
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1279

Abstract—Due to important issues, such as deadlock, starvation,

communication, non-deterministic behavior and synchronization,

concurrent systems are very complex, sensitive, and error-prone.

Thus ensuring reliability and accuracy of these systems is very

essential. Therefore, there has been a big interest in the formal

specification of concurrent programs in recent years. Nevertheless,

some features of concurrent systems, such as dynamic process

creation, scheduling and starvation have not been specified formally

yet. Also, some other features have been specified partially and/or

have been described using a combination of several different

formalisms and methods whose integration needs too much effort. In

other words, a comprehensive and integrated specification that could

cover all aspects of concurrent systems has not been provided yet.

Thus, this paper makes two major contributions: firstly, it provides a

comprehensive formal framework to specify all well-known features

of concurrent systems. Secondly, it provides an integrated

specification of these features by using just a single formal notation,

i.e., the Z language.

Keywords—Concurrent systems, Formal methods, Formal

specification, Z language

I. INTRODUCTION

N the recent few years, concurrent processing has been

almost everywhere in the computer world. In a concurrent

system there exists a set of processes that execute

concurrently. Also, each process interacts with other processes

based on known approaches. Also, processes interaction is

based on competition and/or cooperation. Threads which are

in fact lightweight processes present a sample of cooperative

processes existing inside a process. Cooperation of threads

leads to the increase of concurrency, thereupon multithreading

concept is a basic context and extremely useful in concurrent

systems [1], [3].

A concurrent system has many possible executions, and its

behavior is usually not reproducible [2]. Consequently, the

development of concurrent systems is a complex and error-

prone task. Therefore, it is useful to specify, develop, and

verify concurrent systems using formal methods. To develop a

reliable concurrent system, it is significant to deduce

relationship between properties of the concurrent system

formally because the application of formal methods to the

specification of systems is expected to increase the level of

S. Sh. Faculty of Electrical, Computer and IT Engineering, Islamic Azad

University, Qazvin, Iran (phone: 98131-723-1623; fax: 98131-722-6924; e-
mail: S.sharifirad@qiau.ac.ir).

H. H. Faculty of Electrical and Computer Engineering, Shahid Beheshti

University, Tehran, Iran (e-mail: h_haghighi@sbu. ac.ir).

confidence in correctness of final programs [5]. In this way,

formal methods have been long distinguished about the

requirement to formally examine concurrent systems and

provide an unambiguous description of these systems [4].

So far several formal specifications of concurrent systems

have been presented by various methods and languages (e.g.,

VCD [14], TLZ [18] and Petri Net [21]). However, many

aspects of concurrent systems, such as dynamic process

creation, scheduling and starvation, have not been formally

specified yet. Also, some other features have been specified

partially and/or have been described using a combination of

several different formalisms and methods whose integration

needs too much effort. In other words, a comprehensive and

integrated specification that could cover all aspects of

concurrent systems has not been provided yet.

In this paper, we propose a comprehensive framework in

order to formally specify all important features of concurrent

systems, including Dynamic process creation, Multi-

threading, Communication, Scheduling, Mutual exclusion,

Deadlock, and Starvation using a single notation, i.e., the Z

language, which provides us with mathematical techniques

needed for specifying, verifying, and refining specifications

into code formally. Thus, this paper makes two major

contributions: firstly, it provides a comprehensive

specification of concurrent systems covering all of their well-

known features. Secondly, it provides an integrated

specification of these features using a single formal notation,

i.e., the Z language.

The paper is organized as follows: in section 2, we review

related work. In section 3, a brief survey of formal methods

and the Z language is presented. In section 4, we present our

approach to specify concurrent systems. Finally, we conclude

the paper in section 5.

II. RELATED WORK

In this section, we point to some related work. As can be

seen in Table I, different methods and languages have been so

far used to specify various features of concurrent systems.

Also, these works do not cover all major aspects of concurrent

systems.

Most of existing approaches of concurrent Z specifications

have placed emphasis on the use of additional formalisms such

as temporal logic, TLA and CSP [9]–[12]. Also, in some

papers the behavioral and coordination aspects of concurrent

systems are described by combining CCS and Temporal logic

and/or GCCS [13], [14]. In this paper, we are going to specify

all important aspects of concurrent systems fully based on the

Z notation alone.

Sara Sharifi Rad, Hassan Haghighi

A Comprehensive and Integrated Framework

for Formal Specification of Concurrent Systems

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1280

TABLE I

RELATED WORK TO SPECIFY CONCURRENT SYSTEMS

Feature
Specification

Aspect specified FM Ref. NO

Communication

Static communications

Process communications

VCD

Z

[14]

[15]

Scheduling Real-Time systems scheduling Z [16]

Synchronization Dinning philosophers problem

PZ

Z

IP
STOCS

[17]

[18]

[19]
[20]

Deadlock
Detection / Detection and

recovery

PN

Z+TL

ESL

[21]

[18]

[22]

III. OVERVIEW ON THE Z LANGUAGE

Universally, engineers use mathematically based methods to

describe systems. Formal method is a technique which

employs mathematical notation and possesses a sound

mathematical basis. The application of formal methods to the

specification of software systems is expected to increase the

level of confidence in the correctness of final programs [5].

