
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:6, 2018

650

A Condition-Based Maintenance Policy for
Multi-Unit Systems Subject to Deterioration

Nooshin Salari, Viliam Makis

Abstract—In this paper, we propose a condition-based
maintenance policy for multi-unit systems considering the
existence of economic dependency among units. We consider a
system composed of N identical units, where each unit deteriorates
independently. Deterioration process of each unit is modeled as a
three-state continuous time homogeneous Markov chain with two
working states and a failure state. The average production rate of
units varies in different working states and demand rate of the
system is constant. Units are inspected at equidistant time epochs,
and decision regarding performing maintenance is determined by the
number of units in the failure state. If the total number of units in the
failure state exceeds a critical level, maintenance is initiated, where
units in failed state are replaced correctively and deteriorated state
units are maintained preventively. Our objective is to determine the
optimal number of failed units to initiate maintenance minimizing
the long run expected average cost per unit time. The problem is
formulated and solved in the semi-Markov decision process (SMDP)
framework. A numerical example is developed to demonstrate the
proposed policy and the comparison with the corrective maintenance
policy is presented.

Keywords—Reliability, production, maintenance optimization,
Semi-Markov Decision Process.

I. INTRODUCTION

MOST modern systems are complex and contain many

components which are subject to deterioration over

time. For many operating systems such as aircrafts, medical

equipment, and power generation systems, cost of downtime

due to unexpected failure is high. Therefore, maintenance

programs should be developed to increase availability and

reduce the operating costs.

Maintenance models aim at determining a maintenance

policy to optimize system performance considering certain

criteria (i.e. cost, downtime, reliability, etc.). Maintenance

models can be classified as corrective and preventive

maintenance models. Corrective maintenance (CM) is

performed after failure of the system to restore the system

to operational condition, and preventive maintenance (PM)

is performed before the system fails [1]. PM is performed

to reduce the maintenance cost of the system, improve

system reliability, and increase system availability. PM

strategies are defined as time-based and condition-based

preventive maintenance [2]. Condition-based maintenance

(CBM) recommends maintenance decisions based on the

information obtained from inspection data [3].
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CBM uses data collected through system inspection and

recommends the maintenance actions. Early studies in the area

of CBM have focused mainly on single unit systems [4], [5],

however in reality most of the systems consist of more than

one unit [6].

Tian et al. [7] proposed a multi-component CBM policy

based on the proportional hazards model, where there is

economic dependency among components. Two levels of risk

threshold are considered. Level 1 is used for preventive

replacement while at level 2, opportunity to maintain other

components arises. The replacement decision is made based on

the age of the component and its hazard value. In another study

[8], authors introduced a CBM policy for a multi-component

system with economic dependency to minimize the total

operating and maintenance cost by using artificial neural

network. The maintenance policy is defined by two failure

probability thresholds. Liu et al. [9] proposed a PM policy for a

system with continuously degrading components. Maintenance

action is triggered whenever the system reliability drops below

a certain threshold. Zhu et al. [10] proposed a condition-based

maintenance model for a multi-component system subject

to continuous stochastic deterioration. They determined the

optimal preventive maintenance limits for components and

optimal joint maintenance interval by minimizing the long-run

expected average cost rate.

An optimal age-based group maintenance policy for a

deteriorating multi-unit system is studied by Shafiee et al.

[11]. The system under study is subject to multiple types

of independent degradation processes. When the degradation

level of one of the components reaches its critical size, the

system undergoes an unplanned maintenance action, otherwise

a planned group maintenance task is conducted for the whole

system at the operational age T . An optimization model is

formulated to determine the optimal group maintenance time

T minimizing the long-run maintenance cost per unit time.

These research papers focused on a particular system, and

fail to comprehensively study a multi-unit production system.

Thus, it is important to develop an effective and comprehensive

CBM model taking into account production and demand. To

develop an optimal maintenance model that can be applied to

production system, we need to take into account production

and demand rates for the system. A failure in a production

system results in disruption of production, increased costs of

downtime, and lost production [12].

There are recent studies on the maintenance policies for

production systems. Salari and Makis [13] proposed two new

CBM policies for a multi-unit production system taking into

account production and demand rates. Units are subject to

gradual deterioration, and maintenance is determined by the
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total production rate of the system at the time of inspection. At

each inspection time, units are inspected, and if the production

rate of the system is less than or equal to a critical level,

maintenance is performed. Authors determined the optimal

levels of the total production rate of the system at an inspection

time to perform maintenance for both maintenance policies

minimizing the long run expected average cost per unit time.

