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A Computer Aided Detection (CAD) System for
Microcalcifications in Mammograms - MammoScan

μCaD
Kjersti Engan, Thor Ole Gulsrud, Karl Fredrik Fretheim, Barbro Furebotten Iversen, Liv Eriksen

Abstract— Clusters of microcalcifications in mammograms are an
important sign of breast cancer. This paper presents a complete
Computer Aided Detection (CAD) scheme for automatic detection of
clustered microcalcifications in digital mammograms. The proposed
system, MammoScan μCaD, consists of three main steps. Firstly
all potential microcalcifications are detected using a a method for
feature extraction, VarMet, and adaptive thresholding. This will also
give a number of false detections. The goal of the second step,
Classifier level 1, is to remove everything but microcalcifications.
The last step, Classifier level 2, uses learned dictionaries and sparse
representations as a texture classification technique to distinguish
single, benign microcalcifications from clustered microcalcifications,
in addition to remove some remaining false detections. The system
is trained and tested on true digital data from Stavanger University
Hospital, and the results are evaluated by radiologists. The overall
results are promising, with a sensitivity > 90 % and a low false
detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image).

Keywords— mammogram, microcalcifications, detection, CAD,
MammoScan μCaD, VarMet, dictionary learning, texture, FTCM,
classification, adaptive thresholding

I. INTRODUCTION

BREAST cancer is the most frequent cancer disease, and a
leading cause of cancer death among women. In Norway,

populated by 4.5 million people, as many as 2644 women
developed breast cancer and 715 died from breast cancer in
2003 [1]. The survival rate is greatly influenced by how
early the cancer is treated, thus it is important to discover
the disease at an early stage. There are two main types
mammographic findings indicating a possibly cancer in the
breast tissue. Soft tissue lesions and clusters of microcalci-
fications. Soft tissue lesions can be subdivided in different
groups, they can be malignant or benign, and are sometimes
palpable. Clusters of microcalcifications are early sign of
possibly cancer, or precancerous changes, and are in general
not palpable. Microcalcifications are small calcifications of
different shape and density, approx 0.1 - 1 mm in diameter.
Single microcalcifications are not dangerous, but clusters of
microcalcifications might be malignant or benign. An example
of a cluster of microcalcifications is seen in Figure 5 a). In
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the following, (a) microcalcification(s) will often be denoted
μCa for simplicity. When we are referring to a cluster of
microcalcifications/μCa this will be specified.

Mammograms are X-ray projections of the breast tissue onto
a detector array or a film plate. The exposure of the mammo-
graphic film or detector array is proportional to the intensity
of the X-ray photons transmitted through the breast. Tumors
and microcalcifications are denser than the surrounding tissue,
thus absorb more of the incident X-rays. They can therefore
often be seen as bright spots/regions in the mammograms.
Most western countries today have mammographic screening
programs. A screening is defined as the presumptive identifica-
tion of unrecognized disease or defect by application of tests,
examinations, or other procedures. The procedures should be
easy to carry out and not to painful. In Norway every women
between 50 and 69 years of age are invited to screening every
second year. Evaluating screening data is a very labor and
time demanding process. Only a few of the cases will actually
be present with cancer (approx. 0.6 % in Norway), and due
to the vast amount of images relatively rapid interpretation
is done. Hence there is a risk that subtle abnormalities can
be overlooked. In Norway today, two independent radiologists
evaluate all screening data. This is recognized as the best way
of evaluating screening data and many other countries do the
same. However, due to lack of qualified radiologists, or for
economical reasons, some places screening data are evaluated
by a single radiologist.

A well working Computer-Aided Detection (CAD) system
could be used as a second opinion. Whether CAD can replace
one of the two independent radiologists is under discussion
and still needs to be proven. However, CAD would, no
doubt, be helpful where no second radiologist is at hand. A
CAD system can also be helpful in clinical analysis and in
training of radiologists. As early as in 1990 Chan, Doi et.al.
showed that CAD (state of the art in 1990) did significantly
improved radiologists’ accuracy in detecting clustered μCa
under conditions that simulated the rapid interpretation of
screening mammograms [2].

