
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1247

A Computer Proven Application of the Discrete
Logarithm Problem

Sebastian Kusch, Markus Kaiser

Abstract— In this paper we analyze the application of a formal
proof system to the discrete logarithm problem used in public-
key cryptography. That means, we explore a computer verification
of the ElGamal encryption scheme with the formal proof system
Isabelle/HOL. More precisely, the functional correctness of this algo-
rithm is formally verified with computer support. Besides, we present
a formalization of the DSA signature scheme in the Isabelle/HOL
system. We show that this scheme is correct what is a necessary
condition for the usefulness of any cryptographic signature scheme.

Keywords— formal proof system, higher-order logic, formal veri-
fication, cryptographic signature scheme

I. INTRODUCTION

COMPUTER proofs (the application of formal proof sys-

tems) are a useful approach in the area of verification.

Formal and computer verification augment the traditional

concept of software engineering by providing techniques that

guarantee trustiness as well as correctness of software systems

in a mathematical way. There are many possible applications

of formal and computer verification like automotive, medical

technology, information technology security and cryptography.

In public-key cyrptography, many algorithm are based the

factoring problem or the discrete logarithm problem. While

the Rabin public-key scheme relies on the hardness of fac-

toring an integer n that is a product of two large primes

p and q (compare [9]), the ElGamal scheme is based on

the discrete logarithm problem. In this paper, we explore a

computer verification of the ElGamal encryption scheme with

the formal proof system Isabelle/HOL. More precisely, the

functional correctness of this algorithm is formally verified

with computer support. Besides, we present a formalization

of the DSA signature scheme in the Isabelle/HOL system

[7]. The Digital Signature Algorithm (DSA) was proposed

by the United States Institute of Standards (NIST) in 1991

to be used in the Digital Signature Standard (DSS). The

DSA is an efficient version of the ElGamal signature scheme

based on discrete logarithms since it mainly reduces the

bitlength of the exponents involved. In contrast to high-level

examinations of cryptographic protocols like the key exchange

schemes suggested by Needham and Schroeder for instance,

formalizations involving also the single algebraic equations are

a relatively new application of theorem provers like Isabelle.

This paper is organized as follows: We start in Chap-

ter II with a description of the used formal proof system.

In Chapter III we explore the ElGamal encryption scheme

The authors are with the Technische Universität Darmstadt, 64289 Darm-
stadt, Germany. This work was partially funded by the German Federal
Ministry of Education and Technology (BMBF) in the framework of the
Verisoft project under grant 01 IS C38. The responsibility for this article
lies with the authors.

with a formal proof system, and in Chapter IV we present a

formalization of the Digital Signature Algorithm. In Chapter V

some conclusions, as well as some comments on future work

are given.

II. FOUNDATION

In this chapter we give an overview on the used formal proof

system Isabelle/HOL as well as the cryptographic knowledge

concerning the Digital Signature Algorithm.

A. The Isabelle System

The Isabelle system (written in ML) is a generic theorem

proving environment invented at Cambridge University and

TU Munich that can be applied to several logics. Isabelle/HOL

is the specialization of Isabelle for higher-order logic (HOL)

whereas other logics distributed with Isabelle include the usual

first-order logic (FOL) or LCF which is a version of Scotts

logic for computable functions. Isabelle is also often referred

to as a “Proof Assistant” underlining the process of alternating

automated reasoning with human intervention.

As we will see in detail in the following subsection theorem

proving with Isabelle is often based on a “human-guided”

manipulation of the proof state, where the system itself only

executes the given commands and - of course - verifies their

applicability until finally all subgoals have been proven (e.g.

via reduction to already proven lemmata). On the other hand

there are also strong tools that can be applied to handle (suit-

able) proofs (or at least considerable parts of it) automatically.

The user is free to alternate these two paradigms arbitrarily.