The purpose of this paper is to develop a CBM model taking

into account production rates of the units and the system’s

demand rate. This model describes well the real system

considered in [13], but the objective in that paper was to

determine the optimal production level to initiate maintenance,

whereas our focus is to obtain the optimal level to initiate

maintenance based on the total number of failed units in the

system. We also consider operating cost for operational units

in the system.

II. MODEL DESCRIPTION

Consider a system consisting of N identical units which

are subject to gradually deterioration. Let {Xt}t≥0 be a

three-state continuous time homogeneous Markov chain with

two working states O = {0, 1} and a failure state F ,

Ω = {0, 1, F}. State 0 represents healthy state, state 1
represents warning state and state F represents failure state.

Average production rate for units in state 0 (p0) is higher

than the average production rate in state 1 (p1). Inspection of

the system is performed at discrete equidistant time epochs

kΔ, k = 1, 2, ..., and at each inspection time, the numbers

of units in each state are updated. We assume that economic

dependency exists between the units which includes a high

setup cost for sending maintenance personnel and equipment

to a remote site.

Maintenance policy is determined by the total number of

failed units at each inspection time. If the total number of

failed units at an inspection time drops below a critical level,

maintenance is initiated.

If the decision is to perform maintenance, maintenance crew

is sent to the field and maintenance is initiated. We assume

that the total maintenance time is a random variable with a

known distribution function F (τ). During replacement time,

units in states 0 and 1 continue working and their states can

change. Failed units are replaced correctively and units in the

warning state are maintained preventively. After maintenance

is performed, all the units are in state 0.

Our objective is to find the optimal number of units at an

inspection time to initiate maintenance, minimizing the long

run expected average cost per unit time for the system.

Let S = {(x,m)|x +m ≤ N, x ≥ 0,m ≥ 0} be the state

space of the whole system at an inspection time where x is

the number of failed units, and m represents the number of

units in state 1. By knowing the number of units in states 1

and F, number of units in state zero is fully determined.

It is assumed that the sojourn times in states 0 and 1 are

exponentially distributed with parameters ν0 = q01 + q02
and ν1 = q12. To model monotonic system deterioration, we

assume that the state process of each unit is non-decreasing

with probability 1. The instantaneous transition rates qij ,

i, j ∈ Ω, are defined by:

qij = limu→0
P (Xt+u = j|Xt = i)

u
< +∞, i �= j

and qii = −
∑
j �=i

qij (1)

The transition probability matrix, Pij(t) = P (Xs+t =
j|Xs = i) is obtained by solving the Kolmogorov backward

differential equations [14].

Next, we will describe the system states for this particular

system and derive the transition probabilities, the expected cost

and the sojourn time for each state of the system.

III. COMPUTING THE TRANSITION PROBABILITIES

In this section, we formulate and solve the maintenance

optimization problem in the SMDP framework.

A. State Definition

1) State (0, 0): all the units are in healthy state.

2) State (x,m): there are x failed units in the system and

m units in the warning state.

For the cost minimization problem, the SMDP is determined

by the following quantities [14]:

• Pi,j = the probability that the system will be in state

j ∈ S at the next decision epoch given the current state

is i ∈ S.

• τi = the expected sojourn time until the next decision

epoch given the current state is i ∈ S.

• Ci = the expected cost incurred until the next decision

epoch given the current state is i ∈ S.

We note that each of these components depends also on the

action taken in the current state i. Once transition probabilities,

costs, and the sojourn times for each state are defined, the

long-run expected average cost can be obtained by solving

the following system of linear equations [14]:

Vr = Cr − g(L) · τr +
∑
k∈S

Pr,k · Vk (2)

Vj = 0 for an arbitrarily selected single state j ∈ S

The optimal number of failed units to initiate maintenance

(L∗) and the corresponding minimum long-run expected

average cost per unit time can be obtained by iteratively

solving the system of linear equations in (2).

B. Computing the Transition Probabilities

At each inspection time, units of the system are inspected

and if the number of failed units is smaller than the critical

level (L), system continues operating and the system state is

updated at the next inspection time. However if the number

of failed units at an inspection time exceeds a critical level,

decision is made to perform maintenance.