Formal methods need a soundly based specification

language. Many languages exist for formal specification; The

Z notation, as one of these languages, is an extensive language

and has been fostered by its many positive aspects. This

specification language is based upon a well-known set theory,

namely, Z set theory, and the first order predicate logic.

Together, they make up a mathematical language that is easy

to learn and to apply [23].

 In the Z formal notation, specification constructs (e.g.,

axiomatic definitions and schemas) are used to modularize the

state and behavior of the system being specified. Among these

constructs, schema is the most important tool to encapsulate

specification chunks. The schema construct is used to model

both system state (as state schema) and behavior (as operation

schema). A state schema encapsulate (a part of) system state

variables with their invariants. An operation schema specifies

a possible functionality or behavior on the system state by

defining predicates that relate before-state variables (variables

before application of the operation) and after-state ones. A

valuation of variables in each schema is called its binding set.

Most often an Init operation schema is defined on a state

schema to define a special binding set as the schema initial

state. Then, each operation schema may map a pre-state to an

after-state.

 The Z language has been so far used to describe the dynamic

and non-deterministic behavior of concurrent systems [5],

[24]; hence, the capabilities and usefulness of the Z language

on concurrent systems have been partially proved; we now

show this formalism could operate successfully to model all

well-known features of concurrent systems.

IV. FORMAL SPECIFICATION OF CONCURRENT SYSTEMS

PROPERTIES

As it has been shown in Table 1, some important aspects of

concurrent systems, such as starvation, multi-threading and

dynamic thread creation have not been specified yet. In

addition, some cases have been specified in a way that is not

related to the concurrent system exclusively; for example, the

specification of scheduling has been presented for real-time

systems not for concurrent systems.

In this section, we propose our comprehensive framework

for formal specification of concurrent systems. The first step

to achieve the above goal is the presentation of informal

specification. More precisely, we provide useful definitions of

concurrent system features in part A and then present the

related formal specification in part B by referring to associated

definitions in part A.

A. Principles of concurrent systems

Presented definitions in this section are derived from the

features of concurrent systems [1], [2], [5], [15], [20], [21],

[24], [26]–[30]:

Definition 1: Concurrency
A concurrent system is a collection of active entities that

execute at the same time and interact with each other during

their life cycle.

 According to Definition 1, concurrent systems are

composed of different components called active entities. The

innuendo of active entity is process or thread. Each process

has a unique name and independent address space. The

process life cycle includes creation, scheduling and

termination. If at a moment, more than one process is

working, then we have indeed concurrency. Processes are

execution units which can act in a concurrent manner if they

interact with each other in a way that their executions overlap

in time and/or there exists a combination of interleaving and

overlapping.

 A combination of these modes is shown in Fig. 1. In this

figure, operations of process I and process II interleave in

Time 1, and two operations I′′ and II′′ overlap in Time 2

because the second operation of process II (i.e., II′′) is started

before the second operation of process I (i.e., I′′) is completed.

Fig. 1 Combination of interleaving and overlapping

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1281

Definition 2: Synchronization
Concurrency introduces the need for communication between

executing processes; many resources may be shared between

processes and threads in a concurrent system. Then the system

requires a means to synchronize their operations.

 According to Definition 2, in concurrent systems, both

processes and threads need to synchronize among them in

order to cooperate effectively when sharing resources or

exchanging information. Related to this definition, there is the

concept of critical section, a code segment in a process that

accesses shared resources; these resources may be also

accessed by other processes. Only one process must access its

critical section at a time [26]. A solution to the critical section

problem is mutual exclusion.

Definition 3: Coordinator
System resources are maintained and managed by a resource

manager, called coordinator.

 According to Definition 3, if a process in a concurrent

system wants to access a resource, it must send a request

message to the coordinator. A key word in concurrent systems

is sharing: during execution, a resource, such as processor,

memory and network, may be shared by various concurrent

processes. It means that processes will compete for the

resource. Thus, the shared resource must be protected by

locking protocols. On the other hand, using the coordinator is

one of the locking protocols that ensures mutual exclusion

(refer to Definition 2) for concurrent executions.

Definition 4: Dynamic Thread Creation & Multi Threading

 Each process, during its execution, can create several threads

in own address space.

 According to Definition 4, concepts multithreading and

dynamic thread creation are taken. Threads of a process share

their parent process address space. Unlike processes, threads

do not have their own private address space, but share the state

and global variables of a process together with other threads.

These aspects have not been yet described formally in the

literature.

Definition 5: Non-determinism
A program is non-deterministic if for at least one input, it

produces more than one output and/or exhibits more than one

behavior [24].

 According to Definition 5, concurrent systems inherently

exhibit non-deterministic behavior [26]. For example, when

several processes compete for the same resource, non-

deterministic effects appear [5]. In [24] the notion of multi-

schema is defined as a tool for the specifier to specify non-

determinism in Z explicitly. In this paper we use the same

notation for modeling non-deterministic explicitly.

Definition 6: Communication
Processes need to communicate by passing data between

them. Processes can be communicated in two ways: by shared

variable or message passing.

 When processes communicate by shared variables, one

process “writes” into a variable that is “read” by another

process, and when processes communicate by message

passing, processes are assumed to share a communication

network and exchange data in messages via “send” and

“receive” primitives. Communication by message passing can

be either synchronous or asynchronous.

