
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

240

Abstract—Data warehouse is a dedicated database used for
querying and reporting. Queries in this environment show special
characteristics such as multidimensionality and aggregation.
Exploiting the nature of queries, in this paper we propose a query
driven design framework. The proposed framework is general and
allows a designer to generate a schema based on a set of queries.

Keywords—Conceptual schema, data warehouse, queries,
requirements.

I. INTRODUCTION
data warehouse is considered as a centralized
repository which provides an integrated view of

enterprise data. Analysts and decision makers query
data warehouses to discover information about their
business and this leads the decision making process.
Data warehouse users like to view data in a
multidimensional space which is close to the analysts
way of thinking [1]. Likewise users are interested in
trends rather than a single transaction which means
data summarisation is required. Summarising data to
different levels of details is called aggregation. Due
to these properties data warehouse queries are generally
known as multidimensional aggregate queries
[9] [2]. To support this class of query, existing designs
mainly adopted two types of approaches,
namely; top-down and bottom-up. The top down
designs define multidimensional space through facts
and dimensions. A fact can be defined as an item or
subject of interest for an enterprise and which is the
subject of analysis in a multidimensional space. Fact
is described through a set of attributes (typically
numerical but not necessarily) called measures [17].
Dimensions represent the different points of view
of data for the analysis or it can be defined as
the context for analysing the facts. Aggregation is
addressed through hierarchies. That is, dimensions
are defined as hierarchies having different levels. Each level
in a hierarchy represents a level of detail of data
(granularity) required by desired analysis [21].

Bottom-up designs suggest methods to transform
conceptual schemas of operational systems to a data

Authors are with Monash University, Melbourne, Australia (e-mail:

Resmi@beast.infotech.monash.edu.au).

warehouse model. In most cases it is assumed that
the operational schema is ER and the transformation
is suggested accordingly. Conceptualisation is not
addressed in these approaches and also the designs
are data driven.

In both top-down and bottom-up approaches real users
queries are neglected during the design process in order to
offer maximum flexibility for ad-hoc queries. We feel that this
is a restrictive approach and queries need to be considered
even though all the queries are not known at the beginning. A
design should provide guidelines to streamline the model as
per specific schema criteria. Another issue in existing
designs is that each model has their own concepts and
notations. So it is difficult to identify a general model from the
existing ones.

When comparing data warehouse design with the traditional
database design, the transformation from a model to a schema
as well as schema refinement is not well addressed. In the light
of this situation, a general framework, which is systematic as
well query driven, is necessary. In this paper we propose such a
framework.

The remaining part of this paper is organised as follows:
Research related to data warehouse design is reviewed in
Section II. Based on that discussion, the proposed framework
is presented in Section III and each step associated with the
framework is detailed in subsequent subsections. Finally the
paper is concluded in Section IV.

II. RELATED WORKS

Design methodologies related to the system de-
sign could be found in [18] and [12]. These methodologies
addressed conceptual to physical designs. In terms of
conceptual design, there are approaches such as [17], [7],
[3]. These top-down designs discussed requirements related
to data representation and aggregation and suggested new
models. The definition of modeling constructs as well as
graphical notations could also be found here. The new
models are general in terms of implementation. Nonetheless,
guidelines on schema derivation as well as the involvement
of queries in design are lacking.

Another set of works, such as [16], [8] and [15], provide
methods to transform an ER model to a data warehouse
model. The main focus in this case is identifying modeling
constructs from ER model for a data warehouse model. These
include schema refinement in certain cases.

A Conceptual Query-Driven Design Framework
for Data Warehouse

Resmi Nair, Campbell Wilson, and Bala Srinivasan

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

241

There are query based approaches in [22] and [10]. Cube
design based on queries is presented in [22]. An algorithm to
select sub-cubes from a base cube is the main contribution of
this work. The sub-cubes are selected with respect to queries.
However the work insists queries are in MDX form, (MDX
is a query language for multidimensional database designed
by Microsoft) which is very restrictive. Requirement based
data cube design is proposed in [10]. This approach identifies
data cubes that need to be pre-computed in order to improve
query performance. This work is an optimisation technique
rather than a schema design method.