Isabelle comes with a large theory library of formally

verified mathematics, including elementary number theory (for

example, Gauss’s law of quadratic reciprocity), analysis (basic

properties of limits, derivatives and integrals), algebra (up to

Sylow’s theorem) and set theory (the relative consistency of

the Axiom of Choice). Using appropriate include-commands

we may base our (new) theorems upon those in the libraries

by referring to them during the proof process wherever they

are applicable.

More information about Isabelle/HOL are given in [8],

which describes constructions with this tool. A further use-

ful reference is [10]. There, parts of the large database

are mapped. Besides [10] contains other references about

Isabelle/HOL.

B. Digital Signatures

Digital signatures are meant to prevent (or rather to de-

tect) unauthorized modifications to data and to authenticate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1248

the identity of the signatory. Besides, the signatory cannot

repudiate a signature that was issued by him or her. The

former means that - in contrast to conventional (handwritten)

signatures - digital signatures are tightly connected to the data

they refer to. A signature for document m1 is different from

that for document m2 and it is (or should be) impossible for

an attacker to create a signature for m2 by knowing a valid

signature for m1; digital signatures are in this sense even

stronger than their conventional counterparts.

In detail we expect a signature scheme to meet the following

requirement [2]:

• Identity: The signature needs to prove the signatorys

identity beyond any doubt.

• Non-Reusability: The signature is only valid together

with the original document.

• Non-Modifibiliy: Any subsequent manipulation of the

document will be detected.

• Non-Repudiation: The signatory cannot deny to have

signed the document.

In a symmetric system, the key for encrypting a message

is the same as the one that is needed to decrypt it, or - more

generally - the keys might not be the same, but it is easy -

from knowing one of them - to compute the other.

In contrast, an asymmetric scheme is even based on the

impossibility (or rather difficulty) to compute the decryption

key from knowing the one used for encryption. Usually the

encryption key is called the public key that may be known to

anyone who wants to send secrete messages to participant X ,

whereas X is the only one who has access to his private key

which is a prerequisite for decrypting them again.

Digital Signatures based on Symmetric Cryptography
A signature scheme based on the symmetric case

necessitates a trusted third party T . Furthermore, we need

to assume that every participant A has exchanged a secrete

symmetric key KA with T .

If a participant A wants to sign a document for participant

B, he encrypts it using his key KA and sends it to T . Since T
assumes that A is the only person (besides himself) that has ac-

cess to KA, he can confirm that the document originates from

A. After decrypting it using KA and attaching a corresponding

confirmation for B expressing that the document was actually

sent by A, he encrypts it (together with the confirmation) using

KB and gives it to recipient B.

By decrypting it and reading the confirmation, B can be sure

that that A was the sender (and the signatory) since he knows

that T confirms this claim and T is (by definition) trustworthy.

It is obvious that the assumptions involved here are quite

ambitious. First of all we just need to believe that T is not

only trustworthy but also resistant to any malfunction or attack.

Since it is involved in every exchange of signed documents it

is on the other hand required to work relatively quickly. We

also need a secure exchange of secrete symmetric keys. And

finally we need to assume that these keys are also stored safely

(inaccessible for any other party) by the participants. The latter

is basically the only difficulty arising here that also applies to

asymmetric systems.

Digital Signatures based on Asymmetric Cryptography
For an asymmetric cryptosystem, let e be an arbitrary

encryption key, d the corresponding decryption key, and

Ee as well as Dd the associated encryption (or decryption)

functions. Then Dd(Ee(m)) = m holds for every message

m.

The system can be directly used for digital signatures if the

encryption and decryption functions commute, that means if -

under the above assumptions - the following is also valid:

Ee(Dd(m)) = m

A participant A applies his (private) decryption key d (that

is only known to himself) to a message m, yielding the

signature c := Dd(m), and every recipient may use A’s

(public) encryption key e to verify the signature, i.e. to check

whether Ee(c) = m. The security requirements are the same

is in the original application of the system in terms of a

confidential exchange of messages:

• The private keys need to be stored safely. Only the

legitimate users are allowed to have access to them.

• The public keys should be protected from unauthorized

manipulation, stored and managed at a safe place like

a trust center. If an attacker succeeds in changing the

public key data, faked signatures might be mistaken for

legitimate ones since a correct verification requires the

correct public key.

