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Abstract—Due to important issues, such as deadlock, starvation, 

communication, non-deterministic behavior and synchronization, 

concurrent systems are very complex, sensitive, and error-prone. 

Thus ensuring reliability and accuracy of these systems is very 

essential. Therefore, there has been a big interest in the formal 

specification of concurrent programs in recent years.  Nevertheless, 

some features of concurrent systems, such as dynamic process 

creation, scheduling and starvation have not been specified formally 

yet. Also, some other features have been specified partially and/or 

have been described using a combination of several different 

formalisms and methods whose integration needs too much effort. In 

other words, a comprehensive and integrated specification that could 

cover all aspects of concurrent systems has not been provided yet. 

Thus, this paper makes two major contributions: firstly, it provides a 

comprehensive formal framework to specify all well-known features 

of concurrent systems. Secondly, it provides an integrated 

specification of these features by using just a single formal notation, 

i.e., the Z language. 

 

Keywords—Concurrent systems, Formal methods, Formal 

specification, Z language 

I. INTRODUCTION 

N the recent few years, concurrent processing has been 

almost everywhere in the computer world. In a concurrent 

system there exists a set of processes that execute 

concurrently. Also, each process interacts with other processes 

based on known approaches. Also, processes interaction is 

based on competition and/or cooperation. Threads which are 

in fact lightweight processes present a sample of cooperative 

processes existing inside a process. Cooperation of threads 

leads to the increase of concurrency, thereupon multithreading 

concept is a basic context and extremely useful in concurrent 

systems [1], [3]. 

A concurrent system has many possible executions, and its 

behavior is usually not reproducible [2]. Consequently, the 

development of concurrent systems is a complex and error-

prone task. Therefore, it is useful to specify, develop, and 

verify concurrent systems using formal methods. To develop a 

reliable concurrent system, it is significant to deduce 

relationship between properties of the concurrent system 

formally because the application of formal methods to the 

specification of systems is expected to increase the level of 
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confidence in correctness of final programs [5]. In this way, 

formal methods have been long distinguished about the 

requirement to formally examine concurrent systems and 

provide an unambiguous description of these systems [4].  

So far several formal specifications of concurrent systems 

have been presented by various methods and languages (e.g., 

VCD [14], TLZ [18] and Petri Net [21]). However, many 

aspects of concurrent systems, such as dynamic process 

creation, scheduling and starvation, have not been formally 

specified yet. Also, some other features have been specified 

partially and/or have been described using a combination of 

several different formalisms and methods whose integration 

needs too much effort. In other words, a comprehensive and 

integrated specification that could cover all aspects of 

concurrent systems has not been provided yet. 

In this paper, we propose a comprehensive framework in 

order to formally specify all important features of concurrent 

systems, including Dynamic process creation, Multi-

threading, Communication, Scheduling, Mutual exclusion, 

Deadlock, and Starvation using a single notation, i.e., the Z 

language, which provides us with mathematical techniques 

needed for specifying, verifying, and refining specifications 

into code formally. Thus, this paper makes two major 

contributions: firstly, it provides a comprehensive 

specification of concurrent systems covering all of their well-

known features. Secondly, it provides an integrated 

specification of these features using a single formal notation, 

i.e., the Z language. 

The paper is organized as follows: in section 2, we review 

related work. In section 3, a brief survey of formal methods 

and the Z language is presented. In section 4, we present our 

approach to specify concurrent systems. Finally, we conclude 

the paper in section 5.  

II. RELATED WORK 

In this section, we point to some related work. As can be 

seen in Table I, different methods and languages have been so 

far used to specify various features of concurrent systems. 

Also, these works do not cover all major aspects of concurrent 

systems. 

Most of existing approaches of concurrent Z specifications 

have placed emphasis on the use of additional formalisms such 

as temporal logic, TLA and CSP [9]–[12]. Also, in some 

papers the behavioral and coordination aspects of concurrent 

systems are described by combining CCS and Temporal logic 

and/or GCCS [13], [14]. In this paper, we are going to specify 

all important aspects of concurrent systems fully based on the 

Z notation alone. 
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TABLE I 

RELATED WORK TO SPECIFY CONCURRENT SYSTEMS 

Feature 
Specification  

Aspect specified FM Ref. NO 

Communication 

Static communications 

Process communications 

VCD 

 

 
Z 

[14] 

 

 
[15] 

Scheduling Real-Time systems scheduling Z [16] 

Synchronization Dinning philosophers problem 

PZ 

Z 

IP 
STOCS 

[17] 

[18] 

[19] 
[20] 

Deadlock 
Detection / Detection and 

recovery 

PN 

Z+TL 

ESL 

[21] 

[18] 

[22] 

III. OVERVIEW ON THE Z LANGUAGE 

Universally, engineers use mathematically based methods to 

describe systems. Formal method is a technique which 

employs mathematical notation and possesses a sound 

mathematical basis. The application of formal methods to the 

specification of software systems is expected to increase the 

level of confidence in the correctness of final programs [5]. 