 In synchronous communication, communication happens

only if the receiving process is waiting for the communication;

this is termed a rendezvous. In asynchronous point to point

message communication, a process sends a message to another

process by placing the message in a location of network

(Unlike the synchronous communication which uses networks

as communication media, the asynchronous communication

saves messages into networks); a location is an empty space in

the network to hold the message. In an asynchronous

communication, it is assumed that each network has an

unlimited amount of location so that any number of messages

may be placed in the network [15], [26].

Definition 7: Scheduling
During the execution of concurrent systems, fairness must be

guaranteed by applying appropriate scheduling.

 A scheduling policy is fair if it gives every process that is

not delayed chance to proceed. On a single processor system,

a scheduling policy is fair if it is unconditionally fair for

processes that are not delayed, whereas, on a multi processor

system, a scheduling policy is fair if it is unconditionally fair

for parallel execution of processes. To specify scheduling in

multi processor systems, we use Gang scheduling [20, 30] as a

typical coscheduling approach that is widely used in

concurrent systems. According to this scheduling strategy, a

running process does not run forever; it eventually moves to

the ready status, giving other processes the chance to proceed.

Definition 8: Standstill
A concurrent system is at the standstill state if no forward

progress is being made.

 Deadlock and livelock situations create standstill conditions

for concurrent system [27], [29]. Deadlock is the most

common problem in concurrent systems, and livelock term

usually connotes Starvation and Infinite Execution. The

relationship of these concepts is shown in Fig. 2.

Fig. 2 Standstill and its related concepts

Standstill

Deadlock Live lock

Starvation
Infinite

execution

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1282

 Unlike livelock which may occur for one or more processes,

deadlock always occurs for more than one process. Thus, in a

deadlock status, whole of system is impaired while in a

livelock status, only the current process(es) is (are) impaired.

Further explanations are given in the next definitions.

Definition 9: Deadlock
Deadlock is a situation where two or more processes cannot

proceed, because they are all waiting for another process to

release some resources.

 According to Definition 9, deadlock may occur when each

process is waiting for another process to perform an operation.

In many concurrent systems, the cost of deadlock avoidance is

often considerable. Thus, these systems ignore the problems of

deadlock until they enter a deadlock state. On the other hand,

the occurrence of a deadlock can cripple part of a concurrent

system [28]. Consequently, in this article we will consider two

approaches to deadlock [27], [28] namely avoidance and

detection & recovery approaches. The final decision will be

taken in the implementation phase.

Definition 10: Starvation
A process with a non-zero cost may experience starvation.

 Starvation may happen when one or more concurrent

processes are blocked from gaining access to a resource.

Consequently, such processes cannot progress [27], [29]. In

this state the process status is Waiting continuously.

Definition 11: Infinite Execution
In a concurrent system, a process may execute forever.

However, this process cannot progress.

 Similar to the starvation status, in this state, the process

cannot progress, but unlike the starvation status, in the infinite

execution status, the process status exchanges between two

statuses Running and Restart frequently.

B. Formal specification of concurrent systems

 In this section, we propose a comprehensive and integrated

framework for formal specification of all well-known features

of concurrent systems reviewed in the previous subsection

including dynamic thread creation, communication,

scheduling, synchronization, deadlock, livelock, infinite

execution and starvation using the Z language. It is worth

mentioning that “Z/eves 2.1” has been used to validate the

finally proposed specification. We now present our Z

specification of concurrent systems step by step:

[Address_Space, Message, PTName]

The type of address spaces, messages and names of processes

are specified by the above given types in Z.

According to Definition 6:
Communication_Type:� MessagePassing � SharedVariable

PT ::� Process � Thread

Active entities in concurrent systems are processes and

threads.
Type_Re ::� Processor � Memory � Network
Type_Re indicates type of resources in the system.

DeadLock_Approach ::� DetRec � AVO
Answer ::� Yes � No
According to Definition 9, to obtain a comprehensive

specification, we consider both Deadlock Detection &

Recovery and Deadlock Avoidance approaches to deal with

deadlock in this paper.

Resource is specified as follows:
��Resource �����������
�type: Type_Re
�Location: seq Message
����������������
�type = Processor � Location = 	

��������������������

 There is some Location in the network and memory as two

main resources to hold the messages.

Identifier type in Resource Schema specifies the type of the

resource, and identifier Location is specified by a sequence of

Message.
Type of process or thread operation is specified as follows:
Type_OP ::� Update � ReadOnly � Sender � Receiver

Type of process or thread status is specified as follows:
STATUS ::� Idle
 � Ready
 � Running
 � Finish
 � Restart
 � Waiting
 � Starvation
 � InfiniteExe

According to Definitions 1 and 4, we use Pr_Th schema for

Process and Thread specification as follows:
��Pr_Th����������
�Name: PTName
�pt: PT
�NR: � Resource

�EM, IM: � Message
�address: Address_Space
�threadsName: � PTName
�type: Type_OP
�status: STATUS
�PreviousStatuses: seq STATUS
����������������
�pt = Thread � threadsName =
�������������������

 According to Definition 1, each process or thread has a

unique Name. Thus, identifier Name indicates the unique

name of the active entity. Identifier pt specifies the type of the

active entity (Process or Thread) in the specification. This

means that if pt is equivalent to Process, then all schema

identifiers are related to process features; otherwise, all

identifiers are associated to thread features.