Of course, usually one would not sign the actual messages

(or documents) but their hash values, also for security reasons.

In addition, it is not recommendable at all to use the same key

pair for signatures and for encryption / decryption operations.

But this is the idea how it works.

III. DISCRETE LOGARITHM PROBLEM

In this chapter, the ElGamal encryption scheme that is based

on the discrete logarithm problem is explicated. Moreover, we

explore a formal anaylsis with Isabelle/HOL.

A discrete logaritm of a multiplicative group G with group

order e ∈ N can be given by a generator g of G (for all z ∈ N
with z < e, gz �= 1 and ge = 1). If y = gx for x ∈ N, x is

the discrete logarithm of y (y = gx mod p, if p prime and the

group given by p)

If |G| = p, then m ∈ N with m < p can be encrypted by

the following computation:

1) choice of a random number r ∈ {1, . . . , p− 1}
2) a = gr

3) z = yr ·m
4) return (a, z)
Applying the private key decrypts the ciphertext (a, z):

za−x = y ·m · g−rx = gxr−xr ·m = m

A formal compilation of of the correctness of this algorithm

can be given by the following computer lemma, where the

datatypes are given by num, int and bool.

consts mod generator :: [int, int]⇒ bool

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1249

defs mod generator def : mod generator g p ≡ 0 <
g∧g < p∧zprime p∧zgcd(g, p) = 1∧(∀(x :: num).∀(z ::
num).(gx mod p) = (gz mod p) −→ ((int x mod (p −
(1 :: int))) = (int z mod (p − (1 :: int))))) ∧ (∀(x ::
num).0 < x ∧ x < (num (p− (1 :: int))) −→ (gx mod
p �= 1)) ∧ (g(num (p−(1::int))) mod p = 1)
lemma formal lemma: [| mod generator g p; (h ::
int) = g(x::num) mod p; (a :: int) =
g(k::num)modp; (a′ :: int) = g(l::num) mod p; (b ::
int) = hk ∗ (m :: int); (num (p − (1 :: int))) =
k + l; 1 mod p = 1 |] =⇒ (b ∗ a′x) mod p = m mod p

In [4] other formal verifcation work concerning the ElGamal

scheme can be found.

IV. THE DSA SIGNATURE SCHEME

The Digital Signature Algorithm is a more efficient version

of the ElGamal scheme [3], proposed by the National Institute

of Standards and Technology (NIST) in August 1991 and

based on discrete logarithms in the group (Z/pZ)∗ where p is

a (large) prime number. In the DSA case the exponentiations

concern only a subgroup of (Z/pZ)∗ which reduces the

size of the exponents involved. In addition, the verification

requires only two modular exponentiations instead of three.

The United States Institute of Standards (NIST) recommends

the Secure Hash Algorithm (SHA-1) to be applied to the data

first. That means the signing / verifying does not refer to the

actual data, but to its hash value using SHA-1.

A. DSA Parameters

In order to generate DSA signatures we need the following

ingredients [1]:

• p: a prime modulus, where 2L−1 < p < 2L for 512 ≤
L ≤ 1024 and L a multiple of 64

• q: a prime divisor of p− 1, where 2159 < q < 2160

• g := h(p−1)/q mod p, where h is any integer with 1 <
h < p− 1 such that h(p−1)/q mod p > 1 (which implies

that g has order q mod p)

• x: a randomly or pseudo-randomly generated integer with

0 < x < q
• y := gx mod p
• k: a randomly or pseudo-randomly generated integer with

0 < k < q

Note: Usually one would first choose the prime q, then

the larger prime p, as the required conditions are in this case

easier to satisfy. Moreover, the parameter k is allowed to be

used for one signature, only, and must then be replaced by a

new (pseudo-)random value.

p, q, g and y can be made public, whereas x and k need to

be kept secret and k must even be regenerated for each new

signature as already mentioned.