Formal methods need a soundly based specification 

language. Many languages exist for formal specification; The 

Z notation, as one of these languages, is an extensive language 

and has been fostered by its many positive aspects. This 

specification language is based upon a well-known set theory, 

namely, Z set theory, and the first order predicate logic. 

Together, they make up a mathematical language that is easy 

to learn and to apply [23].  

    In the Z formal notation, specification constructs (e.g., 

axiomatic definitions and schemas) are used to modularize the 

state and behavior of the system being specified. Among these 

constructs, schema is the most important tool to encapsulate 

specification chunks. The schema construct is used to model 

both system state (as state schema) and behavior (as operation 

schema). A state schema encapsulate (a part of) system state 

variables with their invariants. An operation schema specifies 

a possible functionality or behavior on the system state by 

defining predicates that relate before-state variables (variables 

before application of the operation) and after-state ones. A 

valuation of variables in each schema is called its binding set. 

Most often an Init operation schema is defined on a state 

schema to define a special binding set as the schema initial 

state. Then, each operation schema may map a pre-state to an 

after-state. 

   The Z language has been so far used to describe the dynamic 

and non-deterministic behavior of concurrent systems [5], 

[24]; hence, the capabilities and usefulness of the Z language 

on concurrent systems have been partially proved; we now 

show this formalism could operate successfully to model all 

well-known features of concurrent systems. 

 

IV. FORMAL SPECIFICATION OF CONCURRENT SYSTEMS 

PROPERTIES 

As it has been shown in Table 1, some important aspects of 

concurrent systems, such as starvation, multi-threading and 

dynamic thread creation have not been specified yet. In 

addition, some cases have been specified in a way that is not 

related to the concurrent system exclusively; for example, the 

specification of scheduling has been presented for real-time 

systems not for concurrent systems. 

In this section, we propose our comprehensive framework 

for formal specification of concurrent systems. The first step 

to achieve the above goal is the presentation of informal 

specification. More precisely, we provide useful definitions of 

concurrent system features in part A and then present the 

related formal specification in part B by referring to associated 

definitions in part A.  

A. Principles of concurrent systems  

Presented definitions in this section are derived from the 

features of concurrent systems [1], [2], [5], [15], [20], [21], 

[24], [26]–[30]: 

 

Definition 1: Concurrency 
A concurrent system is a collection of active entities that 

execute at the same time and interact with each other during 

their life cycle. 
 

    According to Definition 1, concurrent systems are 

composed of different components called active entities. The 

innuendo of active entity is process or thread. Each process 

has a unique name and independent address space. The 

process life cycle includes creation, scheduling and 

termination. If at a moment, more than one process is 

working, then we have indeed concurrency. Processes are 

execution units which can act in a concurrent manner if they 

interact with each other in a way that their executions overlap 

in time and/or there exists a combination of interleaving and 

overlapping. 

   A combination of these modes is shown in Fig. 1. In this 

figure, operations of process I and process II interleave in 

Time 1, and two operations I′′ and II′′ overlap in Time 2 

because the second operation of process II (i.e., II′′) is started 

before the second operation of process I (i.e., I′′) is completed.  

 
Fig. 1 Combination of interleaving and overlapping 
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Definition 2: Synchronization 
Concurrency introduces the need for communication between 

executing processes; many resources may be shared between 

processes and threads in a concurrent system. Then the system 

requires a means to synchronize their operations. 

 

   According to Definition 2, in concurrent systems, both 

processes and threads need to synchronize among them in 

order to cooperate effectively when sharing resources or 

exchanging information. Related to this definition, there is the 

concept of critical section, a code segment in a process that 

accesses shared resources; these resources may be also 

accessed by other processes. Only one process must access its 

critical section at a time [26]. A solution to the critical section 

problem is mutual exclusion.  

 

Definition 3: Coordinator  
System resources are maintained and managed by a resource 

manager, called coordinator. 

 

   According to Definition 3, if a process in a concurrent 

system wants to access a resource, it must send a request 

message to the coordinator. A key word in concurrent systems 

is sharing: during execution, a resource, such as processor, 

memory and network, may be shared by various concurrent 

processes. It means that processes will compete for the 

resource. Thus, the shared resource must be protected by 

locking protocols. On the other hand, using the coordinator is 

one of the locking protocols that ensures mutual exclusion 

(refer to Definition 2) for concurrent executions. 

 

Definition 4: Dynamic Thread Creation & Multi Threading 

 Each process, during its execution, can create several threads 

in own address space. 

 

   According to Definition 4, concepts multithreading and 

dynamic thread creation are taken. Threads of a process share 

their parent process address space. Unlike processes, threads 

do not have their own private address space, but share the state 

and global variables of a process together with other threads. 

