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Abstract—In this paper we compare the response of linear and 

nonlinear neural network-based prediction schemes in prediction of 

received Signal-to-Interference Power Ratio (SIR) in Direct 

Sequence Code Division Multiple Access (DS/CDMA) systems. The 

nonlinear predictor is Multilayer Perceptron MLP and the linear 

predictor is an Adaptive Linear (Adaline) predictor. We solve the 

problem of complexity by using the Minimum Mean Squared Error 

(MMSE) principle to select the optimal predictors. The optimized 

Adaline predictor is compared to optimized MLP by employing 

noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an 

urban environment. The results show that the Adaline predictor can 

estimates SIR with the same error as MLP when the user has the 

velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 

120 km/h the mean squared error of MLP is two times more than 

Adaline predictor. This makes the Adaline predictor (with lower 

complexity) more suitable than MLP for closed-loop power control 

where efficient and accurate identification of the time-varying 

inverse dynamics of the multi path fading channel is required. 

Keywords—Power control, neural networks, DS/CDMA mobile 

communication systems.  

I. INTRODUCTION

HE user capacity and quality of service in a DS/CDMA 

system crucially depends on the levels of interference 

from other users and perfect power control plays a very 

important role in a CDMA system. The open loop power 

control is designed to over-come the near-far and shadowing 

problems on the reverse link of a CDMA system, while the 

closed-loop power control and feedback procedure eliminates 

the received signal fluctuation due to the small scale 

propagation loss [1],[2]. The inherent problem in a closed-

loop power control algorithm is feedback delay. Therefore, to 

compensate the uplink fading, the uplink channel information 

must be estimated at the base station and then feedback to the 

mobile station, so that, the mobile station can adjust its 

transmit power according to the feedback information [3]. A 

closed loop power control model for the reverse link is 

illustrated in Fig. 1.  
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In this model the signal strength or SIR is first estimated at 
the base station for every time slot and then is compared with 
the desired or the target level and so that the received power is 
kept almost equal. In addition, power control on SIR is more 
suitable than that based on signal strength because CDMA 
system is interference limited [4], [5], [6]. Neural networks 
are well suited to be utilized as nonlinear predictive filters 
because of their distinguished approximation and 
generalization capabilities [7], [8], [9]. We use the MLP as a 
nonlinear neural network-based predictor and Adaline 
predictor as a linear neural network-based predictor.  

An important but difficult problem in designing the neural 
network is to determine the optimal structure for successful 
prediction. In this paper, we have used MMSE principle to 
solve the problem of complexity or the length of predictor.  A 
hybrid and Modified Elmann Neural Network (MENN) and 
Heinonen-Neuvo prediction were proposed in [10], [11], [12] 
to predict signal strength and they used Predictive Minimum 
Description Length (PMDL) method to find the optimal neural 
network. The structure of MLP and Adaline predictors are 
first optimized off-line for different velocities and the 
performance of all mentioned structures are evaluated in terms 
of bias and MSE then use the optimal predictor with on-line 
learning and adaptation in the real situation.  

A Rayleigh fading channel simulator and SIR estimator 

technique are described in section II. In section III we discuss 

the topology of Adaline and MLP neural network-based 

power prediction and the applied learning algorithm. The 

optimized neural predictor is found off-line and applied to 

predict SIR in a Rayleigh fading channel. An  illustrative 

simulation is demonstrated in section IV. Finally, we conclude 

this paper with a few remarks in section V. 

II. RAYLEIGH FADING POWER SIGNAL AND SIR ESTIMATOR

One of the most commonly used method to simulate a 

Rayleigh fading channel is described in [13] and is referred to 

as the Jake's method. A simplified channel simulator often 

assumes the superposition of plane waves, whose arrival 

angles are uniformly distributed and associated with different 

Doppler shifts, ranging from the minimum to the maximum 

specified by the mobile speed. The Jake's method assumes 

that the line-of-sight component is absent. When the number 

of paths is large enough, the base band signal received from a 

multi path fading channel is approximately a complex 

Gaussian process and it invoke central limit theorem.