B. Signature Generation

Let h(m) denote the hash value of a message m, i.e. the

output of the SHA-1 algorithm as recommended by the NIST.

The signature of the message m is the pair of numbers r and

s computed according to the equations below.

• r := (gk mod p) mod q
• s := (k−1(h(m) + xr)) mod q

In the above, k−1 is the multiplicative inverse of k, mod

q. In the unlikely case that either r or s turn out to be 0,

the signatory is (strongly) advised to choose a new (pseudo-

)random value for k. The signature is transmitted along with

the message to the verifier.

C. Signature Verification

Prior to verifying the signature in a signed message, p, q,

g and y (together with the sender’s identity, indeed) are made

available to the verifier in an authenticated manner.

Let m′, r′ and s′ be the received versions of the message and

the signature parameters, respectively. To verify the signature,

the verifier first checks to see that 0 < r′ < q and 0 < s′ < q;

if either condition is violated the signature shall be rejected.

If these two conditions are satisfied the verifier computes

• w := s′−1 mod q
• u1 := (h(m′)w) mod q
• u2 := (r′w) mod q
• v := ((gu1yu2) mod p) mod q

The signature is verified if v = r′. Otherwise, the mes-

sage may have been modified, the message may have been

incorrectly signed by the signatory, or the message may have

been signed by an impostor. The message should be considered

invalid. For a proof that v = r′ if m = m′, r = r′ and s = s′

(both in a “human readable” style and in a formalized version

in the Isabelle system).

D. The Roadmap of the Proof

What follows is a summary of the most important steps

of the formal proof in Isabelle/HOL in order to outline the

general course.

Instead of directly proving the verification equation in the

group (Z/pZ)∗ we decided to consider the more general case

of an arbitrary finite cyclic group. On the one hand we yield

stronger (more general) statements this way. On the other hand

the reasoning gets a bit simpler since we can eliminate the

reductions modulo p (appearing in the handwrittten proof)

where p− 1 is the group order.

However, the verifying congruency holds even if we regard

r and gk as independent of each other, as long as the second

component of the signature, namely s, is computed as defined

in the specification. Therefore, my verifying theorem later on

is strictly speaking a generalization of the actual verification

of DSA, concerning the group we are regarding as well as

concerning the relationships between the parameters involved.

The following elements will appear in our encoding:

• natural numbers n and q, as defined above - such that our

group order gets n - along with the quotient u := n/q,

or equivalently, as it will appear in the actual encoding,

uq = n

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1250

• a primitive root (i.e. especially a group element) h and

a group element g such that g := hu, which is the same

definition as in section IV since u := n/q
• natural number x and group element y := gx playing the

same role as in the specification

• natural numbers k, r and s (according to the specification)

along with natural numbers k−1 and s−1 (or k inv and

s inv, as written in the theory file, respectively), denoting

the inverse (modulo q) of the k and the s values

Using the above “ingredients” the correctness proof of the

DSA signature algorithm) in the theory file dsa.thy comprises

the following steps:

• constants definitions
– the natural number n such that n represents the order

of our finite group

– a primitive root h for a finite cyclic group (which is

from Isabelle’s point of view of no specific type but

annotated by a type variable)

– the functions inv and pow where inv(g) yields the

inverse of a group element g and pow(g,k) for a

natural number k is the n-th exponentiation of g
regarding the group operation

In our theory these steps are handled using the following

encoding:

consts
h::“’a”
n::“nat”
inv::“’a” ⇒ “’a”
pow::“[’a, nat]⇒ ’a”

As already explained ’a is a type variable, which

means the functions inv for instance may be applied

to arbitrary types. However, characteristic properties

like the (semantic) meaning of inv as the inverse of a

group element will probably hold only in the particular

axiomatic type classes that we can define now.