Assume that the system state is (x,m) at an inspection time,

and the decision is not to perform maintenance (x < L).

Transitions can occur from state (x,m) to states (x′,m′),
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where x′ ≥ x. This transition means that x′−x units failed by

the next inspection epoch and there are m′ units in the warning

state at the next inspection time. Define i as the number of the

units which failed by the next inspection time. When there is

no maintenance at the current inspection time, transition can

occur from state (x,m) to state (x + i,m′), where i ≥ 0,

which is given by:

P(x,m)(x+i,m′)(Δ) = (3)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑min{i,m}
j=0

(
n0

i−j

)(
m
j

)(
n0−i+j
m′−m+j

)
m′ ≥ m

×P00(Δ)n
′
0P01(Δ)m

′−m+jP02(Δ)i−j

×P11(Δ)m−jP12(Δ)j

∑min{i,m}
j=m−m′

(
n0

i−j

)(
m
j

)(
n0−i+j
m′−m+j

)
m′ < m

×P00(Δ)n
′
0P01(Δ)m

′−m+jP02(Δ)i−j

×P11(Δ)m−jP12(Δ)j

where n0 = N −m− x and n′
0 = N −m′ − x− i.

Assume that system state is (x,m) at an inspection time,
where x ≥ L, the decision is made to perform maintenance,
and crew is sent to the field to perform maintenance. There
are two maintenance policies considered in this paper. First
maintenance policy suggests corrective replacement of failed
units, and transition can occur from state (x,m) to state
(0,m′) where 0 ≤ m′ ≤ N − x. This transition probability
can be written as follows:

P(x,m)(0,m′)(τ) = (4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N−x−m′
i=0

∑min{i,m}
j=0

(
n0
i−j

)(
m
j

)(
n0−i+j
m′−m+j

)
m′ ≥ m

× ∫∞
0

P00(u)
n′
0P01(u)

m′−m+j

×P02(u)
i−jP11(u)

m−jP12(u)
j × fτ (u) du

∑N−x−m′
i=m−m′′

∑min{i,m}
j=m−m′

(
n0
i−j

)(
m
j

)(
n0−i+j
m′−m+j

)
m′ < m

× ∫∞
0

P00(u)
n′
0P01(u)

m′−m+j

×P02(u)
i−jP11(u)

m−jP12(u)
j × fτ (u) du)

Second maintenance policy suggests corrective replacement

of failed units and preventive maintenance of units in the

warning state. For this policy, transition occurs from state

(x,m) to state (0, 0). This transition probability can be written

as follows:

P(x,m),(0,0)(τ) = 1 (5)

C. Expected Cost and Sojourn Time

The following cost components are considered in the model:

• CI : Inspection cost per unit at each inspection time

• CF : Failure replacement cost per unit

• CP : Preventive maintenance cost per unit

• CD: Cost rate of lost production, when the total

production rate of the system is below the demand rate

• CE : Profit rate from excess production

• Cr0: Operating cost rate of units in state 0

• Cr1: operating cost rate of units in state 1

• CK : Set-up cost for performing maintenance

We consider different production rates for the units working

in states 0 and 1. The total production rate of the system is

determined based on the total number of units in states 0 and

1. Total production rate of the system at state (x,m) can be

written as PR = p0×n0+p1×m, where n0 = N−x−m. If at

an inspection interval total production rate of the system (PR)

drops below the demand rate (D), there is lost production in

that interval. If the total production rate is above the demand

rate, there is a profit from excess production in that interval.
Expected cost of lost demand or an excess production profit

in state (x,m) in the time interval Δ is given by the number
of units in each working state at the current inspection time,
that is given by :

Cpe(x,m)(Δ) = E(profit or cost of production|(x,m)) = (6)

CD ×Max{0, D ·Δ− n0 ·
∫ Δ

0

(p0 · P00(u) + p1 · P01(u))du

−m×
∫ Δ

0

p1 · P11(u)du}

−CE ×Max{0, (n0 ·
∫ Δ

0

(p0 · P00(u) + p1 · P01(u))du

+m ·
∫ Δ

0

p1 · P11(u)du)−D ·Δ}

Expected operating cost of the system in state (x,m) in the

time interval Δ is given by:

Cr(x,m)(Δ) = E(operating cost|(x,m)) = (7)

Cr0 × n0 ×
∫ Δ

0

(P00(u) + P01(u))du

+Cr1 ×m×
∫ Δ

0

P11(u)du

At each inspection time, units of the system are inspected

and the states of the units are determined. By knowing the

system state, the total production rate of the system at the

current state is calculated. If the total number of failed units is

below the critical level L, the action is to do nothing, otherwise

maintenance is initiated.