These aspects have not been yet described formally in the 

literature.  

 

Definition 5: Non-determinism 
A program is non-deterministic if for at least one input, it 

produces more than one output and/or exhibits more than one 

behavior [24]. 
 
   According to Definition 5, concurrent systems inherently 

exhibit non-deterministic behavior [26]. For example, when 

several processes compete for the same resource, non-

deterministic effects appear [5]. In [24] the notion of multi-

schema is defined as a tool for the specifier to specify non-

determinism in Z explicitly. In this paper we use the same 

notation for modeling non-deterministic explicitly. 

 

 

 

 

Definition 6: Communication 
Processes need to communicate by passing data between 

them. Processes can be communicated in two ways: by shared 

variable or message passing. 

  When processes communicate by shared variables, one 

process “writes” into a variable that is “read” by another 

process, and when processes communicate by message 

passing, processes are assumed to share a communication 

network and exchange data in messages via “send” and 

“receive” primitives. Communication by message passing can 

be either synchronous or asynchronous. 

   In synchronous communication, communication happens 

only if the receiving process is waiting for the communication; 

this is termed a rendezvous. In asynchronous point to point 

message communication, a process sends a message to another 

process by placing the message in a location of network 

(Unlike the synchronous communication which uses networks 

as communication media, the asynchronous communication 

saves messages into networks); a location is an empty space in 

the network to hold the message. In an asynchronous 

communication, it is assumed that each network has an 

unlimited amount of location so that any number of messages 

may be placed in the network [15], [26]. 

 

Definition 7: Scheduling 
During the execution of concurrent systems, fairness must be 

guaranteed by applying appropriate scheduling. 

 

   A scheduling policy is fair if it gives every process that is 

not delayed chance to proceed. On a single processor system, 

a scheduling policy is fair if it is unconditionally fair for 

processes that are not delayed, whereas, on a multi processor 

system, a scheduling policy is fair if it is unconditionally fair 

for parallel execution of processes. To specify scheduling in 

multi processor systems, we use Gang scheduling [20, 30] as a 

typical coscheduling approach that is widely used in 

concurrent systems. According to this scheduling strategy, a 

running process does not run forever; it eventually moves to 

the ready status, giving other processes the chance to proceed. 

 

Definition 8: Standstill  
A concurrent system is at the standstill state if no forward 

progress is being made. 

 

   Deadlock and livelock situations create standstill conditions 

for concurrent system [27], [29]. Deadlock is the most 

common problem in concurrent systems, and livelock term 

usually connotes Starvation and Infinite Execution. The 

relationship of these concepts is shown in Fig. 2. 

 

 

 

 

 

 

 
 

 

 

Fig. 2  Standstill and its related concepts 

Standstill 

Deadlock Live lock 

Starvation 
Infinite 

execution 
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   Unlike livelock which may occur for one or more processes, 

deadlock always occurs for more than one process. Thus, in a 

deadlock status, whole of system is impaired while in a 

livelock status, only the current process(es) is (are) impaired. 

Further explanations are given in the next definitions. 

 

Definition 9: Deadlock 
Deadlock is a situation where two or more processes cannot 

proceed, because they are all waiting for another process to 

release some resources. 

 

   According to Definition 9, deadlock may occur when each 

process is waiting for another process to perform an operation. 

In many concurrent systems, the cost of deadlock avoidance is 

often considerable. Thus, these systems ignore the problems of 

deadlock until they enter a deadlock state. On the other hand, 

the occurrence of a deadlock can cripple part of a concurrent 

system [28]. Consequently, in this article we will consider two 

approaches to deadlock [27], [28] namely avoidance and 

detection & recovery approaches. The final decision will be 

taken in the implementation phase. 

 

Definition 10: Starvation 
A process with a non-zero cost may experience starvation. 

 

   Starvation may happen when one or more concurrent 

processes are blocked from gaining access to a resource. 

Consequently, such processes cannot progress [27], [29]. In 

this state the process status is Waiting continuously. 

 

Definition 11: Infinite Execution 
In a concurrent system, a process may execute forever. 

However, this process cannot progress. 

 

   Similar to the starvation status, in this state, the process 

cannot progress, but unlike the starvation status, in the infinite 

execution status, the process status exchanges between two 

statuses Running and Restart frequently.  

B. Formal specification of concurrent systems 

   In this section, we propose a comprehensive and integrated 

framework for formal specification of all well-known features 

of concurrent systems reviewed in the previous subsection 

including dynamic thread creation, communication, 

scheduling, synchronization, deadlock, livelock, infinite 

execution and starvation using the Z language. It is worth 

mentioning that “Z/eves 2.1” has been used to validate the 

finally proposed specification.  We now present our Z 

specification of concurrent systems step by step: 

 
[Address_Space, Message, PTName] 

The type of address spaces, messages and names of processes 

are specified by the above given types in Z. 
 