 NR specifies the set of resources requested by the process

or thread right now. EM and IM show the set of Export and

Import messages for each process or thread, respectively. If pt

is equivalent to Process, then threadsName shows the set of

names of threads which belong to the process.

PreviousStatuses specifies the sequence of previous statuses of

each processes or thread.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1283

According to Definition 3:
��Coordinator�����������
�Grant: Resource � Pr_Th
�queue: Resource � � Pr_Th
�������������������

 The Coordinator in our Z specification consists of Grant

and queue functions. According to locking protocols, if a

resource is free, the coordinator Grants the resource to the

requester process; otherwise, the process is added to this

resource queue.

 Now, we specify the state schema of the system as follows:
��CS �������������������������
�processes: � Pr_Th

�resources: � Resource

�coordinator: Coordinator
�communication: Pr_Th � Pr_Th

�CT: Communication_Type
�DA: DeadLock_Approach
�DL_chance, DL_sure: Answer
����������������
��p: processes � p . NR � resources
��p, q: processes
� � q . address = p . address
� � p = q � p . Name � q . threadsName � q . Name � p .

threadsName
��p, q: processes � p � q � p . Name � q . Name
�CT = SharedVariable
�� ��r: resources � r . type = Memory�
� � ��p, q: Pr_Th � �p� q� � communication

� � �p . type = Update � q . type = ReadOnly��
�CT = MessagePassing
�� ��r: resources � r . type = Network�
� � ��p, q: Pr_Th � �p� q� � communication

� � �p . type = Sender � q . type = Receiver��
��r: Resource � r � dom coordinator . queue

� � �p: Pr_Th � p � coordinator . queue r � p . status = Waiting
�DA = DetRec � DL_sure � �Yes� No�
�DA = AVO � DL_sure = No
�DL_chance = No � DL_sure = No
�DL_chance = Yes � DL_sure � �Yes� No�
�dom coordinator . Grant � resources
�dom coordinator . queue � resources
�ran coordinator . Grant � processes
��p: � Pr_Th � p � ran coordinator . queue � p � processes
�dom communication � processes
�ran communication � processes
������������������������

 Identifier Processes indicates the set of active entities

including processes and threads which exist in the concurrent

system, and identifier resources denotes the set of active

resources. Communication relationship shows the relevance

between each active entity with other active entities.

DL_chance indicates deadlock possibility among a subset of

processes while DL_sure determines a deterministic

occurrence of deadlock among a subset of processes; we will

refer to these identifiers again.

 Now we write the initialization schema and all operation

schemas of the concurrent system in turn:
��CSInit �����������
�CS'
����������������
�processes' =

�resources' =

�coordinator' . Grant =
�coordinator' . queue =

�communication' =

�DL_chance' = No
�DL_sure' = No
��������������������

Operation schemas are presented below:
��Create �����������
�∆CS

�p?: Pr_Th
����������������
�p? � processes
�p? . pt = Process
�p? . NR � resources
�p? . EM � Message
�p? . IM =

�p? . status = Idle
�p? . PreviousStatuses = 	

�processes' = processes � �p?�
����������������

 Create is an operation schema for creating a process in the

system. In this schema, the input process (p?) will be created

and added to the set of system processes.

��DTC��������������������
�∆CS

�p?: Pr_Th
�new_t?: � PTName

�new_tn!: � PTName

�new_create!: � Pr_Th
����������������
�p? . status = Running
�p? � processes

��1t_set: � Pr_Th
� � # new_t? = # t_set
� � ��t: t_set
� � �t . Name � new_t?
� � t . pt = Thread
� � t . address = p? . address
� � t . status = Idle
� � t � processes��
� � new_create! = t_set
�new_tn! = ��p: processes � p = p? � p . threadsName � new_t?�
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th � p . threadsName = new_tn! � p . Name = p? .
Name �
� � new_create!
������������������������

 DTC specifies dynamic thread creation based on Definition

4. Each process can create one or more thread during its

running; according to this schema, a set of threads (new_t?)

will be added to the current threads of the input process (p?).

��Terminate��������������
�∆CS

�p!: &Pr_Th
����������������
��p: processes � p � processes � p . status = Finish � p! = p
�coordinator' . Grant = coordinator . Grant �p!�
�processes' = processes \ �p!�
������������������������

 Terminate specifies finishing a process in a normal

condition. According to definition 5, non-deterministic effects

appear in this part of specification since more than one process

may have the finish status. Thus, we use the notion of multi-

schema (when declaring p! by “&”) according to the notation

given in [24].

��release������������������
�∆CS
�p?: Pr_Th
�r!: � Resource

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1284

�new_nr!: � Resource

�new_tn!: � PTName
����������������
�p? � processes

�p? . status = Restart
�r! = coordinator . Grant ~ ! �p?� "
�coordinator' . Grant = coordinator . Grant �p?�
�new_nr! = ��p: processes � p = p? � p . NR � r!�
�new_tn!
� = ��p: processes � p = p? � p . pt = Process
� � p . threadsName \ p? . threadsName�
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th
� � p . NR = new_nr!
� � p . threadsName = new_tn!
� � p . Name = p? . Name �
�����������������������������
��

 Release specifies abandonment of all the granted resources

to a specific process or thread.