Computer-aided methods for detecting clustered μCa have
been investigated using many different techniques. Some of
the important and/or later work is briefly explained in the
following: Cheng, Lui, and Freimanis suggest a fuzzy logic
technique in [3], showing good enhancement capabilities for
μCa. Veldkamp and Karssemeijer use a two step approach
in [4]. The first step is initial detection using a statistical
method, based on Bayesian techniques, and application of a
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Markov random field model for segmentation. The second step
starts by calculating a number of features for each detection,
and classification between true and false cluster of μCa is
done by a k-nearest neighbor method. Yu and Guan [5] also
use a two step approach. Firstly, potential μCa are segmented
from the mammogram using mixed features consisting of
wavelet features and gray level statistical features. Second, a
large number of features (31) are calculated from the original
image for all the potential μCa. The discriminatory power
of these features is analyzed using general regression neural
networks. A learned Support Vector Machine (SVM) approach
is investigated by El-Naqa and Yang et.al. [6]. An SVM is
trained using supervised learning, and thereafter used to detect
if a μCa is present at each location in the image. The pixels
classified as μCa are grouped together to form μCa objects by
using morphological processing as described in [7]. Clusters
of μCa were identified by grouping the μCa objects, with the
following rules: 1) The objects are connected with nearest-
neighbor distance less than 0.2 cm. 2) Three μCa should
be detected within an area of 1 cm2. Lemaur and Drouiche
et.al. develop new, highly regular, wavelets for the detection of
clustered μCa [8]. The detail coefficients at the first scale level
is hard thresholded. The highly regular wavelets are shown to
have better capabilities to detect clustered μCa compared to
ordinary wavelets. Related work is done by Heinlein and Drexl
et.al. in [9], where integrated wavelets for enhancement of
multiscale sctructures in images are developed. The integrated
wavelets are shown to have good enhancement capabilities
for μCa. Both these work focus on the feature extraction, or
image enhancement part, and do not include a complete CAD
system. A neural-genetic algorithm for feature selection and
breast abnormality classification is presented by Zhang, Verma
and Kumar in [10]. This would be the ”last part” of a complete
CAD system, where they use already segmented areas as
input, and report their classification capabilities (i.e. decide
for benign or malign). Yoshida presents a Matching Pursuit
(MP) based method for extraction of μCa inside predefined
ROI’s in [11]. A predefined wavelet packet dictionary is used
(10-tap Symmlet), and the different wavelets are associated
with individual weights, trained using a training set. This
can also be regarded as a ”last part” of a full CAD system,
since predefined ROI’s are expected. Horváth, Valyon et. al.
are working on a complete CAD system called, intelligent
advisory system for screening mammography [12], where
they plan to take into account comparing of views as well
as detecting asymmetry (comparing breasts), and changing
(comparing history with new images). Their μCa system is
based on region of interest extraction after texture analysis
followed by neural network to classify the extracted regions
as clusters or not. A method to extract and select features for
μCa detection using multiscale image processing and artificial
neural networks is presented by Vega-Corona and Andina in
[13]. They apply a generalized regression neural network in
feature selection and identification.

Our system, MammoScan μCaD, is built as a three step
approach. Firstly, detection of suspicious areas using a method
we have named VarMet [14]. Second step removes most false
detections (but no μCa). Third step removes single/spread

out benign μCa, so that only clusters of μCa are kept using
learned dictionaries and sparse representation as a classifier
technique. The novelty of this work lies in the algorithm of
step 1, the use of learned dictionaries for classification of
mammograms in step 3 as well as putting it all together as
a complete CAD system for microcalcifications and testing it
on true digital data. Step 2 uses more or less standard image
processing techniques.

The outline of the paper is as follows: In Section II, an
overview of the system is presented. Details of the detection
part is presented in Section III, details of the Classifier level 1,
removing false detections, is found in Section IV, and details
of the Classifier level 2, removing single, benign μCa, is found
in Section V. Section VI includes a case study as well as
volume experiments and results. Section VII concludes the
paper.

II. OVERVIEW OF THE SYSTEM

In this section we will give an overview of the system
for detection and classification of μCa in mammograms,
MammoScan μCaD. Figure 1 shows a block diagram of the
system with the different blocks numbered. Since the digital

Fig. 1. Schematic overview of the system, MammoScan μCaD.

images from the digital mammograph all have the same size,
but the size of the breast region varies, the first step, box 1,
is to shrink the image to contain only a bounding box around
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the breast region. On fully digital images as used in this work,
finding the breast region is an easy task, and can be done by
simple thresholding followed by an erode operation. The erode
operation is done to avoid searching for μCa in the skinline
area. This procedure results in a binary image of the breast
region. Both the original mammogram, and the binary image,
are reduced to the bounding box around the breast region,
resulting in Iorig and Ib respectively.

Box 2 is a μCa detection algorithm. The algorithm used is
called VarMet, and is a method that emphasizes edges and
objects of a certain size. μCa are small but with relatively
sharp edges compared to the background tissue, and this
is exploited. VarMet is a method based on median filtering
in different scales, followed by variance calculations. The
algorithm is explained thoroughly with various experiments
in [14]. The output from VarMet (and box 2) is a feature
image where all μCa are emphasized, unfortunately in addition
to some other objects, like μCa in vessels and connective
tissue lines. In box 3 some of the vessels (containing μCa)
are detected. Such areas will often result in very many false
detections in many CAD systems, thus it is desirable to locate
these areas and remove them from further investigations. The
objects that are, with very high probability, vessels form a
binary image, with the breast region as binary one, and the
background as well as the detected vessel areas as binary
zero. This binary image is multiplied with the feature image
from VarMet so that the vessel areas are removed, i.e. set to
zero, in the feature image. The last step of the detector is
the adaptive thresholding of the feature image (box 4). The
adaptive thresholding algorithm starts by setting a (too) high
threshold, calculate some parameters, and reduce the threshold
before calculating the parameters again. This is repeated until
some predefined conditions are fulfilled. All parameters are
chosen empirically. More details on box 2,3,4 can be found
in Section III. The output from the adaptive thresholding
algorithm is binary boxes containing the suspicious objects,
as well as the coordinates of the boxes relative to Iorig .

To make sure that all μCa are detected, even very small
ones, there are unfortunately a relatively large number of false
detections after the adaptive thresholding. This can typically be
μCa in vessels that were not removed by the vessel detection,
connective tissue lines, edge between the pectoral muscle and
the breast, dark holes in the tissue etc. The next task is to
remove as much as possible of what is considered as false
detections. Box 5 is called Classifier level 1and consists of a
collection of tests done to remove as many false detections as
possible without removing any μCa. To be able to do this the
classifier needs Iorig as input as well as the coordinates of
the suspicious regions and the thresholded binary boxes of the
suspicious regions. Details on the Classifier level 1 is found in
Section IV. After Classifier level 1 many of the false detections
are removed, but unfortunately not all. In addition there are
many of the detected μCa that are single μCa, and these are
always benign. The last step in the MammoScan μCaD, box 6,
is a second classifier we call Classifier level 2. In this classifier
the main task is to remove everything that is not a cluster of
μCa, thus we remove both some false detections and many
single μCa. This is further described in Section V.