According to Definition 6: 
Communication_Type:� MessagePassing � SharedVariable 
 

PT ::� Process � Thread 
 

Active entities in concurrent systems are processes and 

threads. 
Type_Re ::� Processor � Memory � Network 
Type_Re indicates type of resources in the system. 
 

DeadLock_Approach ::� DetRec � AVO 
Answer ::� Yes � No 
According to Definition 9, to obtain a comprehensive 

specification, we consider both Deadlock Detection & 

Recovery and Deadlock Avoidance approaches to deal with 

deadlock in this paper. 

Resource is specified as follows:  
��Resource ����������� 
�type: Type_Re 
�Location: seq Message 
���������������� 
�type = Processor � Location = 	
 
�������������������� 

 There is some Location in the network and memory as two 

main resources to hold the messages. 

Identifier type in Resource Schema specifies the type of the 

resource, and identifier Location is specified by a sequence of 

Message. 
Type of process or thread operation is specified as follows: 
Type_OP ::� Update � ReadOnly � Sender � Receiver 
  

Type of process or thread status is specified as follows: 
STATUS ::� Idle 
         � Ready 
         � Running 
         � Finish 
         � Restart 
         � Waiting 
         � Starvation 
         � InfiniteExe 
 

According to Definitions 1 and 4, we use Pr_Th schema for 

Process and Thread specification as follows: 
��Pr_Th���������� 
�Name: PTName 
�pt: PT 
�NR: � Resource 

�EM, IM: � Message 
�address: Address_Space 
�threadsName: � PTName 
�type: Type_OP 
�status: STATUS 
�PreviousStatuses: seq STATUS 
���������������� 
�pt = Thread � threadsName =  
������������������� 

 According to Definition 1, each process or thread has a 

unique Name. Thus, identifier Name indicates the unique 

name of the active entity. Identifier pt specifies the type of the 

active entity (Process or Thread) in the specification. This 

means that if pt is equivalent to Process, then all schema 

identifiers are related to process features; otherwise, all 

identifiers are associated to thread features. 

 NR specifies the set of resources requested by the process 

or thread right now. EM and IM show the set of Export and 

Import messages for each process or thread, respectively. If pt 

is equivalent to Process, then threadsName shows the set of 

names of threads which belong to the process.  

PreviousStatuses specifies the sequence of previous statuses of 

each processes or thread. 
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According to Definition 3:  
��Coordinator����������� 
�Grant: Resource � Pr_Th 
�queue: Resource � � Pr_Th 
������������������� 

 The Coordinator in our Z specification consists of Grant 

and queue functions. According to locking protocols, if a 

resource is free, the coordinator Grants the resource to the 

requester process; otherwise, the process is added to this 

resource queue. 

 Now, we specify the state schema of the system as follows: 
��CS ������������������������� 
�processes: � Pr_Th 

�resources: � Resource 

�coordinator: Coordinator 
�communication: Pr_Th � Pr_Th 

�CT: Communication_Type 
�DA: DeadLock_Approach 
�DL_chance, DL_sure: Answer 
���������������� 
��p: processes � p . NR � resources 
��p, q: processes 
�   � q . address = p . address 
�     � p = q � p . Name � q . threadsName � q . Name � p . 

threadsName 
��p, q: processes � p � q � p . Name � q . Name 
�CT = SharedVariable 
�� ��r: resources � r . type = Memory� 
�  � ��p, q: Pr_Th � �p� q� � communication 

�        � �p . type = Update � q . type = ReadOnly�� 
�CT = MessagePassing 
�� ��r: resources � r . type = Network� 
�  � ��p, q: Pr_Th � �p� q� � communication 

�        � �p . type = Sender � q . type = Receiver�� 
��r: Resource � r � dom coordinator . queue 

�   � �p: Pr_Th � p � coordinator . queue r � p . status = Waiting 
�DA = DetRec � DL_sure � �Yes� No� 
�DA = AVO � DL_sure = No 
�DL_chance = No � DL_sure = No 
�DL_chance = Yes � DL_sure � �Yes� No� 
�dom coordinator . Grant � resources 
�dom coordinator . queue � resources 
�ran coordinator . Grant � processes 
��p: � Pr_Th � p � ran coordinator . queue � p � processes 
�dom communication � processes 
�ran communication � processes 
������������������������ 

 Identifier Processes indicates the set of active entities 

including processes and threads which exist in the concurrent 

system, and identifier resources denotes the set of active 

resources. Communication relationship shows the relevance 

between each active entity with other active entities. 

DL_chance indicates deadlock possibility among a subset of 

processes while DL_sure determines a deterministic 

occurrence of deadlock among a subset of processes; we will 

refer to these identifiers again.  