��ReleaseOneResource �������������
�∆CS
�p?: Pr_Th
�r?: Resource
����������������
�p? . status = Running
��r?� p?� � coordinator . Grant

�coordinator' . Grant = coordinator . Grant \ ��r?� p?��
����������������������������

 If a process or thread does not need its current resource, then

releases it.

��ND_Req ������������������
�∆CS
�r?: Resource
�p!:& Pr_Th
����������������
�p! � coordinator . queue r?
�r? � resources \ dom coordinator . Grant

�coordinator' . Grant = coordinator . Grant � ��r?� p!��
�coordinator' . queue r? = coordinator . queue r? \ �p!�
�����������������������

 When several processes compete for the same resource, non-

deterministic effects appear since there may exist more than

one process which can acquire a specific resource at the same

time. Thus, the notion of multi-schema is used for specifying

ND-Req.

��Assign_Resource�������������
�ND_Req
�new_nr!: � Resource
����������������
�new_nr! = ��p: processes � p = p! � p . NR \ �r?��
�processes'
� = � p: processes � p � p! �
� � � p: Pr_Th � p . NR = new_nr! � p . Name = p! . Name �
�����������������������

 Assign_Resource includes the schema “ND-Req” above to

complete the specification of resource allocation to a process

existing in the resource queue.

SinScheduling and CoScheduling below are scheduling

schemas for single-processor systems and multi-processor

systems, respectively:

��SinScheduling������������������
�ND_Req
����������������
�r? . type = Processor

�p! . status = Ready
�processes'
� = � p: processes � p � p! �
� � � p: Pr_Th
� � p . Name = p! . Name
� � p . pt = p! . pt
� � p . NR = p! . NR \ �r?�
� � p . EM = p! . EM
� � p . IM = p! . IM
� � p . address = p! . address
� � p . threadsName = p! . threadsName
� � p . type = p! . type
� � p . status = Running
� � p . PreviousStatuses = p! . PreviousStatuses # 	Ready
 �
������������������������

 According to Definition 7, fairness will be guaranteed by a

suitable scheduler in the implementation phase, not in the

specification stage.

��CoScheduling ���������������������
�∆CS

�p?: Pr_Th
�r_set?: � Resource
����������������
�p? � processes

�p? . status = Ready
��r: resources � r � r_set? � r . type = Processor
�r_set? � resources \ dom coordinator . Grant

�# p? . threadsName = # r_set?
��r: Resource � r � r_set?
� � coordinator' . Grant = coordinator . Grant � ��r� p?��
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th
� � p . Name = p? . Name
� � p . pt = p? . pt
� � p . NR = p? . NR \ r_set?
� � p . EM = p? . EM
� � p . IM = p? . IM
� � p . address = p? . address
� � p . threadsName = p? . threadsName
� � p . type = p? . type
� � p . status = Running
� � p . PreviousStatuses = p? . PreviousStatuses # 	Ready
 �
����������������������������

 According to Definition 7, in CoScheduling schema,

dependent processes are gangs scheduled to run

simultaneously on distinct processors. Gangs are scheduled to

run at the same time. Each process consists of a number of

interacting threads.

��SLS�����������������������
�∆CS

�r?: Resource
�hun_p!: Pr_Th
����������������
��p: processes � p � coordinator . queue r?

� � p . PreviousStatuses � 	

� � # p . PreviousStatuses $ 1

� � ��i: 1 .. # p . PreviousStatuses � p . PreviousStatuses i =
Waiting�
� � hun_p! = p
�processes'
� = � p: processes � p � hun_p! �
� � � p: Pr_Th
� � p . Name = hun_p! . Name
� � p . pt = hun_p! . pt
� � p . NR = hun_p! . NR
� � p . EM = hun_p! . EM
� � p . IM = hun_p! . IM
� � p . address = hun_p! . address
� � p . threadsName = hun_p! . threadsName

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1285

� � p . type = hun_p! . type
� � p . status = Starvation
� � p . PreviousStatuses = hun_p! . PreviousStatuses #

	Waiting
 �
�����������������������������

 According to Definition 8 and Fig.2, SLS schema specifies

Standstill-Livelock-Starvation state. According to Definition

10, if all previous statuses of a process are Waiting, then the

process status is starvation.