All the parameters in the system are chosen empiri-
cally/trained using a training set of approximately 200 cases
not included in the test sets in the experiments. The training
set as well as the test sets include both cases with and without
calcifications.

In a perfect world the output of the system would be solely
clusters of μCa. Unfortunately, to make sure that true clusters
of μCa are not discarded, some false detections and some
single μCa manage to go through the system. This system
shows, however, a very good true positive rate with relatively
few false detections. Some experiments and results will be
shown in Section VI.

III. DETECTION DETAILS

In this section the part inside the dotted box in Figure 1 is
explained in more detail.

A. VarMet - Algorithm for detection of calcifications

Details of the VarMet algorithm can be found in [14].
In short the VarMet scheme relies on computing statistical
features (local variances) based on the coefficients obtained
from the multiscale median transform (MMT) [15] of the
input image. In the following we first present the basic MMT
algorithm. Thereafter, the extension is described.

The MMT algorithm: In the following we define the median
transform of the image X, with square kernel of dimensions
N × N , as medN{X}. The iteration index is denoted as j,
and J is the number of resolution levels or scales. The MMT
algorithm is then given as:

1) Let N = 2s + 1, s = 1.
2) Let Mj = X with j = 0.
3) Compute Mj+1 = med2s+1(Mj).
4) Compute the multiresolution coefficients Wj+1 = Mj−

Mj+1.
5) Let j ←− j + 1; s ←− 2s. Go to Step 3 if j < J .

The MMT algorithm produces at each scale, j, a set {Wj}
having the same number of pixels as the input image, X. The
input image X can be expressed as the sum of all the scales
and the smoothed residual image XJ (equivalent to MJ ): X =
XJ +

∑J
j=1 Wj .

The VarMet scheme: The output from the original MMT
algorithm is {Wj}J

j=1, and singularities in the images are
often found using WJ . However, in the application of detect-
ing microcalcifications we found it more beneficial to proceed
from the MMT algorithm with a variable Y = M1−M3. Let
h represent a vector with N2 elements with value h(i) = 1

N2

for all i. In addition, we define

y(m,n) = [y(m − K, n − K) y(m − K, n − K + 1) . . .

y(m,n) . . . y(m + K, n + K)]T ,

where K = N
2 . Then, an estimate of the local mean at

position (m,n) in Y may be written as the vector expression
hT y(m,n). Finally we can estimate an image of local vari-
ances, V. The variance at position v(m, n) is estimated as:

v(m,n) =
1

N2 − 1
||y(m,n) − hTy(m, n)||2. (1)
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The variance image, V, is the output from the VarMet
algorithm. It can be looked upon as a feature image, If ,
in which the microcalcifications, along with other strong
singularities, are enhanced.

B. Vessel detection

Calcifications contained inside blood vessels are never ma-
lign, thus they can be discarded. Often this type of calcification
is obvious to the human eye when looking at the entire
breast, because it has a characteristic appearance that looks
like a railway track through the breast tissue, as can be seen
on the example image (mammogram) shown in Figure 2 a).
Unfortunately, looking closely at such calcifications inside a
vessel we see that they have an irregular appearance that can be
mistaken for a cluster of malignant μCa, especially when only
a small part of the vessel has calcifications. Since most CAD
systems, including MammoScan μCaD, do local processing
it is often difficult to distinguish the μCa inside the vessels
from other types of μCa. The vessel detector in MammoScan
μCaD finds relatively large and relatively straight objects with
a detectable edge. Note that the edge of the breast/skin-line
area is not searched for vessels for two reasons: There are no
visible vessels in the skin-line, and the skin-line produces a
lot of relatively long detectable edges that would be a problem
for this vessel detector. The first step of the vessel detector is
to perform an edge detection on the entire image, using Sobel
operators [16], resulting in a binary image, Iedge. An example
can be seen in Figure 2 in different parts of the process. The
reduced original mammogram, Iorig , is shown in a), with the
detail depicted in b), and the resulting Iedge in c). In this image
the edges of the blood vessels are visible, but some places the
line is broken. To fill the entire vessel, and also close some
of the broken lines, a morphological dilation is performed on
Iedge: Iobj = Iedge ⊕ Sed, where Sed is a square 15 × 15
pixels structure element. The resulting Iobj for the example
image can be seen in Figure 2 d).

Two properties of all the objects in Iobj are calculated: 1)
The major axis length (in pixels) of the ellipse that has the
same normalized second central moments as the object. 2)
The eccentricity of the ellipse that has the same normalized
second central moments as the object. The eccentricity is the
ratio of the distance between the foci of the ellipse and its
major axis length. The value is between 0 and 1 (0 and 1 are
degenerate cases; an ellipse whose eccentricity is 0 is actually
a circle, while an ellipse whose eccentricity is 1 is a line
segment). To be classified as a vessel the object should be
quite straight and relatively large, or quite large and relatively
straight. Empirically the following decision rule is made:

• (If eccentricity > 0.92 AND major axis length > 90 )
OR ( If major axis length > 150 AND eccentricity >
0.8) THEN the object is classified as a vessel.