  Now we write the initialization schema and all operation 

schemas of the concurrent system in turn: 
��CSInit ����������� 
�CS' 
���������������� 
�processes' =  

�resources' =  

�coordinator' . Grant =  
�coordinator' . queue =  

�communication' =  

�DL_chance' = No 
�DL_sure' = No 
�������������������� 

 

Operation schemas are presented below: 
��Create ����������� 
�∆CS 

�p?: Pr_Th 
���������������� 
�p? � processes 
�p? . pt = Process 
�p? . NR � resources 
�p? . EM � Message 
�p? . IM =  

�p? . status = Idle 
�p? . PreviousStatuses = 	
 
�processes' = processes � �p?� 
���������������� 

 Create is an operation schema for creating a process in the 

system. In this schema, the input process (p?) will be created 

and added to the set of system processes. 

 
��DTC�������������������� 
�∆CS 

�p?: Pr_Th 
�new_t?: � PTName 

�new_tn!: � PTName 

�new_create!: � Pr_Th 
���������������� 
�p? . status = Running 
�p? � processes 

��1t_set: � Pr_Th 
�    � # new_t? = # t_set 
�      � ��t: t_set 
�            � �t . Name � new_t? 
�               � t . pt = Thread 
�               � t . address = p? . address 
�               � t . status = Idle 
�               � t � processes�� 
�      � new_create! = t_set 
�new_tn! = ��p: processes � p = p? � p . threadsName � new_t?� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th � p . threadsName = new_tn! � p . Name = p? . 
Name � 
�    � new_create! 
������������������������ 

 DTC specifies dynamic thread creation based on Definition 

4. Each process can create one or more thread during its 

running; according to this schema, a set of threads (new_t?) 

will be added to the current threads of the input process (p?). 

 
��Terminate�������������� 
�∆CS 

�p!: &Pr_Th 
���������������� 
��p: processes � p � processes � p . status = Finish � p! = p 
�coordinator' . Grant = coordinator . Grant   �p!� 
�processes' = processes \ �p!� 
������������������������ 

 

 Terminate specifies finishing a process in a normal 

condition. According to definition 5, non-deterministic effects 

appear in this part of specification since more than one process 

may have the finish status. Thus, we use the notion of multi-

schema (when declaring p! by “&”) according to the notation 

given in [24]. 

 
��release������������������ 
�∆CS 
�p?: Pr_Th 
�r!: � Resource 
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�new_nr!: � Resource 

�new_tn!: � PTName 
���������������� 
�p? � processes 

�p? . status = Restart 
�r! = coordinator . Grant ~ ! �p?� " 
�coordinator' . Grant = coordinator . Grant   �p?� 
�new_nr! = ��p: processes � p = p? � p . NR � r!� 
�new_tn! 
�  = ��p: processes � p = p? � p . pt = Process 
�        � p . threadsName \ p? . threadsName� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th 
�          � p . NR = new_nr! 
�            � p . threadsName = new_tn! 
�            � p . Name = p? . Name � 
�����������������������������
�� 

 Release specifies abandonment of all the granted resources 

to a specific process or thread. 

 
��ReleaseOneResource ������������� 
�∆CS 
�p?: Pr_Th 
�r?: Resource 
���������������� 
�p? . status = Running 
��r?� p?� � coordinator . Grant 

�coordinator' . Grant = coordinator . Grant \ ��r?� p?�� 
���������������������������� 

 If a process or thread does not need its current resource,   then 

releases it. 

 
��ND_Req ������������������ 
�∆CS 
�r?: Resource 
�p!:& Pr_Th 
���������������� 
�p! � coordinator . queue r? 
�r? � resources \ dom coordinator . Grant 

�coordinator' . Grant = coordinator . Grant � ��r?� p!�� 
�coordinator' . queue r? = coordinator . queue r? \ �p!� 
����������������������� 

 When several processes compete for the same resource, non-

deterministic effects appear since there may exist more than 

one process which can acquire a specific resource at the same 

time. Thus, the notion of multi-schema is used for specifying 

ND-Req.  

 
��Assign_Resource������������� 
�ND_Req 
�new_nr!: � Resource 
���������������� 
�new_nr! = ��p: processes � p = p! � p . NR \ �r?�� 
�processes' 
�  = � p: processes � p � p! � 
�    � � p: Pr_Th � p . NR = new_nr! � p . Name = p! . Name � 
����������������������� 

 Assign_Resource includes the schema “ND-Req” above to 

complete the specification of resource allocation to a process 

existing in the resource queue. 