��SLI�����������������������
�∆CS

�p?: Pr_Th
�shift_amount?, length!: %
����������������
�p? � processes

�p? . status = Restart
�p? . PreviousStatuses � 	

�length! = # p? . PreviousStatuses
�1 & shift_amount? & length! - 1

�length! - shift_amount? + 1 mod 2 = 0
�p? . PreviousStatuses shift_amount? = Running
�� p? . PreviousStatuses length! = Restart
��i: 1 .. length!
� � 2 * i - 2 + shift_amount? & length! - 1

� � p? . PreviousStatuses �2 * i - 2 + shift_amount?� = Running
� � 2 * i - 1 + shift_amount? & length!
� � p? . PreviousStatuses �2 * i - 1 + shift_amount?� = Restart
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th
� � p . Name = p? . Name
� � p . pt = p? . pt
� � p . NR = p? . NR
� � p . EM = p? . EM
� � p . IM = p? . IM
� � p . address = p? . address
� � p . threadsName = p? . threadsName
� � p . type = p? . type
� � p . status = InfiniteExe
� � p . PreviousStatuses = p? . PreviousStatuses # 	Restart
 �
������������������������

 According to Definition 8 and Fig.2, SLI schema specifies

Standstill-Livelock-Infinite execution. Now according to

Definition 8, livelock situation is specified as follows:

��LiveLock ��������������
�SLS
�SLI
������������������������

��CircularCondition�����������
�∆CS
�p?: Pr_Th
�r?: Resource
�len_set!: %
����������������
�r? � resources

��p_set: seq processes

� � len_set! = # p_set
� � p? = p_set len_set!
� � ��i: 1 .. len_set! - 1

� � ��r: resources � r � r?
� � ��r� p_set �i + 1�� � coordinator . Grant

� � �r� �p_set i�� � coordinator . queue���
� � �r?� p_set 1� � coordinator . Grant
� � r? � p? . NR

�DL_chance' = Yes
������������������������

CircularCondition checks deadlock possibility in a subset

of processes. The output of this schema is either Yes or No.

��Synchronization�������������������������
�
�CircularCondition
����������������
�p? � processes

�p? . status � �Finish� Waiting� Restart�
�r? � p? . NR

�r? � resources \ dom coordinator . Grant

�� coordinator' . Grant = coordinator . Grant � ��r?� p?��
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th
� � p . Name = p? . Name
� � p . pt = p? . pt
� � p . NR = p? . NR \ �r?�
� � p . EM = p? . EM
� � p . IM = p? . IM
� � p . address = p? . address
� � p . threadsName = p? . threadsName
� � p . type = p? . type
� � p . status � �Ready� Running�
� � p . PreviousStatuses = p? . PreviousStatuses # 	p? . status
 �
�r? � dom coordinator . Grant

�� DA = DetRec � DL_chance � �Yes� No� � DA = AVO � DL_chance = No
� � coordinator' . queue r? = coordinator . queue r? � �p?�
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th
� � p . Name = p? . Name
� � p . pt = p? . pt
� � p . NR = p? . NR
� � p . EM = p? . EM
� � p . IM = p? . IM
� � p . address = p? . address
� � p . threadsName = p? . threadsName
� � p . type = p? . type
� � p . status = Waiting
� � p . PreviousStatuses = p? . PreviousStatuses # 	p? . status
 �
�DA = DetRec � DL_chance = Yes � DL_sure' = Yes
�DA = AVO � DL_chance = Yes � coordinator' . queue r? = coordinator . queue r?
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th
� � p . Name = p? . Name
� � p . pt = p? . pt
� � p . NR = p? . NR
� � p . EM = p? . EM
� � p . IM = p? . IM
� � p . address = p? . address
� � p . threadsName = p? . threadsName
� � p . type = p? . type
� � p . status = Restart
� � p . PreviousStatuses = p? . PreviousStatuses # 	p? . status
 �
����������������������������������
�

 According to Definition 2, processes and threads need to

be synchronized. In Synchronization schema, synchronization

is done based on two types of deadlock approaches.

��DeadLock_Recovery�������������������
��
�Synchronization
�p_loop?: � Pr_Th

�p!:& Pr_Th
����������������
�DA = DetRec
�DL_sure = Yes
��p: Pr_Th � p � p_loop? � p . status = Waiting
�p! � p_loop?

�processes'
� = � p: processes � p � p! �
� � � p: Pr_Th
� � p . Name = p! . Name
� � p . pt = p! . pt
� � p . NR = p! . NR

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1286

� � p . EM = p! . EM
� � p . IM = p! . IM
� � p . address = p! . address
� � p . threadsName = p! . threadsName
� � p . type = p! . type
� � p . status = Restart
� � p . PreviousStatuses = p? . PreviousStatuses # 	Waiting
 �
�DL_sure' = No
������������������������

If deadlock approach is detection & recovery, then it is

resolved by killing a process or thread existing in the detected

cycle randomly; hence, we used the notion of multi-schema

when specifying DeadLock_Recovery.

��Asynchronous_Communication ����������
�∆CS

�p?: Pr_Th
�r?: Resource
�new_M!: � Message
����������������
�CT = MessagePassing
�r? . type = Network
��r?� p?� � coordinator . Grant
�����������������������������
�

 According to Definition 6, in the asynchronous message

passing, a message can be placed on a location of the network,

provided there is some empty space in the network to hold the

message; it is assumed that each network has an unlimited

amount of space. Operation schemas As_Send_Me and

As_Receive_Me below specify sending and receiving

messages operations, respectively.