The dilation was helpful in finding the blood vessels, but the
vessel objects are now to large due to the dilation. Therefore
an erosion is done before the objects are removed from the
part of the mammogram that is investigated further: Iero =
Iobj � See, where See is a square 11 × 11 pixels structure
element. Iero from the example is shown in Figure 2 e). The

a) b) c)

d) e) f)

Fig. 2. a) Original image, Iorig . Detail from: b) Iorig , c) Edge image, Iedge,
d) Dilated edge image containing objects, Iobj , e) Eroded object image, Iero,
f) Binary decision image containing areas classified as vessels, Ives

objects from Iero that were classified as a vessel according
to the decision rule ( performed on the objects from Iobj )
should now be removed from the area that is searched for μCa.
A binary image, Ives, with the search area as binary one and
the background as well as the detected blood vessels as binary
zero is the result, and can bee seen in Figure 2 f). To make sure
that no areas that are not vessels are discarded the decision
rule is quite strict. Thus not all vessels are detected. Some of
them are successfully detected, however, and thereby removed
from the rest of the CAD scheme. Due to the strict decision
rule no objects that are not a vessel have been classified as
one in our tests. There is another problem, however, that can
be seen in the example of Figure 2. There are two single μCa
lying very close to the vessel. After the dilation these become
a part of the vessel object, so that they are removed as well
as the vessel, as can bee seen in Figure 2 f). A single μCa is
always regarded as benign anyway, so if these μCa was not
removed here they would have been removed in the Classifier
level 2. Hopefully, if a cluster lies close to the vessel, not all
of the μCa of the cluster would be removed. It is still worth
noticing as a potential problem if a malign and small cluster
should lie very close to a vessel.

C. Adaptive thresholding

The feature image from the VarMet algorithm, If , is mul-
tiplicated pixel by pixel with the binary image Ives, resulting
in If2. The next step is to perform a thresholding on If2.
There can be large variations from one image to the next,
so a constant threshold will not be good enough. An adaptive
thresholding strategy, to find a threshold for a particular image,
was developed. The algorithm is presented in Algorithm 1.

The main idea is to find a threshold that gives a predefined
number of detections in each image. Starting with a large
threshold, the threshold is lowered iteratively. The algorithm
is forced to give a number of detections for each image, even
if many of the images have no μCa. Since some images can
have many μCa and the most dangerous kind is usually the
most subtle one, we have to make sure that we do further in-
vestigation on a relatively large number of the enhanced areas
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Algorithm for adaptive thresholding1

input : If2

output: Obj, Idet

Ifn ← If2 × 1
argmaxi,j(If2(i,j))

//The feature image is2

normalized
minareal = 10, nomax = 60, no = 30, T = 1.13

//Initializing parameters (empirically decided)
Th = 0.3, noareal = 0 //Initializing variables4

Ith ← Ifn > Th5

Obj ← {(Objects in Ith) > minareal }6

noareal ← |Obj|7

while noareal < no AND Th > T · 10−3 do8

if Th < T · 10−2 then9

δ ← 10−310

else if Th < T · 10−1 then11

δ ← 10−212

else13

δ ← 5 · 10−214

end15

Th ← abs(Th − delta)16

Ith ← Ifn > Th17

Obj ← {(Objects in Ith) > minareal }18

noareal ← |Obj|19

if noareal = 0 then20

exception handler21

end22

end23

while noareal < no do24

Obj ← Obj+ largest obj. from Ith not yet in Obj25

noareal ← |Obj|26

end27

while noareal > nomax do28

minareal ← minareal + 429

Obj ← {(Objects in Ith) > minareal }30

noareal ← |Obj|31

end32

Idet ← (Ith− objects not in Obj)33

Algorithm 1: Adaptive thresholding algorithm.

of the feature image If . The algorithm demands minimum 30
and maximum 60 objects per image, and these parameters are
decided empirically so that all μCa in the training set were
detected at this stage. The strategy of finding 30 to 60 objects
in every image obviously leads to very many “false” detections
at this stage. The Classifier level 1 removes the most obvious
false detections and is the subject of the next section.

IV. CLASSIFIER LEVEL 1

The purpose of Classifier level 1 is to remove as many
obviously false detections as possible without removing any
μCa. This is done by a collection of more or less simple tests.
The input to the test is the thresholded VarMet image, Idet, as
well as the VarMet feature image, If2, and Iorig . A flow chart
of the classifier level 1 is shown in Figure 3. Every object

in Idet is treated as a detection. A small area/box centered
around each object is ran trough various tests, along with the
corresponding area from Iorig , and sometimes in If2. The
different tests will be explained in the rest of this section.

Fig. 3. Flow chart of classifier level 1

The first step is to test if the edge/area that the VarMet
algorithm enhanced is a dark(er) area/spot. In that case it is not
a μCa because a μCa is more dense than the breast tissue, thus
it appears brighter on the X-ray image than the surrounding
tissue. The second test is a simplified spectral analysis. A 2D
Discrete Cosine Transform (DCT) is performed on a 64 × 64
block with the center of the detection as the center of the
block: W = C · X · CT , where C is the DCT matrix, X is
the data matrix (image pixels in a 64 × 64 block), and W is
the coefficient matrix:

W =

⎡
⎢⎢⎢⎣

w1,1 w1,2 . . . w1,64

w2,1 w2,2 . . .
...

