension. The information about the orientation

of the collagen fibers was incorporated into the continuum

model, and the nonlinearity of the elastic behavior of the

tissue could be demonstrated. The work has shown a simple

and straightforward way to formulate an explicit relationship

between the Cauchy stress and the stretch λ of the tissue.

Certainly, we need more detailed (experimental) information

about the fiber-matrix interaction of ligaments and tendons

which would be very valuable for refined modeling. The model

can easily be extended to describe other connective tissues

or other hyperelastic materials with more fiber families and

fiber dispersion. The model can also be extended to describe

a viscoelastic response such as creep and relaxation along with

the related hysteresis which for many materials such as soft

tissues, rubbers and polymers is required.
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