An XML data warehouse called X-Warehouse is proposed
in [14] based on frequent query patterns. In this method,
historical queries are transformed to query path transactions.
From a set of query path transactions a database is created.
Then, by applying a data mining technique, significant query
patterns are discovered. The main focus of this work is the
mining algorithm to find frequent query patterns instead of
a complete schema design methodology. Based on the
discussion presented here it is concluded that a design
framework which is systematic, general, and query driven is
necessary. The main focus of this paper is such a
framework with the above mentioned properties.

III. THE PROPOSED FRAMEWORK

As in the traditional database design ([4]), our
framework also starts with requirement specification. Since
there are well- stated requirement analysis techniques like [5]
and [20], we avoid a discussion on requirement collection.
Instead assume, we have the necessary business related
requirements and user queries. After collecting the
requirements, business related needs are formalised in the form
of a graph which is known as knowledge base (Refer
Fig. 1). While the existing approaches use ER and OO
concepts for the formalisation we choose a graph theory
approach. This allows us to keep the framework as general as
possible.

The knowledge base in the framework provides the
initial knowledge required for a data warehouse
schema. Since this is a query oriented approach,
users may not be able to provide all the underlying
relationships in a business. Normally user’s business
knowledge is restricted to specific business units.
In the absence of a knowledge base, the user has
to provide all the necessary relationships through
the queries. This makes query construction difficult
and formal representation of queries is required. The
introduction of the knowledge base avoids such a
scenario and users are allowed to present natural
language queries.

Using the queries and the knowledge base, a
query-oriented schema is generated in the second
phase of the design. This schema is called the
intermediate schema which is a graph representation
similar to the knowledge base except to the fact

that all the collected queries are clearly included.
Intermediate schema acts as a common platform
from where different data warehouse schemas can
be derived. We have identified the importance of an
information model in the design process from [13]
and this leads to the addition of the intermediate
schema in the framework. This schema provides the
possibility of various schemas at the database level
and a designer has the flexibility to choose a schema
on demand. As the final step in the framework, the
derivation of a data warehouse schema is presented
which is further described as an optimisation at
the conceptual level. In fact this could be seen
as a conceptual reduction rather than a physical
optimization. Each step involved in the framework
is explained in detail in the following subsections.

A. Knowledge Base
As stated earlier, the knowledge base is a formalisation of

business requirements which are:
Business measures: The business measures are defined as

quantifiable standards used to evaluate the business
performance [19]. That is, the strategic success of an
organisation is measured through a set of standards. These
standards determine whether the objectives are met and the
strategies are implemented successfully. Examples of business
measures from retail environments are annual sales, customers
lost, gross margin, total assets, etc. We formalize business
measures in terms of measure types. A measure type is defined
as a class of business objects and each instance or a business
object in a measure type is called a measure. The state of
each business object in the class is of interest to the analyst
and we assume it can be quantified. If a measure type is
derived from other measure types then it is called a derived
measure type and all others are basic. Every measure type is
represented by a node in the graph.

 Classification: Management typically structures their
business in a hierarchical form. These business structures are
accomplished by classifying the organisation, products and/
or services etc. Classification is defined as a grouping on
objects based on certain criteria. A graph oriented
formalisation of classification could be found in [6]. We follow
that approach here as it suits our graph representation.
Classification is further explained as: each group in a
classification is called a class and any two classes are
related by means of a relationship called classification
relation. A class can be further described by means of
attributes called descriptive attributes.

Classification is formally defined as a tuple (C; R) where C
is a set of distinct classes and R is a subset equals C × C is a
classification relation. Since business structures are generally
hierarchical the classification relation is reflexive, transitive and
antisymmetric. The classification concept is later used in the
schema for aggregation. So the formalisation should address
the conditions for correct aggregations, as discussed in [11].
To that extent, the definition of the classification schema is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

242

specialized to a lattice structure called classification lattice. A
classification lattice in a classification schema will have a
greatest lower bound and least upper bound. The least
upper bound is indicated by the node Allc and a greatest
lower bound is the node where there is no incoming
classification relation to it. (Readers are advised to refer [6]
for a detailed discussion on classification)

By defining different relations between the
classes in the classification and the measure types,
these two concepts can be integrated to produce a
graph called knowledge base graph. An example
knowledge base graph from a retail case study is
presented in Fig. 1. In this figure, Sales is the
measure type and classification lattices based on
day, store, product and customer are also shown
along with the respective semantic relationships.