. . .
w64,1 . . . w64,64

⎤
⎥⎥⎥⎦ (2)

One feature, fdct, is calculated based on the DCT coeffi-
cients as follows:

fdct =

∑64
i=1

∑64
j=1 |wi,j | − (|w1,1| + |w1,2| + |w2,1|)

|w1,2| + |w2,1| . (3)

As seen from the equation, the DC coefficient (w1,1) is not
used when calculating the feature, fdct. If the image block X
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is more or less homogenous, the value of fdct will be quite low
because most energy will be located in the lower frequencies,
w1,1(DC), w1,2, w2,1. If the image block contains a μCa (or
other sharper edges/objects) there will be more energy in the
higher frequencies as well, and fdct will be higher. Thus fdct

is compared to an empirically decided threshold (8.5), and if
fdct < threshold the detection is discarded because it is so
homogenous that it is not caused by a μCa.

This test is followed by another version of a homogeneity
test. The first and second order moment for the image box
around the detection is calculated (mean and variance). In
addition an edge detection using Sobel operator [16] is
performed, and the number of edge-pixels is counted. The
detection is discarded as too homogenous if the following
decision rule is fulfilled: (edge-pixels < par1) AND (mean
< par2) AND (var < par3).

By now we have hopefully discarded all detections due to
darker objects as well as all (most) of the detections where the
image is too homogenous to be a μCa. There are, however,
other types of objects that often lead to detection from the
VarMet algorithm, as connective tissue appearing as bright
lines or μCa inside blood vessels, also appearing as lines or
“railway tracks”. The next test, called line-test, is referring to
the part inside the dotted line in Figure 3. The line-test use
edge detection as well as morphological operations on a box
around the detection from Iorig to try to decide whether the
detection is due to a connective tissue line, blood vessel, or a
genuine μCa. The test gives three possible answers:

1) The detection is due to a genuine μCa, and no more
testing in Classifier level 1 is necessary. The detection
goes straight to Classifier level 2.

2) The detection is due to a connective tissue line or a
blood vessel. The detection is discarded.

3) The detection is probably not due to a connective tissue
line or a blood vessel, but it is uncertain if the detection
is due to a genuine μCa. The detection is tested further
in Classifier level 1.

A more detailed flow chart of the line-test algorithm is de-
picted in Figure 4. The last test of Classifier level 1 compares a
thresholded version of a box, Ibox, from a normalized version
of the original image, Inorig , centered around the detection, to
the corresponding area after the VarMet algorithm, i.e. in Idet.
First a threshold, Thclass1, is found as a function of the max-
imum and minimum values in the box from Inorig . A binary
image is found by thresholding: Ibbox = Ibox > Thclass1.
Each object in Ibbox is compared to the corresponding region
in Idet. If the corresponding region in Idet is black (no object)
that particular object from Ibbox is discarded. Two features are
calculated for all objects > 1 pixel that overlaps (totally or
partly) with an object in Idet: The eccentricity of the ellipse
that has the same second order moment as the object, and the
major axis length of this ellipse. A last decision rule was made:
IF eccentricity < Thecc AND major axis length < Thmal the
object can be a μCa and should continue to classifier level 2.
If not it is discarded. The output of Classifier level 1 is Idet2,
where all the objects from Idet that where discarded as false
are removed.

Fig. 4. Flow chart of the line-test algorithm.

V. CLASSIFIER LEVEL 2

After Classifier level 1 most (but unfortunately not all) false
detections are removed. Thus most of the objects/detections
that enters Classifier level 2 are μCa. Some of them are
single, and thereby benign, calcifications. Clusters of μCa are
much more suspicious. Some clusters are benign and others
are malignant. This is, however, often hard to decide from
the mammogram image, and a biopsy is often needed. In
Classifier level 1 we defined our task as to separate μCa from
false detections. We define our task in Classifier level 2 as
to separate single μCa from clusters of μCa. Unfortunately,
the single and benign μCa are not a homogenous group.
Some of these single benign calcifications are very large and
bright, and some of them are small and subtle. The large
and bright type of calcification is always benign, thus before
doing anything else in Classifier level 2 we want to remove
this class. This can be done by a simple thresholding of the
normalized version of a box from Iorig , centered around the
detection. Morphological closing and opening is performed
on the binary image for denoising. If there exist a large object
centered in the box, the detection is (most probably) due to
a large single calcification, and it is discarded as benign. The
decision parameters are decided empirically so that only large,
single benign calcifications are discarded on the training set.

The main part of the Classifier level 2 is based on a
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texture classification technique where sparse representation
using learned overcomplete frames/dictionaries is the main
tool. In the following sections sparse representations, learned
dictionaries, and texture classification using sparse represen-
tations and learned dictionaries will be explained briefly.
More details can be found in [17], [18], [19].

A. Sparse representation and dictionary learning

Signal expansions using frames, or overcomplete dictionar-
ies, can be regarded as generalizations of signal expansions
based on transforms, filter banks, and wavelets. A finite
frame or an overcomplete dictionary is a set of K vectors
of dimension N , spanning the N -dimensional vector space,
with K > N [20]. In many applications we are interested
in a sparse approximation of a signal rather than an exact
representation. The reconstructed N -dimensional signal vector
(often an approximation of x) can be written as: x̃ = Fw =∑K

i=1 wifi, where F denotes the K × N matrix, K ≥ N ,
with the vectors, fj , as its columns. Since the number of
dictionary vectors in general is larger than the dimension,
the vectors fj are not linearly independent. Finding the best
sparse approximation is NP-hard [21], and suboptimal vector
selection algorithms are used. We use Order Recursive Match-
ing Pursuit (ORMP) throughout this work [22], [23]. Sparse
representations can be useful for many applications, like signal
compression [24], [25], feature extraction, denoising [26],
blind source separation (of more sources than mixtures) [27],
[28], [29] and texture classification [17].