T
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Fig. 1 Closed loop power control model 

We can write the amplitude fluctuation of the base band signal as 

follows  
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Here t  is amplitude fluctuation, L is the number of 

paths , 
cf is carrier frequency, 

Df  is Doppler frequency, 

)(tl
 has a uniform distribution in 2,0  and 

sl T (
sT  is 

the sample duration) in frequency- nonselective channel [14]. 

The jth user’s signal strength is attenuated by the factor 
M

1

(cross correlation between spreading sequences) after 

dispreading by the kth user's spreading sequences 

[15],[16],[17]. The SIR of the kth user during one symbol 

period can be expressed as follows 
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Here nk
 is the fading channel coefficient and nk

  is 

the standard deviation of the Additive White Gaussian Noise 

(AWGN). The simulated fading envelope for a vehicle with 

speed of 10km/h and its corresponding SIR are shown in 

Fig.2. We used all data symbols in the time slot to estimate the 

SIR. The chip rate is assumed McpsRc 84.3  as given in the 

3G specification for uplink data channel. Therefore, 40 binary 

symbols per time slot are available for the SIR estimation.  

III. NEURAL NETWORK SELECTION

Consider a feed forward multilayer perceptron with one 

hidden layer and q hidden nodes, and an Adaline neural 

network as predictive filters. They have p input nodes 

)1(,),1(),( pnxnxnx , and the single node in the 

output layer represents the one-step-ahead prediction. 

Fig. 2 SIR in Rayleigh fading channel ( Hzf D 17 and 12K )

In this application, MLP and Adaline predictors are given 

in Figs. 3 and 4, respectively. In MLP structure, the 

hyperbolic tangent sigmoid functions are used as the nonlinear 

transfer function of the hidden nodes, and the transfer function 

of the output node is linear. There are many ways to maximize 

the predictor’s generalization. 

 From the network structure’s point of view, we may select 

the optimal number of input and hidden nodes, or assume 

partial connections between different nodes and apply some 

pruning methods to eliminate very small weights in order to 

simplify   the network structure [18], [19]. The number of 

hidden nodes q, in MLP model, and the number of input nodes 

should be optimized. There are two principles to find the 

optimal predictor. Two criteria, Minimum Mean Squared error 

(MSE) and Minimum Description Length (MDL) criteria [20], 

[10] are used for filter design parameter selection.
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Fig. 3 The structure of the MLP neural- network-based predictor 

Fig. 4  The structure of the Adaline neural- network-based predictor 

In this paper we used MSE principle to find the optimal 

structure or the length of predictor because MDL is actually a 

criterion to used for finding the order of the Autoregressive 

(AR) and Auto Regressive Moving Average (ARMA) models 

and our Rayleigh fading channel predictor is not an AR 

process, therefore MDL criteria cannot be expected to give 

exact results[21], [22]. MSE principle is given as  
1
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Here Nnnx ,,2,1),(  are the samples values of the time 

series to be predicted. In MLP predictor, we have 
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The output of Adaline predictor is 
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We divided nx  into 
d

N
kmax

 consecutive segments 

where d represents the length of prediction and maxk  is an 

integer number. We train each network with p inputs and q 

hidden nodes using the back propagation learning algorithm 

[23] to minimize the mean squared error in each segment. 
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Then we use the obtained optimal weights and bias to 

predict the points 11,,1,,1 dkkdkdnnx  in the 

following subsequent (k+1)th segment to maintain the actual 

mean squared prediction error 
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In this prediction the parameters of the predictor are 

determined and updated using the past data. The predictions of 

the data points in the very first segment are taken as zero. This 

procedure is continued until the mean squared errors for all 

the segments are found. Then we calculate the total actual 

mean squared error for MLP predictor as 
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We find different perE  for the network with the p input 

nodes and q hidden nodes. Due to the local minima problem 

with neural networks, minimization of (10) must be handled 

carefully .If a deterministic optimization algorithm, such as 

the conventional back propagation is used, the above  

procedures should be repeated many times, each of which has 

random initialization values. The final MSE of each model is 

the averaged MSE of all the experiments. If a stochastic 

search algorithm, such as the simulated annealing algorithm 

[25], is used, the temperature must be decreased as slowly as 

possible so that a global minimum, or at least a relatively good 

local minimum could be achieved. When we repeated the 

above procedure for B times we got 
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Here b is the bth repetition. We select the network with the 

minimum 
perE  as the optimal predictor structure. 