SinScheduling and CoScheduling below are scheduling 

schemas for single-processor systems and multi-processor 

systems, respectively: 

 
��SinScheduling������������������ 
�ND_Req 
���������������� 
�r? . type = Processor 

�p! . status = Ready 
�processes' 
�  = � p: processes � p � p! � 
�    � � p: Pr_Th 
�          � p . Name = p! . Name 
�            � p . pt = p! . pt 
�            � p . NR = p! . NR \ �r?� 
�            � p . EM = p! . EM 
�            � p . IM = p! . IM 
�            � p . address = p! . address 
�            � p . threadsName = p! . threadsName 
�            � p . type = p! . type 
�            � p . status = Running 
�            � p . PreviousStatuses = p! . PreviousStatuses # 	Ready
 � 
������������������������           

 According to Definition 7, fairness will be guaranteed by a 

suitable scheduler in the implementation phase, not in the 

specification stage. 

 
��CoScheduling ��������������������� 
�∆CS 

�p?: Pr_Th 
�r_set?: � Resource 
���������������� 
�p? � processes 

�p? . status = Ready 
��r: resources � r � r_set? � r . type = Processor 
�r_set? � resources \ dom coordinator . Grant 

�# p? . threadsName = # r_set? 
��r: Resource � r � r_set? 
�   � coordinator' . Grant = coordinator . Grant � ��r� p?�� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th 
�          � p . Name = p? . Name 
�            � p . pt = p? . pt 
�            � p . NR = p? . NR \ r_set? 
�            � p . EM = p? . EM 
�            � p . IM = p? . IM 
�            � p . address = p? . address 
�            � p . threadsName = p? . threadsName 
�            � p . type = p? . type 
�            � p . status = Running 
�            � p . PreviousStatuses = p? . PreviousStatuses # 	Ready
 � 
����������������������������  

 According to Definition 7, in CoScheduling schema, 

dependent processes are gangs scheduled to run 

simultaneously on distinct processors. Gangs are scheduled to 

run at the same time. Each process consists of a number of 

interacting threads. 

 
��SLS����������������������� 
�∆CS 

�r?: Resource 
�hun_p!: Pr_Th 
���������������� 
��p: processes � p � coordinator . queue r? 

�   � p . PreviousStatuses � 	
 
�     � # p . PreviousStatuses $ 1 

�     � ��i: 1 .. # p . PreviousStatuses � p . PreviousStatuses i = 
Waiting� 
�     � hun_p! = p 
�processes' 
�  = � p: processes � p � hun_p! � 
�    � � p: Pr_Th 
�          � p . Name = hun_p! . Name 
�            � p . pt = hun_p! . pt 
�            � p . NR = hun_p! . NR 
�            � p . EM = hun_p! . EM 
�            � p . IM = hun_p! . IM 
�            � p . address = hun_p! . address 
�            � p . threadsName = hun_p! . threadsName 
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�            � p . type = hun_p! . type 
�            � p . status = Starvation 
�            � p . PreviousStatuses = hun_p! . PreviousStatuses # 

	Waiting
 � 
����������������������������� 

 According to Definition 8 and Fig.2, SLS schema specifies 

Standstill-Livelock-Starvation state. According to Definition 

10, if all previous statuses of a process are Waiting, then the 

process status is starvation. 

 
��SLI����������������������� 
�∆CS 

�p?: Pr_Th 
�shift_amount?, length!: % 
���������������� 
�p? � processes 

�p? . status = Restart 
�p? . PreviousStatuses � 	
 
�length! = # p? . PreviousStatuses 
�1 & shift_amount? & length! - 1 

�length! - shift_amount? + 1 mod 2 = 0 
�p? . PreviousStatuses shift_amount? = Running 
�� p? . PreviousStatuses length! = Restart 
��i: 1 .. length! 
�   � 2 * i - 2 + shift_amount? & length! - 1 

�     � p? . PreviousStatuses �2 * i - 2 + shift_amount?� = Running 
�     � 2 * i - 1 + shift_amount? & length! 
�     � p? . PreviousStatuses �2 * i - 1 + shift_amount?� = Restart 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th 
�          � p . Name = p? . Name 
�            � p . pt = p? . pt 
�            � p . NR = p? . NR 
�            � p . EM = p? . EM 
�            � p . IM = p? . IM 
�            � p . address = p? . address 
�            � p . threadsName = p? . threadsName 
�            � p . type = p? . type 
�            � p . status = InfiniteExe 
�            � p . PreviousStatuses = p? . PreviousStatuses # 	Restart
 � 
������������������������ 
 

 According to Definition 8 and Fig.2, SLI schema specifies 

Standstill-Livelock-Infinite execution. Now according to 

Definition 8, livelock situation is specified as follows: 

 
��LiveLock �������������� 
�SLS 
�SLI 
������������������������ 

 
��CircularCondition����������� 
�∆CS 
�p?: Pr_Th 
�r?: Resource 
�len_set!: % 
���������������� 
�r? � resources 

��p_set: seq processes 

�   � len_set! = # p_set 
�     � p? = p_set len_set! 
�     � ��i: 1 .. len_set! - 1 

�           � ��r: resources � r � r? 
�                 � ��r� p_set �i + 1�� � coordinator . Grant 

�                    � �r� �p_set i�� � coordinator . queue��� 
�     � �r?� p_set 1� � coordinator . Grant 
�     � r? � p? . NR 

�DL_chance' = Yes 
������������������������ 

  

CircularCondition checks deadlock possibility in a subset 

of processes. The output of this schema is either Yes or No. 