Fig. 1 The Knowledge Base Graph

Formally the knowledge base graph Gk is defined

as: Gk = (Nk, Ek) where Nk is a set of nodes of type
measure types, classes and descriptive attributes. Ek

is a set of edges represent various semantic relations
that exists between the nodes. For example, in the
figure, a thin directed arrow represents a member of
classification relation whereas a thick dashed arrow
stands for the relation between a class and a measure
type. This graph is used as a starting point for the
schema generation which also requires queries.

B. User Queries
The queries collected from the users are in natural

language form. Including natural language queries
as it is in the framework complicates the schema
design, since processing natural language query is

not easy. So we translate every natural language
query to a formal representation which is known
as a query tree.

A query tree, equivalent to a natural language query
is defined as a tree with root being a measure type
and successive nodes can be a class or a descriptive
attribute from a classification. Additionally, a tree
is allowed to have only one measure type. Then the
leaf nodes in the tree are always nodes other than a
measure type.

An edge in a query tree represents a function called
requirement function. That is, a requirement function Rq can
be written as:

Rq is a subset of { f1, f2, …, fi} where each fi can be
any function such as statistical functions like sum, average,
minimum, maximum or functions that apply constraints. They
may also represent combinations of more elementary
functions. An example query tree for the query sales in
quarter1, year 1999 is shown in Fig. 2. One query can be
represented in more than one way and the framework does not
offer any restriction on the representation. Any one of the
possible representations can be taken for a query.

Fig. 2 An example query tree

Although certain queries are known initially, it

can not be guaranteed that all queries are taken into
account for the design process. To overcome this
limitation, a query taxonomy which incorporates
general data warehouse queries is suggested. For
this classification of queries we use the semantic
constructs and operations present in a query. As
this is a conceptual approach, a set of operators
are assumed to be part of each query type and
for the classification only the query constructs are
considered.

A measure type is present in every query; it can
be basic or derived. Similarly the classes present in
the query may or may not be from the same classification
lattice. Taking these aspects into account queries can be
classified as one of: basic measure type- single-classification,
derived-measure type-single classification, basic measure type-
multiple classification, and derived measure type- multiple
classification. Queries belonging to these classes differ in their
constructs. Then query trees also vary depending on the
queries.

C. Intermediate Schema
Generation of the intermediate schema and the derivation

of data warehouse schema constitute the next phase of our
design. For the intermediate schema, the knowledge base

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

243

graph and the query trees are required. This schema carries
the semantic richness of the knowledge base graph as well as
the operational requirements from the queries. Moreover the
intermediate schema clearly shows the queries that need to be
answered.

An algorithm is developed to create the inter-
mediate schema which takes the knowledge base
graph and the query trees as inputs. The algorithm
identifies a path equivalent to a query tree in the
knowledge base so that the query can be supported.
The path identification is also described as a map-
ping process in which a query tree is mapped to an
existing graph.

The mapping starts with initialization of the graph, (Gk’) as
the knowledge base graph. This initialization allows us to
check the validity of a query tree with respect to the
business, and thus mapping is allowed. Since the query
trees have different types of edges; (depending upon the
query types that we have mentioned in the previous section),
the type identification of queries is necessary. Then
modification on the initial graph is suggested as per
the query tree.