IV. SIMULATION RESULT

A. Off-line Optimization of Neural-Network 

Due to the time-varying and mobile speed-dependent 

characteristics of the power response of the Rayleigh fading 

channel, it is not practical to optimize the predictor structure 

for a power signal covering the whole speed range. Therefore, 

we only consider the optimization of the network structures 

under three extreme conditions when the vehicle speed is 5, 

60 and 120 km/h. The additive noise used is zero mean white 

Gaussian noise. We use 1,, pnn xxx  from a segment 

of a received SIR, as shown in Figs. 3 and 4. This time series 

has 600 samples and the segment length d here is 200. In MLP 

predictor, the computational complexity will be increased 

drastically by increasing the number of hidden nodes. A large 

number of hidden nodes is rarely used, and we change q in a 

small range, i.e. , q=1,2,3. The mean squared errors and the 

prediction output of different MLP structures for different 

vehicle speeds 5 km/h , 60 km/h and 120 km/h have been 

achieved in [26]. The MSE of all models candidates in 

Adaline at the speed of 5, 60, 120 km/h are given in Figs. 5, 6, 

7, respectively. It is easy to find that the optimal Adaline has 

nine input nodes at the speed of 5 km/h, and for vehicle’s 

speed of 60 km/h it has 5 input nodes, and with 18 input nodes 

turns out to be the best structure for the speed of 120 km/h.  

B. Real-Time Prediction with On-Line Adaptation 

As the fading signals are highly nonstationary, which is the 

case in mobile communication applications, the learning must 

be adaptive. We have used on-line back propagation algorithm 

with a moving window. This allows the predictor to adapt new 

data quickly while adequately forgetting the old data [24]. The 

structure of MLP and Adaline predictors are first optimized 

off-line using the procedures described above. The obtained 

optimal predictors are then used for prediction of SIR. At the 

speeds of 5, 60, 120 km/h , the output of the Adaline are 

shown in Figs. 8, 9, 10, respectively. The results show that the 

optimal MLP  and Adaline predictors can predict SIR with the 

same MSE values of about 0.02, 0.25 at the urban mobile 

speeds of 5 km/h, 50 km/h, respectively. But by increasing the 

mobile velocity until 120 km/h, the MSE value for Adaline 

predictor is 0.2 and this value for MLP predictor is 

approximately 0.4.

Fig. 5 MSE of different Adaline models at the speed of 5km/h 

Fig. 6 MSE of different Adaline models at the speed of 60km/h
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Fig. 7 MSE of different Adaline models at the speed of 120km/h Fig. 8 The Adaline predictor output of SIR at the speed of 5 km/h

along with the actual SIR 

Fig. 9 The Adaline predictor output of SIR at the speed of 60 km/h along 

with the actual SIR 

Fig. 10 The Adaline predictor output of SIR at the speed of 120 km/h 

along with the actual SIR 

V. CONCLUSION

In this paper, we compared the linear and nonlinear neural 

network predictors for SIR estimation in DS/CDMA 

systems. Simulation results show that the optimized Adaline 

neural network structure is more capable in identifying the 

time-varying inverse dynamics of the multi path fading 

channel than the optimized MLP predictor at high vehicle 

speeds. The great advantage of neural network-based 

predictor is that the Adaline neural predictor with the lower 

complexity and shorter training time could provide better 

identification results. Although the neural predictor has high 

computational complexity, it is feasible from the application 

point of view, because the required sampling rate is only 1.5 

KHz. Therefore, custom VLSI and DSP  

processors are the potential implementation platforms of our 

adaptive predictor. The presented neural predictors are the 

natural preprocessing stages for advanced fuzzy and neural 

power controllers.
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