 

 
��Synchronization�������������������������
� 
�CircularCondition 
���������������� 
�p? � processes 

�p? . status � �Finish� Waiting� Restart� 
�r? � p? . NR 

�r? � resources \ dom coordinator . Grant 

�� coordinator' . Grant = coordinator . Grant � ��r?� p?�� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th 
�          � p . Name = p? . Name 
�            � p . pt = p? . pt 
�            � p . NR = p? . NR \ �r?� 
�            � p . EM = p? . EM 
�            � p . IM = p? . IM 
�            � p . address = p? . address 
�            � p . threadsName = p? . threadsName 
�            � p . type = p? . type 
�            � p . status � �Ready� Running� 
�            � p . PreviousStatuses = p? . PreviousStatuses # 	p? . status
 � 
�r? � dom coordinator . Grant 

�� DA = DetRec � DL_chance � �Yes� No� � DA = AVO � DL_chance = No 
�  � coordinator' . queue r? = coordinator . queue r? � �p?� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th 
�          � p . Name = p? . Name 
�            � p . pt = p? . pt 
�            � p . NR = p? . NR 
�            � p . EM = p? . EM 
�            � p . IM = p? . IM 
�            � p . address = p? . address 
�            � p . threadsName = p? . threadsName 
�            � p . type = p? . type 
�            � p . status = Waiting 
�            � p . PreviousStatuses = p? . PreviousStatuses # 	p? . status
 � 
�DA = DetRec � DL_chance = Yes � DL_sure' = Yes 
�DA = AVO � DL_chance = Yes � coordinator' . queue r? = coordinator . queue r? 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th 
�          � p . Name = p? . Name 
�            � p . pt = p? . pt 
�            � p . NR = p? . NR 
�            � p . EM = p? . EM 
�            � p . IM = p? . IM 
�            � p . address = p? . address 
�            � p . threadsName = p? . threadsName 
�            � p . type = p? . type 
�            � p . status = Restart 
�            � p . PreviousStatuses = p? . PreviousStatuses # 	p? . status
 � 
����������������������������������
� 

  According to Definition 2, processes and threads need to 

be synchronized. In Synchronization schema, synchronization 

is done based on two types of deadlock approaches.  
 
 
��DeadLock_Recovery�������������������
�� 
�Synchronization 
�p_loop?: � Pr_Th 

�p!:& Pr_Th 
���������������� 
�DA = DetRec 
�DL_sure = Yes 
��p: Pr_Th � p � p_loop? � p . status = Waiting 
�p! � p_loop? 

�processes' 
�  = � p: processes � p � p! � 
�    � � p: Pr_Th 
�          � p . Name = p! . Name 
�            � p . pt = p! . pt 
�            � p . NR = p! . NR 
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�            � p . EM = p! . EM 
�            � p . IM = p! . IM 
�            � p . address = p! . address 
�            � p . threadsName = p! . threadsName 
�            � p . type = p! . type 
�            � p . status = Restart 
�            � p . PreviousStatuses = p? . PreviousStatuses # 	Waiting
 � 
�DL_sure' = No 
������������������������ 

 

If deadlock approach is detection & recovery, then it is 

resolved by killing a process or thread existing in the detected 

cycle randomly; hence, we used the notion of multi-schema 

when specifying DeadLock_Recovery. 

 
 

��Asynchronous_Communication ���������� 
�∆CS 

�p?: Pr_Th 
�r?: Resource 
�new_M!: � Message 
���������������� 
�CT = MessagePassing 
�r? . type = Network 
��r?� p?� � coordinator . Grant 
�����������������������������
� 

 According to Definition 6, in the asynchronous message 

passing, a message can be placed on a location of the network, 

provided there is some empty space in the network to hold the 

message; it is assumed that each network has an unlimited 

amount of space. Operation schemas As_Send_Me and 

As_Receive_Me below specify sending and receiving 

messages operations, respectively. 