• definitions of the axiomatic typeclasses
– axiomatic typeclass group mult, which is a subtype

of monoid mult in the Isabelle library, where mult
means basically that the group operation is denoted

by “∗”
– subclass cyclic group mult, the class of all cyclic

groups, i.e. there is a primitive root h, such that each

element can be written as a power of h
– finite cyclic group mult that a cyclic group of fixed

(but arbitrary) finite cardinality n and the “universe”

of our proof, i.e. we do not consider (Z/pZ)∗ but

arbitrary finite cyclic groups

Basic definitions of the whole Isabelle theory:
axclass group mult ⊆ monoid mult

left inverse: “inv a * a = 1”
pow def 0: “pow a 0 = 1”
pow def suc: “pow a (Suc k) = (pow a k) * a”

axclass cyclic group mult ⊆ group mult
generator: “∃k. pow h k = a”

axclass finite cyclic group mult ⊆ cyclic group mult
finite: “pow h n = 1”

A group is just a monoid with the additional property

of the left inverse rule. (From this one could also derive

a corresponding right inverse rule if necessary, i.e. the

latter already follows from this and does not need to be

added as an axiom.) In the definition of cyclic groups

the group element a is implicitly ∀-quantified like all

variable symbols occurring in such formulae, unless they

are equipped with another (explicit) quantifier or defined

as a constant.

With these definitions we can now derive first lemmata,

mainly concerned with the pow function:

• basic associativity lemmata for groups
– lemma pow assoc1 stating that ak ∗ al = ak+l

– lemma pow assoc2 revealing the hardly surprising

finding

(ak)l = gkl

We tried to keep these lemmata as general as possi-

ble. The first one, for instance, is valid (and defined)

for arbitrary groups, not only for finite cyclic groups

(even if we only need it there). In between there is

from time to time a collection of relatively uninter-

esting lemmata (that are ommited here).

• lemmata about the order of group elements
– lemma subgroup generator, mainly concerned with

the role of the element we denoted by g in the DSA

specification generating the subgroup in which all

the DSA computations finally take place:

uq = n ∧ g = hu =⇒ gq = 1, i.e. element g
generating our subgroup has an order that devides

q (and as a corollary uq = n∧ g = hu =⇒ gqk = 1)

Based on some more auxiliary lemmata we now approach

the discovery that reducing the exponent modulo q is irrelevant

for exponentiations with this element g as basis. Note that g
is always defined in terms of the primitive root h which has

been defined as a constant.

• lemmata for reduced exponents
– lemma pow mod1 : uq = n ∧ g = hu =⇒ gr+kq =

gr

– lemma pow mod2 : uq = n ∧ g = hu ∧ ∃l(k =
r + lq) =⇒ gk = gr

– lemma pow mod3 : uq = n ∧ g = hu =⇒ gk =
gk mod q

– lemma pow mod4 : uq = n∧ g = hu ∧ k mod q = l
mod q
=⇒ gk = gl

The lemmata we have proven so far are almost sufficient to

approach the verification congruency. But there is still a little

gap we have to close. We need from the defining equation of

natural number s, that is

s := (k−1(h(m) + xr)) mod q

the following congruency modulo q:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1251

k ≡ s−1(h(m) + xr) mod q

which looks for the “human reader” like a matter of

course, since this seems to follow simply by multiplying

both sides with s−1 and then with k. However, if we have a

closer look we realize that we also need the commutativity

of multiplication along with the finding that the equivalency

modulo q for a natural number q is actually a congruency
relation, both for addition and multiplication. Furthermore,

we need to apply those rules several times and (in a formal

proof) we cannot simply say something like “analogously it

follows . . . ” skipping the details in the second round.

Even if it is not about a technically difficult deduction

these reasons cause the formal proof in Isabelle to turn out

relatively long and bulky, hard to read for a human eye. Of

course, it might be possible to prove the following lemma -

basically expressing the above consequence - in a slightly more

elegant fashion. If we regard our proof scheme in retrospect

this applies especially to this proof. However, writing elegant
proves in Isabelle is beyond the scope of this paper.