��As_Send_Me ��������������
�Asynchronous_Communication
�m?: Message
����������������
��q: processes � �p?� q� � communication
�m? � p? . EM

��r?� p?� � coordinator . Grant
�new_M! = ��p: processes � p = p? � p . EM \ �m?��
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th � p . EM = new_M! � p . Name = p? . Name �
�resources'
� = � r: resources � r � r? �
� � � r: Resource
� � r . type = r? . type � r . Location = r? . Location # 	m?
 �
�����������������������������
����
��As_Receive_Me������������
�Asynchronous_Communication
�m!: Message
����������������
��q: processes � �q� p?� � communication
�r? . Location � 	

�m! = head r? . Location
�new_M! = ��p: processes � p = p? � p . IM � �m!��
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th � p . IM = new_M! � p . Name = p? . Name �
�resources'
� = � r: resources � r � r? �
� � � r: Resource
� � r . type = r? . type � r . Location = tail r? . Location �
������������������������
��Synchronous_SeAndRe���������
�∆CS
�p?, q?: Pr_Th
�m?: Message

�new_pm!, new_qm!: � Message
����������������
�CT = MessagePassing
��p?� q?� � communication

�m? � p? . EM

�new_pm! = ��p: processes � p = p? � p . EM \ �m?��
�new_qm! = ��q: processes � q = q? � q . IM � �m?��
�processes'
� = � p: processes � p � p? � p � q? �
� � � p: Pr_Th � p . EM = new_pm! � p . Name = p? . Name �
� � � q: processes � q . IM = new_qm! � q . Name = q? . Name �
�����������������������������
����

 Synchronous_SeAndRe schema specifies synchronous

message passing. According to Definition 6, in the

synchronous message passing, the sender process delays until

the receiving process is ready to receive the message.

Messages do not have to be saved in a location of the network.

 Communication via shared variables is specified as follows:
��SharedMemory_Communication ��
�∆CS

�p?: Pr_Th
�r?: Resource
�new_M!: � Message

�new_r!: Resource
����������������
�CT = SharedVariable
�r? . type = Memory
��r?� p?� � coordinator . Grant
����������������������
��Write_Message���������������������
�
�SharedMemory_Communication
�m?: Message
����������������
��q: processes � �p?� q� � communication

�m? � p? . EM

�new_M! = ��p: processes � p = p? � p . EM \ �m?��
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th � p . EM = new_M! � p . Name = p? . Name �
�resources'
� = � r: resources � r � r? �
� � � r: Resource
� � r . type = r? . type � r . Location = r? . Location # 	m?
 �
�����������������������������
����
��Read_Message �������������
�SharedMemory_Communication
�m!: Message
����������������
��q: processes � �q� p?� � communication
�r? . Location � 	

�m! = head r? . Location
�new_M! = ��p: processes � p = p? � p . IM � �m!��
�processes'
� = � p: processes � p � p? �
� � � p: Pr_Th � p . IM = new_M! � p . Name = p? . Name �
�resources'
� = � r: resources � r � r? �
� � � r: Resource
� � r . type = r? . type � r . Location = tail r? . Location �
������������������������

According to Definition 6, in shared memory systems,

processes/threads communicate together using two operations

write and read on shared variables; these operations are similar

to send and receive in the asynchronous communication.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:11, 2011

1287

V. CONCLUSION AND FUTURE WORK

 In this paper, at first the well-known aspects of concurrent

systems including dynamic thread creation, communication,

scheduling, synchronization, deadlock, livelock, infinite

execution and starvation were reviewed informally. Then, a

comprehensive and integrated framework for formal

specification of these aspects was provided using the Z formal

specification language. The final specification has been

validated using a well-known Z type checker, i.e., Z/eves 2.1.

In summary, we can assert that this paper benefits from the

following advances in comparison to related work in the

literature:

1. This work covers all well-known aspects of

concurrent systems whereas some features of these

systems, such as dynamic process creation,

scheduling, and starvation, have not been specified

formally yet.

2. Some other features of concurrent systems have

been so far specified partially and/or have been

described using a combination of several different

formalisms and methods whose integration needs too

much effort; see a detailed description in section 2;

however, the formal specification proposed in this

paper is fully based on a single formal specification

language, i.e., the Z notation.

3. Unlike many other approaches in the literature, the

work of this paper brings non-determinism into the

specification explicitly. As it can be found in the

previous section, we used the notion of multi-schema

whenever we had to specify non-deterministic

behavior. According to the discussion given in [5],

such a specification leads to a program which

preserves all allowable behaviors of the specified

concurrent system.

One of the most important aims of specifying applications

formally is to develop programs from formal specifications.

We have chosen Z since it has an interpretation in Martin-

Löf’s theory of types [31]. Therefore, as a future work, we are

going to use this interpretation in order to translate our Z

specification of a concurrent program into its counterpart in

Martin-Löf’s theory of types and then drive a functional

program from a correctness proof of the resulting type

theoretical specification. In this way, we can provide a

completely formal way to specify and develop concurrent

systems.

REFERENCES

[1] P. Brinch Hansen, “Operating System Principles,” Prentic-Hall,1973.

[2] J. Bacon, J. Van der Linden, “Concurrent Systems: an integrated
approach to operating systems, distributed systems and databases,” 3nd
Edition, international computer science series, 2002.

[3] A.J. Bijoy, D.P. Hiren, “Generating Multi-Threaded Code from
Polychronous Specifications,” ElsevierJournal, Electronic Notes In
Theoretical Computer Science, vol. 238, 2009, pp. 57-69.