There are two graphs namely; the knowledge base
graph and a query tree, involved in this proposed
mapping. So it is important to check the similarity
of nodes in the query tree to that of the nodes in
the knowledge base graph. The similarity checking
is achieved here by means of a special kind of
function called Similarity Function. This function
takes parameters from a maximum of two nodes.
These nodes correspond to an edge in the query
tree and connect the two nodes. The nodes are
then compared against the nodes that exist in Gk.
A simple example of such a comparison would
be the domain intersection. That is, if the domain
intersection of one of the nodes from query tree and a node
from KB graph is not null, then those nodes are considered to
be similar. If an edge corresponding to the input nodes exists in
the knowledge base the function returns that edge. Otherwise,
the function tries to identify more than one edge that connects
the nodes. If there are no similar nodes in the knowledge base,
the function returns null values and the process is terminated
by accepting new query tree. Depending upon the function
output, corresponding edges are selected in Gk and the query
tree is mapped.

We explain the mapping process in more detail using the
example query presented in section III-B. The query tree is
processed from the measure type node and in this case it is
sales. That means the edge (sales, quarter) is considered first
and the similarity function takes parameters from these
nodes. The function can be written as: SIM (sales; quarter) =
{(day; sales), (day; quarter)}.

Since there is no direct edge between (sales, quarter) in the
knowledge base the function returns two edges connecting the
input nodes. The other edge (quarter, year) is processed
next, and as per the function output the edge is selected in

the knowledge base. Thus an equivalent path is identified.
The final graph achieved after the mapping of all the
queries, is called the intermediate schema. An indicated path
in this schema represents a query. Hence we derive a
schema tailored for the queries which is discussed in the next
section.

D. Data Warehouse Schema
The intermediate schema, suggested in the previous

section, should be able to answer queries. However, a
complete design methodology should also include provision
for schema refinement. Hence the intermediate schema has
been used to derive a data warehouse schema that is
optimized for the queries. When deriving a schema, schema
properties need to be specified first. For example, we may
consider the minimality property with a minimal schema,
defined as a schema which is minimal with respect to the
queries considered during the design. An example of
minimality might be minimum path length criterion. That is,
minimum path length for a query path is the reduction criterion
and the schema is said optimal with respect to path length.
As we mentioned earlier, the intermediate schema is a graph; so
the derivation of the data warehouse schema is suggested as a
graph reduction process.

A reduction algorithm is useful in this account and
the algorithm selects only that part of the graph
which is required for a query path and the rest
of the intermediate schema is discarded. While
selecting a path, the path with the minimum length
is selected over other existing alternate paths. After
the reduction process, the schema contains only the
paths required for the queries. Each path can be used
to support one or more queries. A reduced schema is
shown in figure 3. Four types of queries considered
for this reduction are yearly sales by region, Total
sales in quarter1, year 1999, Sales of home brand
products by age, and average age of customers who
made transaction over $100. There are edges in this
graph that are different from the knowledge base
graph. These are the edges that are either modified
or added in order to capture the query semantics
in the intermediate schema. For example, the edge
(year, region) indicates that the user likes to perform
an operation between those two nodes and it is
an operational edge. On the other hand, the edge
(customer, age) is a semantic edge in the knowledge
base and is modified in the intermediate schema to
show that the attribute age is used for aggregation
as per a query.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

244

Fig. 3 A Data warehouse Schema

Number of operations, query response time and query

frequency can be other reduction considerations. However in
these cases, parameters related to implementation are required
so we defer that discussion.

Another possibility with the intermediate schema
is to use it as a platform for other implementation
model like cube. For example, data cubes can be
selected for implementation from the intermediate
schema. In our design, cube selection is addressed
with respect to queries. However the existing methods provide
an ad-hoc design and the final schema
is too general to implement. Selection of cubes
for implementation is generally left out as post
design issue and view materialization techniques are
necessary to overcome this problem. In this pro-
posed approach, rather than assuming queries, we
have come up with query taxonomy and covered
general data warehouse queries. These queries are
then mapped to the intermediate schema. So it is
straightforward to derive cubes from this schema
which is suitable for the queries. This indicates the
possible mapping of intermediate schema to cube
model and shows the generality of our framework.

IV. CONCLUSION AND FUTURE WORKS
In this paper, we suggested a query based design

framework for data warehouse. Compared with existing
designs, our framework is systematic in the sense that it
starts with requirements and finally identifies the schema
constructs as per queries. The presented schema is general and
can be transformed as cube or star. Other than the framework,

another contribution of our work is the taxonomy and the
conceptual representation of queries.