• a necessary ingredient
– lemma inv exp:

a = b−1c mod q ∧
aa−1 mod q = 1 ∧
bb−1 mod q = 1
=⇒ b mod q = a−1c mod q

• the final step
– theorem verify:

uq = n ∧
hu = g ∧
y = gx ∧
s = k−1(h + xr) mod q ∧
ss−1 mod q = 1 ∧
kk−1 mod q = 1
=⇒ g((s−1)h) mod qy(r(s−1)) mod q = gk

These two steps take both a bit longer than the previous

lemmata. This is mainly due to term-rewriting operations,

rather than technically interesting reasoning.

Furtehrmore, we can transfer the theorem to the special case

(Z/pZ)∗ in the specification under the following assumptions:

• (Z/pZ)∗ is a finite cyclic group.

• Reductions modulo a natural number q “preserve” equal-

ity, i.e.

a = b =⇒ a mod q = b mod q.

• Adding an assumption does not reduce the set of conse-

quences, in short,

(Φ =⇒ φ) =⇒ (Ψ =⇒ φ) for Φ ⊆ Ψ.

Concerning these aspects we will not use the term

“obvious” (since this would be exactly what we criticized

concerning common informal proofs at the beginning of this

section). Instead, we claim that the first assumption could

also proven in Isabelle/HOL relatively easily. The second

one appeared in my encoding as a simple lemma (and if this

statement did not hold, “mod” would not even be a function),

whereas the third “meta-claim” is part of any reasonable

deduction system - especially present in Isabelle.

Therefore, we assert that our theorem expressing the veri-

fying equation (or verifying congruency) actually entails the

special case suggested in the DSA specification. In addition,

it is more generic and can therefore be applied to a wider

spectrum of instances.

V. CONCLUSION

We explored the application of a formal proof system to the

discrete logarithm problem used in public-key cryptography.

Therefore, we gave a computer verification of the ElGamal

encryption scheme with the computer system Isabelle/HOL.

More precisely, we proved the functional correctness of this

algorithm formally. Besides, we present a formal description

and computer verification of the DSA signature scheme with

Isabelle/HOL. In this case, we proved formally that this

scheme is correct what is a necessary condition for the

usefulness of any cryptographic signature scheme. Moreover,

we gave a roadmap of our formal verification in order to

provide a better overview. A formal analysis with computer

support provides a complex, but useful approach to verify

the functional correctness of implementations of cryptographic

algorithms. Moreover, the computer-proven lemmata augment

the given database that is basic for many Isabelle theories.

This paper is part of an effort to unify the formal and

the computational views of cryptographic verification. More

specifically, this work continues our recent work that provides

useful formal descriptions of mathematical background and

cryptographic algorithms computer-proven with Isabelle/HOL

(compare [5] and [6]).

REFERENCES

[1] FIPS-PUB 186-2. Digital Signature Standard, January 27, 2000. United
States Department of Commerce/National Institute of Standads and
Technology.

[2] Claudia Eckert. IT-Sicherheit. Oldenbourg Wissenschaftsverlag, 2
edition, 2003.

[3] Taher ElGamal. A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In Advances in Cryptology – CRYPTO
84, pages 10–18. Springer-Verlag, 1984/1985. IEEE Transaction of
Information Technology, v. IT-31, n.4, 1985.

[4] Joe Hurd. Elliptic Curve Cryptography. A case study.
[5] Markus Kaiser and Johannes Buchmann. Computer Verification in

Cryptography. In International Conference of Computer Science, Vienna,
Austria, volume 12, 2006.

[6] Markus Kaiser, Johannes Buchmann, and Tsuyoshi Takagi. A Frame-
work for Machinery Proofs in Probability Theory for Use in Cryptog-
raphy, 2005. Kryptotag in Darmstadt.

[7] Sebastian Kusch. Formalizing the DSA Signature Scheme in Is-
abelle/HOL. Diplomarbeit, Technische Universität Darmstadt, 2007.

[8] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL
– A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[9] Michael Rabin. Digitalized signatures and public key functions as
intractable as factorization, 1979. Massachusetts Institute of Technology,
Laboratory for Computer Science, Cambridge, Massachusetts.

[10] http://isabelle.in.tum.de.