 
��As_Send_Me �������������� 
�Asynchronous_Communication 
�m?: Message 
���������������� 
��q: processes � �p?� q� � communication 
�m? � p? . EM 

��r?� p?� � coordinator . Grant 
�new_M! = ��p: processes � p = p? � p . EM \ �m?�� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th � p . EM = new_M! � p . Name = p? . Name � 
�resources' 
�  = � r: resources � r � r? � 
�    � � r: Resource 
�          � r . type = r? . type � r . Location = r? . Location # 	m?
 � 
�����������������������������
���� 
��As_Receive_Me������������ 
�Asynchronous_Communication 
�m!: Message 
���������������� 
��q: processes � �q� p?� � communication 
�r? . Location � 	
 
�m! = head r? . Location 
�new_M! = ��p: processes � p = p? � p . IM � �m!�� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th � p . IM = new_M! � p . Name = p? . Name � 
�resources' 
�  = � r: resources � r � r? � 
�    � � r: Resource 
�          � r . type = r? . type � r . Location = tail r? . Location � 
������������������������ 
��Synchronous_SeAndRe��������� 
�∆CS 
�p?, q?: Pr_Th 
�m?: Message 

�new_pm!, new_qm!: � Message 
���������������� 
�CT = MessagePassing 
��p?� q?� � communication 

�m? � p? . EM 

�new_pm! = ��p: processes � p = p? � p . EM \ �m?�� 
�new_qm! = ��q: processes � q = q? � q . IM � �m?�� 
�processes' 
�  = � p: processes � p � p? � p � q? � 
�    � � p: Pr_Th � p . EM = new_pm! � p . Name = p? . Name � 
�    � � q: processes � q . IM = new_qm! � q . Name = q? . Name � 
�����������������������������
���� 

 Synchronous_SeAndRe schema specifies synchronous 

message passing. According to Definition 6, in the 

synchronous message passing, the sender process delays until 

the receiving process is ready to receive the message. 

Messages do not have to be saved in a location of the network. 

 

 Communication via shared variables is specified as follows:  
��SharedMemory_Communication �� 
�∆CS 

�p?: Pr_Th 
�r?: Resource 
�new_M!: � Message 

�new_r!: Resource 
���������������� 
�CT = SharedVariable 
�r? . type = Memory 
��r?� p?� � coordinator . Grant 
���������������������� 
��Write_Message���������������������
� 
�SharedMemory_Communication 
�m?: Message 
���������������� 
��q: processes � �p?� q� � communication 

�m? � p? . EM 

�new_M! = ��p: processes � p = p? � p . EM \ �m?�� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th � p . EM = new_M! � p . Name = p? . Name � 
�resources' 
�  = � r: resources � r � r? � 
�    � � r: Resource 
�          � r . type = r? . type � r . Location = r? . Location # 	m?
 � 
�����������������������������
���� 
��Read_Message ������������� 
�SharedMemory_Communication 
�m!: Message 
���������������� 
��q: processes � �q� p?� � communication 
�r? . Location � 	
 
�m! = head r? . Location 
�new_M! = ��p: processes � p = p? � p . IM � �m!�� 
�processes' 
�  = � p: processes � p � p? � 
�    � � p: Pr_Th � p . IM = new_M! � p . Name = p? . Name � 
�resources' 
�  = � r: resources � r � r? � 
�    � � r: Resource 
�          � r . type = r? . type � r . Location = tail r? . Location � 
������������������������ 

  

According to Definition 6, in shared memory systems, 

processes/threads communicate together using two operations 

write and read on shared variables; these operations are similar 

to send and receive in the asynchronous communication. 
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V. CONCLUSION AND FUTURE WORK 

 In this paper, at first the well-known aspects of concurrent 

systems including dynamic thread creation, communication, 

scheduling, synchronization, deadlock, livelock, infinite 

execution and starvation were reviewed informally. Then, a 

comprehensive and integrated framework for formal 

specification of these aspects was provided using the Z formal 

specification language. The final specification has been 

validated using a well-known Z type checker, i.e., Z/eves 2.1. 

In summary, we can assert that this paper benefits from the 

following advances in comparison to related work in the 

literature: 

1. This work covers all well-known aspects of 

concurrent systems whereas some features of these 

systems, such as dynamic process creation, 

scheduling, and starvation, have not been specified 

formally yet. 

2.   Some other features of concurrent systems have 

been so far specified partially and/or have been 

described using a combination of several different 

formalisms and methods whose integration needs too 

much effort; see a detailed description in section 2; 

however, the formal specification proposed in this 

paper is fully based on a single formal specification 

language, i.e., the Z notation. 

3. Unlike many other approaches in the literature, the 

work of this paper brings non-determinism into the 

specification explicitly. As it can be found in the 

previous section, we used the notion of multi-schema 

whenever we had to specify non-deterministic 

behavior. According to the discussion given in [5], 

such a specification leads to a program which 

preserves all allowable behaviors of the specified 

concurrent system.  

One of the most important aims of specifying applications 

formally is to develop programs from formal specifications. 

We have chosen Z since it has an interpretation in Martin-

Löf’s theory of types [31]. Therefore, as a future work, we are 

going to use this interpretation in order to translate our Z 

specification of a concurrent program into its counterpart in 

Martin-Löf’s theory of types and then drive a functional 

program from a correctness proof of the resulting type 

theoretical specification. In this way, we can provide a 

completely formal way to specify and develop concurrent 

systems. 
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