If the decision is to do nothing in state (x,m), where x < L,

the expected cost incurred is equal to:

C(x,m)(τ)=CI · (N − x) +CK+Cpe(x,m) +Cr(x,m) (8)

= CI · (N − nF ) + CK + CD ×Max{0, D ·Δ
−n0 ·

∫ Δ

0

(p0 · P00(u) + p1 · P01(u))du

−m ·
∫ Δ

0

p1 · P11(u)du}

−CE ×Max{0, (n0 ·
∫ Δ

0

(p0 · P00(u) + p1 · P01(u))du

+m ·
∫ Δ

0

p1 · P11(u)du)−D ·Δ}

+Cr0 × n0 ×
∫ Δ

0

(P00(u) + P01(u))du

+Cr1 ×m×
∫ Δ

0

P11(u)du

If the decision is to initiate maintenance, crew is sent to the

field and maintenance is performed following the particular

maintenance policy.
First maintenance policy suggests corrective replacement of

failed units. After replacement is performed, there are no failed
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units in the system and all the units are working in state 0 or
1. For this policy, the expected cost incurred in state (x,m),
when maintenance is required is equal to :

C(x,m)(τ) = CI · (N − x) + CK + Cpe(x,m) + Cr(x,m) (9)

+CF (x+

∫ ∞

0

E(# of units failing in τ |τ = u)·fτ (u)du))
= CI · (N − nF ) + CK + CD×Max{0, D · E(τ)

−n0

∫ ∞

0

∫ u

0

(p0 P00(t)+p1 P01(t)) fτ (u) dt du

−m

∫ ∞

0

∫ u

0

p1 P11(t)fτ (u) dt du}

−CE×Max{0, n0

∫ ∞

0

∫ u

0

(p0 P00(t)+p1 P01(t)) fτ (u) dt du

+m ·
∫ Δ

0

p1 · P11(u)du)−D · E(τ)}

+Cr0 · n0 ·
∫ ∞

0

∫ u

0

(P00(u) + P01(u))fτ (u) dt du

+Cr1 ·m ·
∫ ∞

0

∫ u

0

P11(u)fτ (t) dt du

+CF (nF + n0

∫ ∞

0

P02(u)fτ (u) du+m

∫ ∞

0

P12(u)fτ (u) du)

where E(τ) =
∫∞
0

u · fτ (u) du
Second maintenance policy prescribes corrective

replacement of failed units and preventive maintenance

of units in state 1, when the total number of failed units

reaches or exceeds a critical level L. For this policy, the

expected cost incurred in state (x,m), when maintenance is

needed is equal to :

C(x,m)(τ) = CI · (N − x) + CK + Cpe(x,m) + Cr(x,m) (10)

+CF (x+

∫ ∞

0

E(# of units failing in τ |τ = u)·fτ (u)du))

+CP (

∫ ∞

0

E (# of units in state 1 at τ |τ = u) ·fτ (u)du))
= CI · (N − nF ) + CK + CD×Max{0, D · E(τ)

−n0

∫ ∞

0

∫ u

0

(p0 P00(t)+p1 P01(t)) fτ (u) dt du

−m

∫ ∞

0

∫ u

0

p1 P11(t)fτ (u) dt du}

−CE×Max{0, n0

∫ ∞

0

∫ u

0

(p0 P00(t)+p1 P01(t)) fτ (u) dt du

+m

∫ ∞

0

∫ u

0

p1 P11(t)fTR2
(u) dt du−D×E(τ)}

+Cr0 · n0 ·
∫ ∞

0

∫ u

0

(P00(u) + P01(u))fτ (u) dt du

+Cr1 ·m ·
∫ ∞

0

∫ u

0

P11(u)fτ (t) dt du

+CF (nF + n0

∫ ∞

0

P02(u)fτ (u) du+m

∫ ∞

0

P12(u)fτ (u) du)

+CP (n0

∫ ∞

0

P01(u)fτ (u) du+m

∫ ∞

0

P11(u)fτ (u) du)

After calculating the expected cost for each state, we need

to calculate the mean sojourn time in each state of the system.
The expected sojourn time in state (x,m) when the action

is to do nothing is equal to Δ because the next inspection
occurs after Δ time units.