The quality of a sparse representation of a class of signals
is highly dependent on the dictionary. If the dictionary is
well suited for the class of signals, a good quality of fit
(low mean square error) can be obtained with a very sparse
representation (approximation). Thus finding a good dictionary
for a specific class of signals is important. The algorithm
used for learning dictionaries in this work is the algorithm
called Method of Optimal Directions (MOD) by Engan et.
al. [30], [31]. This algorithm is the core algorithm of a
larger family of algorithms named Iterative Least Squares
based Dictionary Learning Algorithms (ILS-DLA) by Engan
et. al. [18]. MOD is an algorithm for learning unrestricted
block based dictionaries, whereas ILS-DLA includes block
based and overlapping dictionaries, with or without different
kinds of restrictions/constraints.

B. Texture classification using sparse representation

In image processing the texture of a region describes the
pattern of spatial variation of grey tones in a neighborhood
where the neighborhood is small compared to the region.
By definition, texture classification is to identify the tex-
ture class in a region, whereas texture segmentation means
finding a boundary map between different texture regions
of an image [32]. Still there is an obvious borderline here
since classification can be used for segmentation. We use the
term texture classification in the following even though the
classification often leads to a segmentation. The algorithm
used in this work is similar to the Frame Texture Classification
Method (FTMC) of [17], and the main idea of the algorithm is

as follows: Each pixel in the texture image should be classified
as belonging to a certain texture/class. For each pixel in the
(possible preprosessed) texture image a vector, y, is made
from the specific pixel and a number of neighbourhood pixels.
The size and shape of the neighbourhood is predefined. For
each possible texture class, a dictionary, Fi, is learned using a
training set, where the training vectors are constituted the same
way as y. The vector to be classified, y, is then represented
sparsely (with a predefined sparseness factor, i.e. number of
nonzero entries in w) by all the different dictionaries, and the
different residuals are calculated:

ri = ‖y − Fiwi‖. (4)

This is done for every single pixel in the (possible pre-
prosessed) texture image, and results in a new image, a
residual image, of the same size as the texture image for each
class, Ri. These residual images are now smoothed using a
Gaussian filter, as done in FTMC, resulting in Rsi. We use
a 5 × 5 Gaussian filter with σ = 8. The last part is a simple
classification: for each single pixel in the texture image, the
class is decided as the class with the lowest value at the
corresponding position in Rsi.

C. Texture classification in Classifier level 2

The classification scheme in Classifier level 2 has two
classes: μCa and False. Before the dictionaries can be learned,
a training set corresponding to the classes; μCa and back-
ground (one training set per. class), has to be arranged.
Parts of training images corresponding to the different classes
are selected carefully. Training vectors are arranged from a
neighborhood around each pixel in the same manner as is
done when using the dictionaries for classification. We use a
square 5× 5 neighborhood in this work, and no preprosessing
of the image data is done. The dictionary learning is done
using MOD [31], [18].

The input to Classifier level 2 is Idet2 from Classifier level
1 along with the VarMet feature image, If2, and Iorig . For
each detection in Idet2, a box from Iorig , corresponding to
the area around the detection, is investigated. 75 pixels (7.5
mm) in each direction of the edges of the detection makes
the box, thus the size of the box varies since the size of the
detection varies. The image box is transformed into test vectors
using a square 5 × 5 neighborhood around every pixel. The
classification is done, as described in Section V-B, resulting in
a binary image, Icb, at the same size as the image box where
”1” corresponds to the class μCa and ”0” corresponds to the
class background.

Let Iboxf2 be the corresponding box of the VarMet image.
Iboxf2 is thresholded with a threshold as a function of the
max and min value in Iboxf2, and the resulting binary image
is 5×5 median filtered, giving Iboxf2bm

. If, for an image box,
there are very many objects in Iboxf2bm

( > 30) this is a good
indication that the detection is not due to a (possible cluster of)
μCa. This is because a μCa would be so much more enhanced
in Iboxf2 so that a thresholding based on min and max values
would result in only the μCa being present in Iboxf2bm

. Thus
if this situation occurs, the detection is discarded. Else, Icb
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is compared to Iboxf2bm
, and whenever there is an objet in

Icb not overlapping with an object in Iboxf2bm
, the object is

removed from Icb resulting in Icb2.
If there are no objects left in Icb2, that particular detection

is discarded. We are now quite sure that the remaining objects
in Icb2 are due to calcifications. The last question is if there
is one single μCa, which we then want to discard as benign,
or if there are several μCa which can be a dangerous cluster.
If there are several (more than one) object at this point, this
detection is regarded as a cluster of μCa. However, it can not
be assumed that only one object necessarily means only one
calcification. The μCa can have very different sizes, and they
can be lying so close so that a small cluster can become one
object. The area of the object (number of pixels) is found,
Aobj , as well as the area of the convex hull of the object,
Achull. Since a μCa is more or less circular, Aobj and Achull

will be very close in value if there is only one μCa in the
object. If the object is truly a cluster, the convex hull will
be larger than the area of the object, sometimes much larger.
Since the size of a μCa can vary, we test both the absolute
difference, as well as the ratio between these two areas. If
the difference is more than a certain threshold in both these
tests, the object is considered a cluster. If not it is considered
a single μCa, and discarded as benign.

VI. EXPERIMENTS AND RESULTS

All experiments are performed on true digital mammo-
grams supplied by the Breastdiagnostic Center of Stavanger
University Hospital (SUS). The images are originally of size
2294× 1914 with a resolution of 100 microns (0.1 mm/pixel)
and recorded on a GE Senograph DS as a part of the daily
clinical work at SUS. All CAD results are evaluated carefully
by radiologists from SUS, and all diagnosis (benign/malign)
of the test sets are verified by biopsy.