The mapping process, discussed in the context of
intermediate schema, requires the similarity function. We
have addressed this function only at the
higher level. Implementing this function is an interesting
issue for future work. We also like to
extend our work towards further optimization by
associating cost functions along the query paths.

REFERENCES
[1] A. Abello, J. Samos, and F. Saltor. A framework for the

classification and description of multidimensional data models. In
International Conference on Database and Expert Systems Applications,
pages 668-677, 2001.

[2] A .Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in
data warehousing environment. In International Conference on Very
Large Databases, pages 358-369, 1995.

[3] A. Tsois, N. Karayannidis, and T. Sellis. MAC: Conceptual data modeling
for OLAP. In International Workshop on Design and Management of
Data Warehouses, page 5, 2001.

[4] C. Batini, S. Ceri, and S. Navathe. Conceptual Database Design.
Benjamin/Cummings, 1992.

[5] B. List, J. Schiefer, and A.M. Tjoa. Process-oriented requirements analysis
supporting the data warehouse design process a use case driven
approach. pages 593-603, 2000.

[6] C. Sapia. PROMISE: Modeling and Predicting User Behavior for Online
Analytical Applications. PhD dissertation, Technische Universitt
Mnchen, vorauss, 2001.

[7] C. Sapia, M. Blaschka, G. Hofling, and B. Dinter. Extending the
E/R model for the multidimensional paradigm. In ER Workshops,
pages 105-116, 1998.

[8] D. l. Moody. From enterprise model to dimensional models: A
methodology for data warehouse and data mart design. In
International Workshop on Design and Management of Data, page 5,
2000.

[9] D. Theodoratos. Exploiting hierarchical clustering in evaluating
multidimensional aggregation queries. In International Work-shop on
Data Warehousing and OLAP, pages 63-70, 2003.

[10] D.W. Cheung, B. Zhou, B. Kao, H. Lu, T.W. Lam, and F. Ting.
Requirement -based data cube schema design. In Conference on
Information and Knowledge Management, pages 162-169, 1999.

[11] H-J. Lenz and A. Shoshani. Summarizability in OLAP and statistical
data bases. In Statistical and Scientific Database Management, pages
132-143, 1997.

[12] B. Husemann, J. Lechtenborger, and G. Vossen. Conceptual data
warehouse design. In International Workshop on Design and
Management of Data Warehouses, page 6, 2000.

[13] J.A. Bubenko Jr. On the role of understanding models in conceptual
schema design. In International Conference on Very Large Databases,
pages 129-139, 1979.

[14] J. Zhang, W. Wang, H. Liu, and S. Zhang. X- warehouse: Building query
pattern-driven data. In International World Wide Web Conference,
pages 896-897, 2005.

[15] L. Cabibbo and R. Torlone. A logical approach to multidimensional
databases. In International Conference on Extending Database
Technology, pages 183-197, 1998.

[16] M. Golfarelli, D. Maio, and S. Rizzi. Conceptual design of data
warehouses from ER schemes. In International Conference on System
Sciences, pages 334-343, 1998.

[17] M. Golfarelli, D..Maio, and S. Rizzi. The dimensional fact model: A
conceptual model for data warehouses. International Journal of
Cooperative Information Systems, 7(2-3):215-247, 1998.

[18] O.Herden. A design methodology for data warehouses. In
International Baltic Workshop on Databases and Information systems,
pages 292-293, 2000.

[19] P. R. Niven. Balanced Scorecard Step-by-step Maximizing Performance
and Maintaining Results. John Wiley, Inc, 2002.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

245

[20] R. Winter and B. S trauch. A method for demand-driven information
requirements analysis in data warehousing projects. In International
conference on Systems Sciences, pages 231-239, 2003.

[21] T. B. Pedrsen and C.S.Jensen. Multidimensional database technology.
Computer, 34:40-46, 2001.

[22] T. Niemi, J. Nummenmaa, and P. Thanisch. Constructing OLAP cubes
based on queries. In International Workshop on Data Warehousing and
OLAP, pages 9-15, 2001.