τ((x,m),a=0) = Δ (11)

The expected sojourn time in state (x,m) when the action
is to do maintenance for both policies is equal to the total
expected maintenance time.

τ((x,m),a=1) = E(τ) (12)

D. Numerical Example

In this section, we illustrate the proposed model and the

maintenance policies with a numerical example.

We consider a multi-unit system consisting of 6 units subject

to condition monitoring. We assume that the deterioration

process of each unit of the system follows a continuous time

homogeneous Markov chain with two operating states {0, 1},

and a failure state {F} which is absorbing, Ω = {0, 1, F}.

The sojourn time in state 0 has an exponential distribution

with parameter ν0 = q01 + q02, and the sojourn time in state

1 has an exponential distribution with parameter ν1 = q12.

q01 = 0.026× 10−2, q02 = 0.014× 10−2, ν0 = 0.04× 10−2,

ν1 = q12 = 0.3× 10−2

The average production rate of a unit in state 0 is p0 = 40,

and in state 1, it is p1 = 28. We assume a constant demand

rate for the system D = 150.

The following costs will be considered in the experiment:

CI = 100, CF = 35000, CP = 6500, CD = 0.4, CE = 0.2,

Cr0 = 2, Cr1 = 4, CK = 4000

System is inspected every Δ = 300 time units and the

number of units in each state is determined. If the total number

of failed units at an inspection time is greater than or equal

to the critical level L, maintenance is initiated. Maintenance

time follows a Gamma distribution with parameters α = 6 and

β = 0.3 for policy 1, and with parameters α = 6 and β = 0.2
for policy 2. Gamma density function with parameters α and

β is given by:

f(t) =
βα

Γ(α)
tα−1e−βt (13)

Table I presents the optimal levels to initiate maintenance

and the corresponding expected average costs per unit time

for both policies.

TABLE I
OPTIMAL LEVELS TO INITIATE MAINTENANCE AND THE

CORRESPONDING EXPECTED AVERAGE COSTS FOR BOTH POLICIES

Policy Optimal level Expected average
(L∗) cost rate

Corrective maintenance 3 51.26

Corrective and 2 44.94
preventive maintenance

Results in Table I indicate that optimal level to initiate

maintenance for policy 1 is L∗ = 3. This optimal value

indicates that at an inspection time a decision is made to

initiate maintenance, if there are at least 3 failed units in

the system. The corresponding expected average cost for this

policy is 51.26. The optimal level to perform maintenance for

policy 2 is equal to L∗ = 2, with the expected average cost



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:6, 2018

654

rate of 44.94. The optimal level to initiate maintenance for the

second policy is lower than the first policy, as we considered

PM in the second policy. By applying Policy 2, more units are

operating in the healthy state after maintenance compared to

Policy 1. Units in state 0 have higher production rate, and the

total production rate of the system is higher after maintenance

for Policy 2. As a result, there is a lower expected cost of

lost production and a higher expected profit from selling extra

production for Policy 2 compared to Policy1.
We observe that Policy 2 gives lower expected average cost

rate compared to Policy 1. Results show that the second policy

outperforms the first policy, with the expected cost savings of

12.33%.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have proposed two condition-based

maintenance policies for an N-unit system considering the

economic dependency among units. Units of the system

deteriorate independently, and deterioration process of each

unit is modeled as a three-state continuous time homogeneous

Markov chain with two working states and a failure state.

Inspection takes place every Δ time units to observe the

state of each unit. The average production rate of units varies

in different working states and demand rate of the system

is constant. Maintenance action is determined by the total

number of failed units in the system at the time of inspection.
Our objective has been to determine the optimal number of

failed units at an inspection time to initiate maintenance for

both maintenance policies minimizing the long run expected

average cost per unit time. The problem has been formulated

and solved in the semi-Markov decision process (SMDP)

framework. A numerical example has been provided to

illustrate the proposed maintenance policies, and comparison

of the two policies has been made. The results have shown

that it is cost effective to consider opportunistic preventive

maintenance of the units in the warning state when the failed

units are replaced .
In future research, we will extend the model developed

in this paper by considering a general N state deterioration

process instead of a three state deterioration. It is also

interesting to consider a joint spare part ordering and

preventive maintenance policy for the multi-unit system

studied in this paper.
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