All the parameters in the system are chosen empiri-
cally/trained using a training set of approximately 200 cases
not included in the test sets in the experiments. The training
set as well as the test sets include both cases with and without
calcifications.

A. A case study

To illustrate the different parts of the system an image with
one cluster of μCa is shown in Figure 5 and 6 at various
stages through the system. In Figure 5 b) the corresponding
feature image, If2, is depicted with the cluster marked. From
this image it can be seen that the feature extraction method,
VarMet, does indeed emphasize μCa. The image resulting after
If2 has been adaptively thresholded, Idet, is seen in Figure 5
c). There are a number of detections from inside the cluster
(inside the square box that is there for illustration), as well
as a number of detections from the edge area of the breast,
close to the skin-line, in total 53 detections. Every single one
of these detections are treated separately in Classifier level
1, see Section IV. 46 detections are removed in Classifier
level 1. 18 are removed on the first test. 21 is removed by
the DCT test, and 1 by the second homogeneity test using
second order moments and edge detection. None is removed

as being calcifications inside vessels, 2 are removed as being
connective tissue lines, and finally, 4 is removed on the last
test of Classifier level 1.

After all the false detections discovered in Classifier level
1 are removed we get Idet2 depicted in Figure 5 d). In
addition to 4 detections in the area of the cluster of μCa,
i.e. inside the square marked on the image, there are three
more small detections, let them be called detection 5, 6, and
7, in Idet2. All these 7 detections will proceed to Classifier
level 2. The size of detection 5, 6, and 7 are all only a
couple of pixels, thus they are hard to see on this reduced
size image. A zoomed version of the breast tissue centered
around detection 5 is seen in Figure 6 b). This is, no doubt,
a false detection that hopefully will be removed in Classifier
level 2. Detection 6 and 7 and are quite close to each other, so
a zoomed version of the breast tissue surrounding both these
two detections is seen in Figure 6 c), the arrows pointing at
the two detection points. The uppermost arrow corresponds to
detection 6, and the lowermost to detection 7. For illustration
a contrast enhanced version of the same tissue area is seen
in Figure 6 d). The two detection points are slightly denser
than the surrounding tissue (the gray-level is higher), and this
is why they were enhanced by the VarMet algorithm. They
could be caused by very small μCa, but in that case they are
single μCa (not close enough to be considered a cluster, i.e.
more than approx. 7.5 mm apart) and should be discarded
in Classifier level 2. However, both detections looks more like
false detections (not μCa). Detections 1, 2, 3, and 4 are treated
separately, and all classified as cluster of μCa by Classifier
level 2. There are three different important variables (binary
images) calculated in Classifier level 2: 1) The thresholded
version of a gaussian filtered locally normalized version of the
VarMet image, Iboxf2bm

, 2) the result after classifying using
learned dictionaries, Icb, 3) the result after the objects in Icb

not overlapping with objects in Iboxf2bm
are removed from

Icb, Icb2. The three binary images are all depicted in Figure 7.
When there are more than one object in Icb2 the detection is
classified as being part of a μCa cluster. In the end these three
detections will be marked as one cluster since the detections
are so close that they obviously come from the same cluster
(less than approx. 7.5 mm apart). Sometimes the system might
miss some of the μCa in a cluster, but there is a very high
probability that at least some of the μCa will be detected. As
in this case we have 4 true detections (one of them covering
two close μCa) within the cluster of (some of them very small)
μCa (see Figure 6 a). Following detections 5, 6, and 7 through
Classifier level 2, we find that all detections are discarded due
to the large number of elements in Iboxf2bm

(see Section V for
explanation), depicted for the different detections in Figure 8.
Icb and Icb2 are also shown for illustration purposes, however
they will not be calculated for these detections since they are
discarded due to the large number of objects in Iboxf2bm

.

B. Volume studies

The digital mammograph at SUS was mainly used for
clinical investigations at the time of our study, thus we have
not tried our system on vast amounts of screening data where
most of the breasts are normal.
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Volume study 1 was done on images from 51 selected
patients, with in average approx. 3 images pr. patient. The
number of images pr. patient varies from 1 to 8, giving a total
of 155 images. All of the patients have μCa in some form.
Some of the patients have only spread out/single benign μCa
(17), others have clusters of μCa (34). Of the latter type some
have been tested (cytological or histological) to be malignant
(12), the rest is benign (22). Some patients have more than one
cluster (malignant or benign), and the clusters can be visible
on several of the images since there are often images from
different views of the breast. Since these data are from clinical
investigation there are often images zoomed in on the region
of interest, however these type of images are not a part of this
test. Our 155 images are all images of a complete breast, but
from different views (cranio caudal, medio lateral oblique).

Ideally a CAD system should only mark malignant clusters
of μCa, but it is often hard to distinguish between benign
and malignant clusters (biopsy is often performed as to be
sure of the diagnosis). Thus we aim for our system to detect
all clusters of μCa. All the single/spread out benign μCa
should be removed by classifier level 2. However, not all of
the single/spread out μCa are removed and it is difficult to
decide if these should count as false detections. Therefore
we have calculated the number of unwanted detections pr.
image, including all these single/spread out μCa, as well as
the number of false detections pr. image, including detections
that have nothing to do with μCa as well as detections due
to μCa inside blood vessels. However, from a clinical (user)
point of view, all the unwanted detections will count as false
detections.