[4] S.C. Harpreet, W.B John, and M.W Jeanette, “ Formal Specification of
Concurrent Systems,” Elsevier Journal, Advances In Engineering
Software, vol. 30, 1999, pp. 211-224.

[5] H. Haghighi, “Towards a Formal Framework for Developing Concurrent
Programs: Modeling Dynamic Behavior,” Proc. The eighth ACS/IEEE
International Conference on Computer Systems and Applications
(AICCSA-10), Hammamet, Tunisia, 2010.

[6] O. Mosbahi, L. Jemni Ben Ayed, and M. Khalgui ,”A Formal
Approach for The Development of Reactive Systems,” Elsevier Journal,
Information and Software Technology,vol. 53, pp. 14-33, 2011.

[7] N. Aoumeur, K. Barkaoui, and G. Saake, “Towards MAUDE-TLA
based Foundation for Complex Concurrent Systems Specification and
Certification,” IEEE Fifth International Conference on Information
Technology: New Generation, 2008.

[8] M. Yusufa, G. Yusufu, “Comparison of SoftwareSpecification Methods
Using a Case Study,” IEEE International conference on computer
science and software Engineering, 2008.

[9] R. Duke, I. J. Hayes, P. King, and G. A. Rose, “Protocol Specification
and Verification Using Z” In IFIP Eighth International Workshop on
Protocol Specification, Testing and Verification, North-Holland, 1988,
pp. 33-46.

[10] E. Fergus, D. Ince, “Z Specifications and Modal Logic,” Proceedings of
Software Engineering 90, Brighton, Ed. Patrick Hall, Cambridge
University Press, July 1990.

[11] L. Lamport, “TLZ,” Proceeding of the 8th Z Users Meeting,
Cambridge, Springer Verlage, 1994.

[12] J.C.P Woodcook, and C. Morgan, “Refinement of State-Based
Concurrent Systems,” Procs. Of VDM 90, Springer Verlag,
1990,pp.341-351

[13] D. Safranek, “Visual Specification of Concurrent Systems,” IEEE
International Conference on Automated Software Engineering, 2003.

[14] D. Safranek, “Visual Specification of Systems with Heterogeneous
Coordination Models,” Elsevier Electronic Notes in theoretical
computer Science, 2007, pp. 107-121.

[15] A.S. Evans, “Specifying & Verifying Concurrent Systems Using Z,” In:
ISCIS XI, Turkey 1994.

[16] M. Pilling, A. Buruns, and K. Raymond, “Formal Specification and
Proof of Inheritance Protocols for Real_Time Scheduling,” IEEE
Software Engineering Journal, vol. 5, September 1990, pp.236-279.

[17] X. He, “PZ nets_a formal method integrating petrinets whit Z,” Elsevier
Information and Software Technology, vol.43 ,2001, pp.1-18.

[18] P. Stocks, K. Raymond, D. Carrington, and A. Lister, “Modelling Open
Distributed Systems in Z,” Elsevier computer Communications, vol.15,
March1992, pp. 103-113.

[19] C. Chu Chiang, “Development of Concurrent Systems Through
Coordination,” IEEE International Conference on Information
Technology, 2005.

[20] V. Kumar Garg, “Specification and Analysis of Concurrent Systems
Using STOCS model,” IEEE Computer Networking Symposium, 1988.

[21] D.E. Cook, “Formal Specification of Resource-Deadlock Prone Petri
Net,” Elsevier Systems Software Journal, vol.11, 1990, pp.53-69.

[22] N.D. Francesco, G. Vaglini, “Modular Verification of Correctness
Properties in Enviorment for Concurrent Systems Specification
Deadlock Case,” Elsevier Information Software Technology, vol.32,
October 1990, pp.133-148.

[23] J. Woodcock, J. Davies, “Using Z, Specification, Refinment and Proof,”
Prentic Hall, 1996.

[24] H. Haghighi, S.H, Mirian-Hosseinabadi, “Nondeterminism in
Constructive Z,” Fundamenta Informatica, Vol.88, 2008, pp. 109-134.

[25] V. Varadharjan, “Use of a Formal Description Technique in the
Specification of Authentication Protocols,” Elsevier Computer
Standards and Interfaces,vol. 9, 1990, pp.203-215.

[26] E. Spiliopoulou, “Concurrent and Distributed Functional Systems,” PhD
Thesis, Department of Computer Science, University of Bristol, 1999.

[27] H. Alex, S.Steven , and H. Steven, “On Deadlock,Livelock and Forward
Progress,” Technical Reports, university of cambridge, 2005.

[28] M.N. YousufAli, and M.Z.H. Sarker, “An Algorithm for Avoiding
Deadlock,”IEEE INMIC, 9th International Multitopic Conference, 2005.

[29] K.Ch. Tai, “Definition and Detection of Deadlock, LiveLock, and
Starvation in Concurrent Programs,” IEEE Computer Society,
International Conference on Parallel Processing, vol.2, 1994, pp.69-72.

[30] H.D. Karatza, “Scheduling Gang in a Distributed System,” ninth IEEE
Workshop ,I.J. of simulation, May 2003, pp.15-22.

[31] S.H. Mirian-Hosseinabadi, “Constructive Z,” Ph.D. dissertation, Essex
Univ., 1997.