The question of sensitivity, i.e. the number of true detections
relative to the number of clusters, is not straightforward either.
In most cases there are more than one image taken from
different views. Sometimes the cluster is more pronounced
in one view than in another, thus sometimes it is detected
perfectly in one view and lost in the other. We have calculated
the number of true detections relative to the number of clusters
looking at all images independently of the case, and the
number of true detected clusters relative to the total number
of clusters looking at a case (patient) at the time. The latter
means that if a cluster is detected in one view, it is counted
as a success even if it is (possibly) lost in another. The results
from this study is seen in Table I.

TABLE I

RESULTS AFTER VOLUME STUDY 1.

True detections (image based) True detections (case based)
84 % 94 %

Unwanted detections pr. image False detections pr. image
1.1 0.3

A different study, volume study 2, was done on 39 different
cases with a total of 139 images. This is a mixture of
images that contain clusters of μCa (some malignant and some
benign), images of normal breasts, and images that contains
soft tissue lesions. However, detecting soft tissue lesions is
a completely different task and is not included in the system
described in this paper. The results from this study (for clusters

of μCa) is seen in Table II.

TABLE II

RESULTS AFTER VOLUME STUDY 2.

True detect. total (image based) True detect. malign (image based)
95 % 90 %

True detect. malign (case based) Unwanted detect. pr. image
100 % 1.3

C. Comparing with reported results

Many reported detection schemes are not complete CAD
systems. Some of them only focus on the enhancement of
μCa, which often will be one of the first steps in a complete
CAD scheme [9], [8]. Yu and Guan [5] test their system on
a mixture of training data and test data, which make their
results uninteresting. Other reported schemes appears to be
complete systems, but the testing is done on Region Of Interest
(ROI) of the image, i.e. a N × M area around the μCa
cluster, considerable smaller than the entire image [3], [13].
Reporting false positive pr. image is thereby not comparable
to a complete CAD system where whole images are used.
There are a lot of details to take into account when dealing
with complete real world images that can be overlooked when
dealing with carefully selected ROI images. For example the
skin-line area that is often enhanced when calcifications are
enhanced, or the calcifications inside blood vessels that is
a significant problem since it usually leads to many ”false
positives” ( this is actually μCa, but considered false positives
because calcifications inside blood vessels are always benign.
In addition there can be a lot of this in some breasts and the
radiologists would be disturbed by a CAD system that marks
all such calcifications).

Almost all reported tests are conducted on digitized mam-
mograms, originally from film. As the fully digital mammo-
grams are getting more used in hospitals (and is, no doubt,
the future), we wanted to train and test our system on fully
digital images. There are no public database of true digital
mammograms, and we got our data from Stavanger University
Hospital (SUS) in Norway. This makes direct comparison
impossible, but some comparable numbers can be suggested,
and are listed in Table III.

TABLE III

COMPARING WITH REPORTED RESULTS. FOR EL-NAQA, YANG ET. AL. THE

SENSITIVITY IS DEPENDENT ON HOW THEY DEFINE A CLUSTER OF μCA.

FOR R2 THE SENSITIVITY INCLUDES SOFT TISSUE LESIONS AS WELL, AND

IS CALCULATED CASE BASED. A CASE BASED SENSITIVITY NUMBER FOR

CLUSTERED MICROCALCIFICATIONS CAN BE FOUND TO BE 98 %, BUT NO

FALSE DETECTION RATE IS GIVEN RELATIVE TO THIS NUMBER.

Author Sensitivity False detection
pr. image

Horváth, Valyon et. al. [12] > 90 % 2-3
El-Naqa, Yang et. al. [6] 84-94 % approx. 1

Veldkamp and
Karssemeijer [4] 90 % approx. 1

Company Sensitivity (total) False detction
R2 [33] 91 % 1.5 pr. normal case
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VII. DISCUSSION AND CONCLUSION

We have presented a complete system for detection of
clustered μCa in digital mammograms, including: breast de-
tector/bounding box, vessel detector, a novel method for
feature extraction for calcification detection (VarMet), adaptive
thresholding of feature image, classifier level 1 for discarding
everything but calcifications using standard image processing
tecniques, classifier level 2 for discarding single (thus benign)
calcifications and remaining false detections. The classifier
level 2 uses learned dictionaries and sparse representation as a
novel classifier technique for microcalcifications. The scheme,
named MammoScan μCaD, is trained, and tested carefully by
radiologists, on true digital data from clinical examination at
SUS. The lack of a large database of true digital data makes
our test set a bit small, but a couple of different tests are
conducted and reported. The proposed scheme works well
compared with the reported results from different schemes.
Future work is to incorporate a mass detection/classification
part to fulfill the system.
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a) b)

c) d)

Fig. 5. a) Original image in case study, b) Feature image,If2, c) Thresholded
image, Idet, d) After Class. level 1, Idet2
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a) b)

c) d)

Fig. 6. a) Zoomed version of clustered μCa, b) detection 5, c) and d)
detection 6 and 7.
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Fig. 7. Classifier level 2 results for the true detections. First column shows
Iboxf2bm

for the detections indicated by the number on the rows. Second
column shows the corresponding Icb, and last column shows Icb2.
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Fig. 8. Potential classifier level 2 results for the false detections. First column
shows Iboxf2bm

for the detections indicated by the number on the rows.
Second column shows the corresponding Icb, and last column shows Icb2

(if these had been calculated, which they will not be in this case since the
detections are discarded after calculating Iboxf2bm

).


